Instructor: Course:	King Fahd University of Petroleum and Minerals Department of Mathematics SYLLABUS. Semester I: 2021-2022 (211) Dr. A. Bonfoh MATH 667: Advanced Partial Differential Equations II	
Objectives:	This course prepares students to be able to solve some linear systems of PDEs. The course extends the knowledge acquired in Math568 where only equations were solved and not systems. An introduction to the Galerkin method to solve nonlinear PDEs will be also covered.	
Course Description:	Classification of first order systems. Hyperbolic systems, method of characteristics. Applications to gas dynamics. Dispersive waves; application to water waves. Potential theory, single and double layers, existence theory for Dirichlet and Neumann problems.	
Prerequisite:	MATH568.	
Credit: References:	3 credit hours 1. E.F. Toro, <i>Riemann Solvers and Numerical Methods for Fluid</i> <i>Dynamics</i> , Springer-Verlag Berlin Heidelberg 2009 2. LC. Babinson, <i>Infinite dimensional Dynamical meterus</i> , Combridge	

2. J.C. Robinson, *Infinite-dimensional Dynamical systems*, Cambridge University Press, Cambridge, 2001

Week		Topics	
1-7		Some nonlinear analysis tools	
		Nonlinear Reaction-Diffusion equation (NRDE)	
		The Basis for the Galerkin Expansion	
	Part 1	Weak solutions of the NRDE	
		Strong solutions of the NRDE	
		Nonlinear damped wave equation	
8-13		Characteristic method for quasilinear systems	
		Classification of systems of PDEs	
	Part 2	Characteristic method for hyperbolic systems:	
		application to Gas dynamics and water waves	
		Potential theory: single and double layers,	
		existence theory for Dirichlet and Neumann	
		problems	
14-15	Part 3	Presentation of projects	

Grading:	Midterm	25%
	Homework assignments	30%
	Presentation	20%
	Final Exam	25%