King Fahd University of Petroleum and Minerals Department of Mathematical Sciences Math 101 Final Exam Semester I, 2001–2002 (011) Dr. Faisal Fairag

Name:			
ID:			
Sec:	7	11	
Serial No:			

	Question $\#$	Points
	1	10
	2	27
	3	34
	4	27
<i>(</i>)	5	27
Form (1)	6	9
	7-23	8 each
	24	3 each
	Total:	300

1. Let $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2$ (a) Find the interval on which f is decreasing

(b) Find the open interval on which f is concave up.

2. The equation $x^3 - x^2 - 2x + 1 = 0$ has one real solution for 0 < x < 1. Approximate it by Newton's Method. If $x_1 = 1$, then find x_6 .

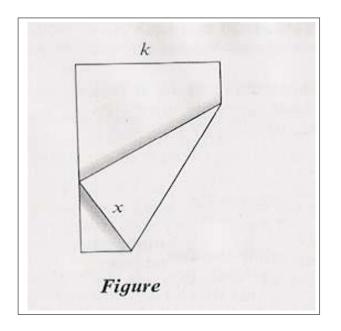
3. Find the extreme values for $f(x) = x^{4/3} - 3x^{1/3}$ on the interval [-1, 8] and determine where those values occur.

4. Let $f(x) = x^{2/3}(x+5)$ (a) Find all relative max. and all relative min.

(b) Find all inflection points

(c) Find all cusp which may or may not exist.

5. A rectangular field is to be bounded by a fence on three sides and by a wall on the fourth one. Find the dimensions of the field with maximum area that can be enclosed with 1000 meters of fence ?



7. If $f(x) = x^4 - x$ on [-1, 1], find the value c that satisfies the Mean value Theorem.

- (a) 1
- (b) 0
- (c) 2
- (d) 3
- (e) 4
- 8. $\lim_{x \to 9} \frac{x+5}{\sqrt{x}-3} =$
 - (a) it does not exist
 - (b) $+\infty$
 - (c) $-\infty$
 - (d) 84
 - (e) -84

9. $\lim_{x \to -\infty} \sqrt{\frac{20x^{10} - 2x^5 + 2}{5x^{10} + x^5 - 3}} =$ (a) $+\infty$ (b) 2
(c) $-\infty$ (d) -2

(e) it does not exist

10. To prove that $\lim_{x\to 5}(x-2)=3$ a reasonable relationship between δ and ϵ would be

(a)
$$\delta = \epsilon$$

(b) $\delta = 5\epsilon$
(c) $\delta = \sqrt{\epsilon}$
(d) $\delta = \frac{1}{\epsilon}$
(e) $\delta = \frac{1}{\sqrt{\epsilon}}$

11. Find the value of k, if possible, that will make the function continuous f

$$f(x) = \begin{cases} x + 2k & x \le 1 \\ kx^2 + x + 1 & x > 1 \end{cases}$$
(a) -1
(b) 2
(c) 1
(d) -2
(e) none exists

12. find the limit
$$\lim_{x \to +\infty} \left(\cos\left(\frac{4}{x}\right) \cdot \sin\left(\frac{5}{x}\right) \right) =$$

- (a) 1
- (b) -1
- (c) $+\infty$
- (d) $-\infty$
- (e) 0

13. Find an equation for the tangent line to the curve $y = x^7 - 5$ at (1, -4).

(a) y = 7x(b) y = 7x + 5(c) y = 7x - 3(d) y = 7x - 11(e) y = 7x - 514. If $y = \frac{2}{x+3}$, then y'(0) =(a) $\frac{-2}{9}$ (b) 0 (c) $\frac{4}{9}$ (d) $\frac{2}{9}$ (e) $\frac{-4}{9}$

15. $g(x) = x^3 f(x)$. Find g'(2), given that f(2) = 6 and f'(2) = 3

- (a) 48
- (b) -60
- (c) 96
- (d) 60
- (e) -48

16. $y = x^{-3} + x$. Find y'''

(a) -6 (b) $-60x^{-6} + x^{-2}$ (c) $-60x^{-6} - x^{-2}$ (d) $-3x^{-2} + 1$ (e) $-60x^{-6}$ 17. If $y = x^{5} \cos x$, find $d^{2}y/dx^{2}$ (a) $20x^{3} \cos x$ (b) $20x^{3} \cos x - x^{5} \cos x$ (c) $20x^{3} \cos x + x^{5} \cos x$ (d) $20x^{3} \cos x - 10x^{4} \sin x - x^{5} \cos x$

(e)
$$-x^5 \cos x$$

18. Use dy to approximate $\sqrt{4.04}$ starting at x = 4

- (a) 2.01
- (b) 1.99
- (c) 4.01
- (d) 3.99
- (e) 1.59

19. Find $\frac{dy}{dx}$ if $x^2 + y^2 = 49$. (a) $\frac{49x}{y}$ (b) $\frac{x}{y}$ (c) $-\frac{x}{y}$ (d) $-\frac{49x}{y}$

(e)
$$\frac{y}{x}$$

20. The number of critical points for f(x) = |(x-1)(x-2)(x-3)| is

- (a) 5
- (b) 2
- (c) 3
- (d) 4
- (e) 1

21. $y = \cot^{-1} \sqrt{x}$. Find dy/dx.

(a)
$$-\frac{x}{1+x}$$

(b)
$$-\frac{1}{2\sqrt{x}(1+x)}$$

(c)
$$-\frac{x}{(1+x^2)}$$

(d)
$$-\sqrt{\frac{1}{1+x^2}}$$

(e)
$$\frac{x}{1+x}$$

- 22. $\lim_{x \to 0^+} \frac{\sin x}{\ln(x^2 + 1)} =$ (a) $-\infty$ (b) 10
 (c) 0
 (d) $+\infty$ (e) -1023. $\lim_{x \to 0^+} (1 \ln(2x))^{2x} =$ (a) 0
 (b) 1
 - (c) $+\infty$
 - (d) $-\infty$
 - (e) -1

(a)
$$f(x) = \frac{1}{x^3}$$
 on $[-1, 1]$ satisfies the hypotheses of Rolle's Theorem ()

- (b) The Mean Value Theorem can be used on f(x) = |x 1| on [-2, 1] ()
- (c) $\tan x$ has a point of inflection on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ ()
- (d) $f(x) = x^{3/5}$ has a critical point ()
- (e) All relative extrema occur at critical points ()

(f)
$$f(x) = |\tan^2 x|$$
 has no relative extrema on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ ()

(g)
$$f(x) = \frac{x^3}{x^5 - 2}$$
 has no horizontal asymptote ()

- (h) $f(x) = |x^2 4|$ has points of discontinuity at x = 2 and x = -2. ()
- (i) The function $f(x) = \frac{x+5}{x-1}$ has a removable discontinuity at x = 1 ()
- (j) The slope of the tangent line to the graph of $f(x) = x^3 5$ at $x_0 = 3$ is 22. ()