King Fahd University of Petroleum and Minerals Department of Mathematics Statistics

CODE 004

CODE 004

Exam I Term 111 Tuesday, Oct.11, 2011 Net Time Allowed: 120 minutes

Math 102

Name: _____

ID:

____ Sec:

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2 Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

(a)
$$\frac{39}{15}$$

(b) $\frac{10}{3}$
(c) $\frac{49}{15}$
(d) $\frac{8}{3}$
(e) $\frac{4}{5}$

2.
$$\int_{-2\sqrt{5}}^{0} \sqrt{20 - x^2} \, dx =$$

(a) $\frac{5}{4}\pi$ (b) 5π (c) $\frac{\sqrt{5}}{2}\pi$ (d) $2\sqrt{5}\pi$

- 3. The area under the graph of $f(x) = \frac{x}{x+1}$ from x = 0 to x = 3 using three rectangles and right endpoints is approximately equal to
 - (a) $\frac{13}{6}$ (b) 2 (c) $\frac{3}{5}$ (d) $\frac{15}{7}$ (e) $\frac{23}{12}$

4. If
$$\int_{-4}^{7} f(x) dx = A$$
 and $\int_{7}^{1} f(x) dx = B$, then $\int_{-4}^{1} f(x) dx = B$

- (a) A + B
- (b) A B
- (c) 7A 4B
- (d) B A
- (e) *AB*

5.
$$\int \frac{1 + \sec^2 \theta \tan \theta}{\sec \theta} d\theta =$$

(a)
$$\ln |\sec \theta| + C$$

(b)
$$\sin\theta + \frac{1}{3}\sec^3\theta + C$$

(c)
$$\sin\theta + \cos\theta + C$$

(d)
$$\cos\theta + \tan\theta + C$$

(e)
$$\sin\theta + \sec\theta + C$$

6. If
$$H(x) = \int_{\sqrt{x}}^{x^3} e^{t^2} dt$$
, then $H'(1) =$

(a)
$$\frac{3}{2}e$$

(b) $\frac{2}{3}e$
(c) $-\frac{1}{5}e$
(d) 0
(e) $\frac{5}{2}e$

004

7. $\lim_{n \to \infty} \frac{\pi}{n} (\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \sin \frac{3\pi}{n} + \dots + \sin \frac{n\pi}{n}) =$

- (a) 1
- (b) ∞
- (c) 0
- (d) 2
- (e) $\frac{1}{2}$

8.
$$\int_0^1 \frac{e^x}{1+e^{2x}} dx =$$

- (a) e + 1
- (b) ln(1+e) ln2
- (c) 2*e*
- (d) $2 \tan^{-1} e \pi$
- (e) $\tan^{-1} e \frac{\pi}{4}$

- 9. Let $I = \int_{-1}^{1} \sqrt{2 + x^2} \, dx$. Using the comparison properties of the integral, we conclude that
 - (a) $2\sqrt{2} \le I \le 2\sqrt{3}$
 - (b) $2 + \sqrt{2} \le I \le 2 + \sqrt{3}$
 - (c) $\sqrt{2} \le I \le \sqrt{3}$
 - (d) $3 \le I \le \sqrt{3}$
 - (e) $2\sqrt{3} \le I \le 3$

10.
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{t^4 \tan t}{2 + \cos t} dt =$$

(a)
$$-\frac{2}{3}$$

(b) 0
(c) 8
(d) 2π
(e) $ln3$

11. The area of the region enclosed by the line 2x + y = 1 and the parabola $y = 4 - x^2$ is equal to

(a)
$$\frac{37}{9}$$

(b) $\frac{32}{3}$
(c) $\frac{15}{4}$
(d) $\frac{31}{13}$
(e) $\frac{33}{5}$

12.
$$\sum_{i=1}^{n} \frac{(2-i)^2}{n} =$$
(a) $3n^2 + 10n + 12$
(b) $2n^2 + n + 14$
(c) $\frac{1}{6}(2n^2 - 9n + 13)$
(d) $\frac{1}{2}(2n^2 - 9n + 7)$
(e) $\frac{1}{3}(n^2 - 7n + 10)$

