King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 102 Exam I 093 Monday 19/07/2010 Net Time Allowed: 120 minutes

MASTER VERSION

Page 1 of 10

1. To estimate the area under the graph of $f(x) = x \sin x$ from x = 0 to $x = \pi$ using four rectangles and the right endpoints we get

(a)
$$\frac{\pi^2(1+\sqrt{2})}{8}$$

(b) $\frac{\pi^2(2-\sqrt{2})}{4}$
(c) $\frac{\pi^2(\sqrt{2}-1)}{8}$
(d) $\frac{\pi^2(2-\sqrt{2})}{8}$
(e) $\frac{\sqrt{2}\pi^2}{8}$

2.
$$\int \frac{\sqrt{x} + \sqrt[4]{x}}{\sqrt[3]{x}} dx =$$
(a) $\frac{6}{7}x^{7/6} + \frac{12}{11}x^{11/12} + c$
(b) $-\frac{1}{x} + \frac{1}{2}x^2 + c$
(c) $42x^{7/6} + 132x^{11/12} + c$
(d) $\ln|x| + \frac{1}{2}x^2 + c$
(e) $\frac{6}{5}x^{5/6} + \frac{12}{19}x^{19/12} + c$

3.
$$\int_0^1 \frac{3x^3 + x^2 - 18x - 6}{3x + 1} dx =$$

(a)
$$-\frac{17}{3}$$

(b) $-\frac{19}{3}$
(c) $\frac{14}{3}$
(d) $-\frac{11}{3}$
(e) $\frac{5}{3}$

4.
$$\int (\tan x + \cot x) dx =$$

- (a) $\ln |\tan x| + c$
- (b) $\ln |\cot x| + c$
- (c) $\ln|\sec x| + c$
- (d) $\ln |\csc x| + c$
- (e) $\ln|\sec x + \csc x| + c$

- 5. If v(t) = (t-3) m/s is the velocity of a particle moving on a line at time t in seconds, then the total distance traveled by the particle during the time interval [0, 4] is
 - (a) 5*m*
 - (b) 9m
 - (c) 6m
 - (d) 3m
 - (e) 14*m*

6.
$$\int \frac{\sin^{-1}\left(\frac{x}{2}\right)}{\sqrt{4-x^2}} dx =$$

(a) $\frac{1}{2} \left(\sin^{-1}\left(\frac{x}{2}\right) \right)^2 + c$
(b) $\ln |\sin^{-1}\left(\frac{x}{2}\right)| + c$
(c) $4 \left(\sin^{-1}\left(\frac{x}{2}\right) \right)^2 + c$
(d) $\frac{1}{4-x^2} + c$
(e) $\sqrt{4-x^2} \sin^{-1}\left(\frac{x}{2}\right) + c$

7.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left(3 - \frac{2i}{n} \right)^2 =$$

(a)
$$\frac{13}{3}$$

(b) $\frac{22}{3}$
(c) $\frac{14}{3}$
(d) $\frac{52}{3}$

(e) 0

8. The area of the region enclosed by the curves $y = \sqrt{x}$, y = x, x = 0, and x = 4 is equal to

- (a) 3
- (b) $\frac{3}{2}$
- (c) 5
- (d) $\frac{5}{2}$
- (e) $\frac{10}{3}$

9. If
$$\int_4^7 f(x) dx = 5$$
, then $\int_1^4 \frac{f(3\sqrt{x}+1)}{\sqrt{x}} dx =$

(a) $\frac{10}{3}$ (b) 30 (c) $\frac{35}{3}$ (d) 20 25

(e)
$$\frac{25}{3}$$

10. The area of the region enclosed by $2x + y^2 = 3$ and x - y = 0 is

- (a) $\left[\frac{3}{2}y \frac{1}{2}y^2 \frac{1}{6}y^3\right]_{-3}^{1}$ (b) $\left[\frac{1}{2}y - \frac{3}{2}y^2 - \frac{1}{3}y^3\right]_{-1}^{3}$ (c) $\left[\frac{3}{2}y + \frac{1}{2}y^2 - \frac{1}{3}y^3\right]_{-3}^{1}$
- (d) $\left[\frac{3}{2}y \frac{1}{3}y^2 \frac{1}{3}y^3\right]_{-3}^{1}$
- (e) $\left[\frac{3}{2}y \frac{2}{3}y^2 \frac{1}{6}y^3\right]_{-1}^3$

