King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

> Math 102 Exam I Term 101 Wednesday, November 3, 2010 Net Time Allowed: 120 minutes

MASTER VERSION

MASTER

- 1. The area under the graph of $f(x) = \frac{1}{x+1}$ from x = 1 to x = 3 using three rectangles and left endpoints is approximately equal to
 - (a) 47/60
 - (b) 33/25
 - (c) 27/20
 - (d) 49/50
 - (e) 25/38

2.
$$\int (x+2)\tan(x^2+4x) \, dx =$$

- (a) $\frac{1}{2}\ln|\sec(x^2+4x)| + C$
- (b) $\frac{1}{2}\cot(x^2+4x) + C$
- (c) $\ln|\sec(x^2+4x)| + C$
- (d) $2\ln|\sin(x^2+4x)|+C$
- (e) $\frac{1}{2}\ln|\csc(x^2+4x)|+C$

3. If f' is continuous,
$$f(8) = 10$$
, and $\int_2^8 f'(x)dx = 8$, then $f(2) =$

- (a) 2
- (b) 10
- (c) 18
- (d) 4
- (e) 8

4. If
$$g(x) = \int_x^2 \ln\left(\frac{2}{t}\right) dt$$
, then $g'(x) =$

(a) $\ln\left(\frac{x}{2}\right)$ (b) $\ln\left(\frac{2}{x}\right)$ (c) $\ln x$

(d)
$$-2\ln x$$

(e)
$$\frac{\ln x}{x}$$

MASTER

5.
$$\lim_{n \to +\infty} \sum_{i=1}^{n} \frac{\pi}{n} \left(1 + \sin\left(\frac{3\pi i}{n}\right) \right)^{2} =$$
(a) $\int_{0}^{\pi} (1 + \sin(3x))^{2} dx$
(b) $\int_{0}^{\pi} (1 + \sin(3\pi x))^{2} dx$
(c) $\int_{\pi}^{2\pi} 2(1 + \sin(3x))^{2} dx$
(d) $\int_{0}^{2\pi} (1 + \sin(3\pi x))^{2} dx$

(e)
$$\int_0^{3\pi} (1 + \sin x)^2 dx$$

6.
$$\int_{1}^{-2} f(x)dx - \int_{3}^{-2} f(x)dx - \int_{1}^{3} f(x)dx =$$

(b)
$$\int_{-2}^{1} f(x) dx$$

(c)
$$\int_{-2}^{3} f(x) dx$$

(d)
$$\int_3^1 f(x) dx$$

(e)
$$2\int_1^3 f(x)dx$$

7. The volume of the solid obtained by rotating the region bounded by the curves

$$y = e^x, y = 1, x = 2$$

about the x-axis is equal to

(a)
$$\frac{\pi}{2}(e^4 - 5)$$

(b) $\frac{\pi}{2}(e^2 - 1)$
(c) πe^4

(d)
$$\pi \left(\frac{e^2}{2} - 3\right)$$

(e) $\pi (e^2 + 2)$

8.
$$\lim_{n \to +\infty} \sum_{i=1}^{n} \frac{i^5}{n^6} =$$
(a) $\frac{1}{6}$
(b) $\frac{5}{6}$
(c) $\frac{2}{3}$

(d)
$$\frac{1}{4}$$

(e) $\frac{3}{5}$

MASTER

9. If
$$G(x) = \int_2^x g(t)dt$$
, where $g(t) = \int_2^{2\sqrt{t}} \frac{\sqrt{9+w^2}}{1+2w^2} dw$, then $G''(4) =$

(a) $\frac{5}{66}$ (b) $\frac{15}{33}$ (c) $\frac{19}{34}$ (d) $\frac{5}{28}$ (e) $\frac{19}{66}$

10. The area of the region enclosed by the line x = 0 and the parabola $x = y^2 - 2y$ is equal to

(a)
$$\frac{4}{3}$$

(b) $-\frac{8}{3}$
(c) $\frac{5}{2}$
(d) $\frac{7}{2}$
(e) $\frac{15}{4}$

11.
$$\int_{-\pi}^{\pi} \frac{t + \sin t}{2 + \cos t} dt =$$

(a) 0 (b) $\frac{\pi^3}{2}$ (c) $\frac{\pi^4}{3} - 1$ (d) $2 \ln 3$

(e)
$$\pi \ln 2$$

12.
$$\int_0^3 x\sqrt{81 - x^4} \, dx =$$

(a)
$$\frac{81\pi}{8}$$

(b) $\frac{9\pi}{8}$
(c) $\frac{27\pi}{2}$
(d) $\frac{81\pi}{2}$
(e) $\frac{10\pi}{7}$

