King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 001

Math 102 CODE 001 Exam I Term 081 Tuesday 11/11/2008 Net Time Allowed: 120 minutes

Name: _____

ID: ______ Sec: _____.

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Which one of the following statements is **FALSE**: (f and g are continuous)

(a) If f is even on
$$[-a, a]$$
, then $\int_{-a}^{a} f(x) dx = 2 \int_{-a}^{0} f(x) dx$

(b)
$$\int_{a}^{b} [f(x) - 3g(x)] dx = \int_{a}^{b} f(x) dx - 3 \int_{a}^{b} g(x) dx$$

(c)
$$\int_{a}^{b} f(x) dx$$
 = area below the graph of f from $x = a$ to $x = b$.

(d) If $2 \le f(x) \le 6$ on [0,3], then $6 \le \int_0^3 f(x) \, dx \le 18$.

(e) If
$$f(x) \le g(x)$$
 on $[a, b]$, then $\int_a^b g(x) \, dx \ge \int_a^b f(x) \, dx$.

2. If
$$f(x) = \begin{cases} \frac{3}{x} & \text{if } x \le -1 \\ -3 & \text{if } x > -1, \end{cases}$$
 then $\int_{-3}^{0} f(x) \, dx$

- (a) is equal to $3 3 \ln 3$
- (b) does not exist
- (c) is equal to $3 + 3 \ln 3$
- (d) is equal to $-3 \ln 3$
- (e) is equal to $-3 3 \ln 3$

3. If
$$g(x) = \int_{e^x}^1 t \ln t \, dt$$
, then $g'(x) =$

(a)
$$e^{2x}$$

(b) xe^{x}
(c) $-e^{x}$
(d) $-xe^{x}$

(e)
$$-xe^{2x}$$

4.
$$\int_{-1}^{1} (3x-2)^{19} dx =$$

(a)
$$\frac{1-5^{20}}{60}$$

(c)
$$57(1-5^{18})$$

(d)
$$\frac{5^{20}}{60}$$

(e)
$$\frac{5^{20}-1}{20}$$

5. Using three approximating rectangles and midpoints, the area under the graph of $f(x) = \frac{x}{x-1}$ from x = 2 to x = 8 is approximately equal to

(a)
$$\frac{29}{3}$$

(b) $\frac{41}{12}$
(c) $\frac{47}{6}$
(d) $\frac{59}{6}$
(e) $\frac{43}{6}$

$$6. \qquad \int \frac{(x-\sqrt[3]{x})^2}{\sqrt[3]{x^2}} dx =$$

(a)
$$\frac{7}{3}x^{7/3} - x^{4/3} + 2x + C$$

(b) $\frac{3}{7}x^{7/3} - \frac{3}{5}x^{5/3} + x + C$
(c) $\frac{3}{2}x^{2/3} + \frac{6}{5}x^{4/3} + \frac{1}{2}x^2 + C$
(d) $\frac{3}{7}x^{7/3} - \frac{6}{5}x^{5/3} + x + C$
(e) $\frac{1}{3}x^3 - \frac{6}{7}x^{7/3} + \frac{3}{5}x^{5/3} + C$

$$7. \qquad \int e^{x^2 + \ln x} \, dx =$$

(a)
$$\frac{1}{x}e^{x^2} + C$$

(b) $\frac{1}{2}e^{x^2} + C$
(c) $\frac{e^{x^2 + \ln x}}{(2x + \frac{1}{x})} + C$
(d) $e^{x^2 + \ln x} \left(2x + \frac{1}{2}\right) + C$
(e) $e^x \ln x + C$

8. Using the definition of the definite integral, the value of the limit

$$\lim_{n \to +\infty} \sum_{i=1}^{n} \frac{2}{n} \sqrt{4 + \frac{3i}{n}}$$

is equal to

(a)
$$\frac{32}{\sqrt{7}}$$

(b) $\frac{4}{\sqrt{3}}$
(c) $\frac{2}{3}(7\sqrt{7}-8)$
(d) $\frac{4}{9}(7\sqrt{7}-8)$
(e) $\frac{28\sqrt{7}}{9}$

9. If
$$F(x) = \int_{x}^{x^2} \frac{\sin(2t)}{t^2} dt$$
, then $F(1) + F'(1) =$

(a) 0

(b)
$$\frac{\sin 2}{2}$$

- (c) $\sin 2$
- (d) $1 + \sin 2$
- (e) $3\sin 2$

- 10. If the line x = k divides the region bounded by the curves $y = \sqrt{x}, y = 0$ and x = 4 into two regions with equal area, then k =
 - (a) $\sqrt[3]{16}$
 - (b) 4
 - (c) 8
 - (d) $\sqrt[3]{4}$
 - (e) 2