- The base of a solid is the region bounded by the parabola 11. $y = 1 - x^2$ and the x- axis. Each cross section perpendicular to the x- axis is a square. The volume of the solid is
 - $\frac{16}{15}$ (a) $\frac{4}{3}$ (b) $\frac{2}{3}$ (c) $\frac{15}{12}$ (d) $\frac{8}{15}$ (e)

The volume of the solid obtained by rotating the region bounded by the graphs of $y = \tan x$, $x = \frac{\pi}{4}$ and y = 012. about the x- axis is equal to

> (a) $\frac{4\pi - \pi^2}{4}$ (b) π (c) $2\pi^2 - 4\pi$ (d) $\frac{3\pi^2 - 4\pi}{4}$

(e)
$$\frac{\pi}{4}$$

13.
$$\int_{-1}^{0} (x+1) e^{-x(x+2)} dx =$$

(a)
$$\frac{1}{2}(e-1)$$

(b) $\frac{3}{2}e$
(c) $\frac{1}{4}(e+1)$
(d) $\frac{1}{4}(e-1)$

(e)
$$1 - e$$

.

14. An expression for the area under the graph of $f(x) = 3x^2 + 5x$, $0 \le x \le 2$, as a limit and using right endpoints is

.

(a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{24i^2}{n^3} + \frac{20i}{n^2} \right]$$

(b)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{6i^2}{n^3} + \frac{10i}{n^2} \right]$$

(c)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{3i^2}{n^3} + \frac{20i}{n^2} \right]$$

(d)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{24i^2}{n^3} + \frac{5i}{n^2} \right]$$

(e)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{3i^2}{4n^3} + \frac{5i}{2n^2} \right]$$

,

15.
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (\csc x) (3\sin 2x + 5\sin x) dx =$$

(a) $3 + \frac{5\pi}{3}$

(b)
$$1 + \frac{\pi}{3}$$

(c) $3 + \frac{2\pi}{3}$
(d) $1 + \frac{5\pi}{3}$

(e)
$$5\pi$$

16. If the plane region enclosed by the graphs of y = x and $y = x^2$ is revolved about the line x = -1, then the volume of the solid generated is given by

(a)
$$\int_{0}^{1} \pi (2\sqrt{y} - y - y^{2}) dy$$

(b) $\int_{-1}^{1} \pi (y - y^{2}) dy$
(c) $\int_{0}^{1} \pi (4\sqrt{y} + 6y - y^{2}) dy$
(d) $\int_{-1}^{1} \pi (y - y^{2} - 2) dy$

(e)
$$\int_0^1 \pi (2\sqrt{y} - 6y - y^2) dy$$

17. The equation of the tangent line to the graph of $f(x) = \int_{\sqrt{x}}^{x^3} e^{u^2} du$ at x = 1 is

(a)
$$y = \frac{5e}{2}x - \frac{5e}{2}$$

(b)
$$y = \frac{3e}{2}x - \frac{3e}{2}$$

(c)
$$y = \frac{2e}{3}x - \frac{2e}{3}$$

(d)
$$y = \frac{5e}{2}x - \frac{e}{2}$$

(e)
$$y = \frac{5e}{2}x + \frac{e}{2}$$

18. If
$$k = \int_0^{\frac{\pi}{2}} e^{-\sin x} dx$$
, then
(a) $\frac{\pi}{2e} \le k \le \frac{\pi}{2}$
(b) $0 \le k \le \frac{\pi}{2e}$
(c) $k \ge \frac{\pi}{2}$
(d) $k \ge \frac{\pi}{2e} + \frac{\pi}{2}$
(e) $-\frac{\pi}{2e} \le k \le \frac{\pi}{2e}$

- 19. The value of $\int_{-\pi}^{\pi} (4+3\sin x)\sqrt{\pi^2 x^2} dx$ is equal to : (Hint : write the integral as a sum of two integrals and interpreting one of these integrals in terms of an area)
 - (a) $2\pi^3$
 - (b) 0
 - (c) $\frac{\pi^3}{2}$
 - (d) $8\pi^{3}$

(e)
$$\frac{\pi^3}{4}$$

20.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{1}{n} + \frac{i}{n^2} + \frac{1}{n} e^{1 + \frac{i}{n}} \right] =$$
(a) $\int_{1}^{2} (x + e^x) dx$
(b) $\int_{1}^{2} (1 + x + e^x) dx$
(c) $\int_{0}^{1} (x + e^x) dx$
(d) $\int_{0}^{1} (1 + x + e^x) dx$
(e) $\int_{1}^{2} (x + x^2 e^x) dx$