13. The area of the region lying between the curves $y = x^3$ and y = x from x = -3 to x = 2 is equal to

(a)
$$\frac{75}{4}$$

(b) $\frac{83}{4}$
(c) $\frac{55}{4}$
(d) $\frac{63}{4}$
(e) $\frac{-55}{4}$

14. If
$$F(x) = e^{-x^2} - 5 + \int_0^{\sqrt{x}} 8te^{-t^4} dt$$
, then $F'(x) = 0$ when

(a)
$$x = 16$$

- (b) x = 0
- (c) x = 1
- (d) x = 2
- (e) $x = -\frac{1}{2}$

15.
$$\int \frac{x^2}{\sqrt{1-x}} dx =$$

(a)
$$4\sqrt{1-x} - \frac{2}{3}(1-x)^{2/3} + 5(1-x)^{1/5} + C$$

(b) $-2\sqrt{1-x} - \sqrt{(1-x)^3} + 5\sqrt{(1-x)^5} + C$
(c) $-2\sqrt{1-x} + \frac{4}{3}\sqrt{(1-x)^3} - \frac{2}{5}\sqrt{(1-x)^5} + C$
(d) $\frac{-2}{3}x^3\sqrt{1-x} + C$
(e) $-2 + 2x + 4(1-x)^{1/5} + C$

16. If f is continuous and
$$\int_0^6 f(2x)dx = 10$$
, then $\int_0^{2\sqrt{3}} x f(x^2)dx =$

(a) 3 (b) $\frac{5}{3}$ (c) $5\sqrt{3}$ (d) 10

(e) 5

17.
$$\int_0^{\pi/12} \frac{\sin(6x)}{1 + \cos^2(3x)} dx =$$

(a)
$$-\frac{1}{2}ln(1+\sqrt{2})$$

(b) *ln*4

(c)
$$-\frac{1}{3}ln(\frac{3}{4})$$

(d) $ln\sqrt{2}$

(e)
$$\frac{1}{3}ln3$$

18. The volume of the solid generated by rotating the region enclosed by the curves $y = \sqrt{x}$ and $y = \frac{1}{3}x$ about the line x = -1 is given by

(a)
$$\pi \int_0^3 [(3y)^2 - (y^2)^2] dy$$

(b) $\pi \int_0^3 [(3y-1)^2 - (y^2-1)^2] dy$
(c) $\pi \int_0^3 [(3y+1)^2 - (y^2+1)^2] dy$
(d) $\pi \int_0^9 [(\sqrt{x}+1)^2 - (\frac{1}{3}x+1)^2] dx$
(e) $\pi \int_0^9 [(\sqrt{x})^2 - (\frac{1}{3}x)^2] dx$

- 19. The volume of the solid generated by revolving the region enclosed by the curves $y = \tan x, y = 1, x = 0$ about the *x*-axis is
 - (a) 4π
 - (b) $\frac{3\pi}{2} 1$ (c) $\frac{\pi}{3} - 2$
 - (d) $\pi(\frac{\pi}{2}-1)$

(e)
$$\pi(\pi + 2)$$

20. If the velocity (m/s) of a particle moving in a straight line is given by $v(t) = 1 - 2\sin t$, $t \ge 0$ then the distance (m)traveled during the time interval $[0, \frac{\pi}{2}]$ is

- (a) $\sqrt{3} 1 \frac{\pi}{12}$ (b) $\sqrt{3} - \frac{\pi}{4}$ (c) $2 + \frac{\pi}{12}$ (d) $2 - \frac{\pi}{6}$
- (e) $2\sqrt{3} 2 \frac{\pi}{6}$

Q	MM	V1	V2	V3	V4
1	a	е	a	d	с
2	a	с	d	d	b
3	a	b	b	b	е
4	a	a	с	b	a
5	a	С	С	с	е
6	a	С	d	d	е
7	a	с	с	е	d
8	a	е	d	С	е
9	a	е	b	b	а
10	a	a	е	b	b
11	a	d	d	С	b
12	a	е	е	d	С
13	a	а	d	а	а
14	a	с	d	с	d
15	a	е	b	d	С
16	a	b	d	d	d
17	a	е	d	b	с
18	a	a	с	е	с
19	a	а	d	а	d
20	a	d	b	а	е

ANSWER KEY