MASTER

13. The volume of the solid generated by revolving the region bounded by the curves

$$y = \frac{1}{x^2 + 1}, y = 0, x = 0, x = 3$$

about the y-axis is equal to

- (a) $\pi \ln 10$
- (b) $2\pi \ln 5$
- (c) $\frac{1}{2}\pi \ln 3$
- (d) $\pi \ln 12$
- (e) $3\pi \ln 3$

14. The area of the region that lies in **the first quadrant** and is enclosed by the curves

$$y = \frac{1}{x}, \ y = x, \ y = 4x$$

is equal to

(a) $\ln 2$ (b) $\frac{1}{2} + \ln 2$ (c) $\frac{3}{8} - \ln 2$ (d) 1 (e) $\frac{3}{2} + \ln 2$

MASTER

$$15. \quad \int x\sqrt[3]{2x-1} \, dx =$$

(a)
$$\frac{3}{28}(2x-1)^{7/3} + \frac{3}{16}(2x-1)^{4/3} + C$$

(b) $\frac{3}{14}(2x-1)^{7/3} + \frac{3}{8}(2x-1)^{4/3} + C$
(c) $\frac{1}{4}(2x-1)^{7/3} + \frac{1}{4}(2x-1)^{4/3} + C$
(d) $\frac{1}{4}(2x-1)^{4/3} + \frac{1}{4}(2x-1)^{1/3} + C$
(e) $\frac{3}{16}x^2(2x-1)^{4/3} + C$

16. The volume of the solid generated by rotating the region bounded by the curves

$$y = x^2, \ y = 2 - x, \ y = 0$$

about the line x = 2 is given by

(a)
$$\pi \int_0^1 [(2 - \sqrt{y})^2 - y^2] dy$$

(b) $\pi \int_0^2 [(2 - x^2)^2 - x^2] dx$
(c) $\pi \int_0^2 [(x^2)^2 - (2 - x)^2] dx$
(d) $\pi \int_0^1 [(2 - y)^2 - (\sqrt{y})^2] dy$
(e) $\pi \int_0^1 x^4 dx + \pi \int_1^2 (2 - x)^2 dx$

MASTER

The base of a solid is the triangular region with vertices 17.(0,0), (2,2), (0,2). If the cross sections of the solid perpendicular to the x-axis are **semicircles**, then the volume of the solid is equal to

(a)
$$\frac{\pi}{3}$$

(b) $\frac{\pi}{8}$
(c) $\frac{3\pi}{8}$
(d) $\frac{\pi}{4}$
(e) $\frac{2\pi}{3}$

18.
$$\int_{1}^{2} \frac{1}{x^2} \sqrt{\frac{x-1}{x}} \, dx =$$

3

(a)
$$\frac{1}{3\sqrt{2}}$$

(b) $\frac{\sqrt{3}}{2}$
(c) 1
(d) $\frac{2}{\sqrt{5}}$
(e) $7\sqrt{2}$

Page 10 of 10

- 19. Which one of the following statements is **TRUE** about the integral $I = \int_0^{\pi/2} e^{\sin x} dx$
 - (a) $\frac{\pi}{2} \le I \le \frac{\pi e}{2}$ (b) $\frac{5e}{2} \le I \le 5e$ (c) $2\pi \le I \le 4\pi$
 - (d) $\pi e \leq I \leq 2\pi e$

(e)
$$\pi^2 \leq I \leq \pi^2 e$$

20. The velocity (in m/s) of a particle moving along a line is given by

$$v(t) = t^2 - t - 2.$$

The distance traveled by the particle during the time interval $1 \leq t \leq 3$ is

- (a) 3 m
- (b) 4 m
- (c) 1 m
- (d) $\frac{2}{3}$ m

(e)
$$\frac{1}{2}$$
 m