11. By interpreting it as an area, the value of the integral

$$\int_0^1 (|x-1| + 2\sqrt{1-x^2}) \, dx$$

is equal to

(a)
$$\frac{\pi + 1}{2}$$

(b) $2\pi + \frac{1}{2}$
(c) $\pi + 1$
(d) $\pi + \frac{1}{4}$
(e) $\pi + \frac{1}{2}$

- 12. The volume of the solid generated by revolving the region between the y-axis and the curve $x = \frac{2}{y}$, $1 \le y \le 4$, about the y-axis is equal to
 - (a) 3π
 - (b) π
 - (c) $\frac{6\pi}{7}$
 - (d) 10π
 - (e) -3π

001

13.
$$\int \frac{1}{\sec t - \cos t} \, dt =$$

- (a) $\ln|\sin t| + C$
- (b) $\cot t + C$
- (c) $-\sec t + C$
- (d) $\ln|\sec t \cos t| + C$

(e)
$$-\csc t + C$$

14. The acceleration (in m/s^2) and the initial velocity for a particle moving along a line are given by

 $a(t) = 2t - 1, v(0) = -2, \quad 0 \le t \le 2.$

The distance traveled by the particle during the given time interval is

(a)
$$\frac{13}{3}m$$

(b) $5m$
(c) $\frac{18}{3}m$
(d) $4m$
(e) $\frac{10}{3}m$

- (a) 16
- (b) -8
- (c) 32
- (d) 64
- (e) 0

16. The area of the region bounded by the curves $x = -2y^2$ and y = x + 1 is

(a)
$$\frac{5}{24}$$

(b) $\frac{5}{8}$
(c) $\frac{27}{8}$
(d) $\frac{1}{24}$
(e) $\frac{9}{8}$

17. A solid has a circular base of radius 1 and center (0,0). If the cross-sections of the solid perpendicular to the *x*-axis are semicircles, then the volume of the solid is equal to

(a)
$$\frac{2\pi}{3}$$

(b) $\frac{16\pi}{3}$
(c) $\frac{8\pi}{3}$
(d) $\frac{\pi}{3}$

(e)
$$\frac{4\pi}{3}$$

18. If the region enclosed by the curves $y = x^2$ and y = 2x is rotated about the line y = 5, then the volume of the resulting solid is given by

(a)
$$\pi \int_0^2 [(5-x^2)^2 - (5-2x)^2] dx$$

(b) $\pi \int_0^4 \left[(\sqrt{y})^2 - \left(\frac{1}{2}y\right)^2 \right] dy$
(c) $\pi \int_0^2 [(2x+5)^2 - (x^2+5)^2] dx$
(d) $\pi \int_0^2 [(2x)^2 - (x^2)^2] dx$
(e) $\pi \int_0^4 \left[(5-\sqrt{y})^2 - \left(5-\frac{1}{2}y\right)^2 \right] dy$

19.
$$\int \frac{x+2}{\sqrt[3]{3-x}} dx =$$

(a)
$$-15(3-x)^{1/3} + \frac{3}{4}(3-x)^{4/3} + C$$

(b) $\ln(3-x) + (3-x) + C$
(c) $\frac{5}{3}\ln(3-x) + \frac{1}{4}(3-x)^{4/3} + C$
(d) $\frac{3}{5}(3-x)^{5/3} + \frac{15}{2}(3-x)^{2/3} + C$
(e) $\frac{3}{5}(3-x)^{5/3} - \frac{15}{2}(3-x)^{2/3} + C$

20. If
$$\int_{-1}^{2} f(x) dx = 4$$
 and $\int_{1}^{2} f(2x) dx = 1$, then $\int_{-1/3}^{4/3} f(3x) dx = 1$

- (a) $\frac{2}{3}$ (b) 3 (c) 4 (d) 5
- (e) 2

Q	MM	V1	V2	V3	V4
1	a	с	b	е	е
2	a	е	d	с	е
3	a	е	d	с	a
4	a	a	a	b	b
5	a	с	с	с	e
6	a	d	е	d	e
7	a	b	с	е	d
8	a	d	b	с	b
9	a	с	b	a	с
10	a	a	е	с	a
11	a	a	b	с	b
12	a	a	е	с	e
13	a	е	е	d	е
14	a	е	a	с	d
15	a	d	d	d	d
16	a	е	b	a	b
17	a	a	с	d	a
18	a	a	с	е	a
19	a	е	a	a	е
20	a	е	с	d	d

ANSWER KEY