King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 101 Final Exam 063 Thursday 23/8/2007

EXAM COVER

Number of versions: 4 Number of questions: 24 Number of Answers: 5 per question

This exam was prepared using mcqs For questions send an email to Dr. Ibrahim Al-Lehyani (iallehyani@kaau.edu.sa) King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 101 Final Exam 063 Thursday 23/8/2007 Net Time Allowed: 150 minutes

MASTER VERSION

1.
$$\lim_{x \to 2^+} \frac{4 - x^2}{(x - 2)^2} =$$
(a) $-\infty$
(b) ∞
(c) 4
(d) 0
(e) -4

2.
$$\lim_{x \to 0} \frac{(4+x)^{-1} - 4^{-1}}{x} =$$

(a)
$$\frac{-1}{16}$$

(b)
$$\frac{1}{16}$$

(c)
$$\frac{-1}{4}$$

$$(d) \quad 0$$

(e) does not exist

3. If
$$f(x) = \frac{x^2 + 1}{e^{3x}}$$
, then $f'(1) =$

(a)
$$\frac{-4}{e^3}$$

(b) 0
(c)
$$\frac{-4}{e^6}$$

(d)
$$\frac{2}{e^5}$$

(e)
$$\frac{8}{e^3}$$

4. The critical values of $g(t) = t^2 (2t - 5)^{1/3}$ are

(a)
$$\left\{0, \frac{5}{2}, \frac{15}{7}\right\}$$

(b) $\left\{0, \frac{15}{7}\right\}$
(c) $\left\{0, \frac{5}{2}\right\}$
(d) $\left\{\frac{5}{2}, \frac{15}{7}\right\}$
(e) $\{0\}$

Page 3 of 12

- 5. If $f(x) = 3x^{2/3} x$, then f(x) is increasing on the interval
 - (a) (0, 8)
 - (b) $(8,\infty)$
 - (c) $(-\infty, 0)$
 - (d) $(0,\infty)$
 - (e) $(-\infty, 8)$

- 6. The graph of $y = \ln(x^3 + 1)$ is concave up on the interval
 - (a) $(0, \sqrt[3]{2})$
 - (b) $(-\infty, -1)$ and $(0, \sqrt[3]{2})$
 - (c) (0, 2)
 - (d) (-1,2)
 - (e) $(0,\infty)$

7. If
$$f(x) = \begin{cases} c & \text{if } x = -3 \\ \frac{9 - x^2}{4 - \sqrt{x^2 + 7}} & \text{if } -3 < x < 3 \\ d & \text{if } x = 3 \end{cases}$$

then f is continuous on $[-3, 3]$ if

(a)
$$c = 8, d = 8$$

(b)
$$c = 8, d = -8$$

(c)
$$c = -8, d = 8$$

(d)
$$c = 0, d = 0$$

(e)
$$c = 1, d = -1$$

8. If
$$y = \left(\frac{\cos x}{1+\sin x}\right)^4$$
, then $\frac{dy}{dx} =$

(a)
$$\frac{-4\cos^3 x}{(1+\sin x)^4}$$

(b)
$$\left(\frac{-4\sin x}{\cos x}\right) \left(\frac{\cos x}{1+\sin x}\right)^3$$

(c)
$$4 \left(\frac{\cos x}{1+\sin x}\right)^3$$

(d)
$$-4 \left(\frac{\sin x}{\cos x}\right)^3$$

(e)
$$0$$

9.
$$\lim_{x \to \infty} (x - \sqrt{x^2 - 3x}) =$$

(a) $\frac{3}{2}$ (b) 3 (c) $\frac{-1}{2}$ (d) 0

(e)
$$\infty$$

10.
$$\lim_{x \to 0} \frac{|x-1| - 1}{x} =$$

- (a) -1
- (b) ∞
- (c) 0
- (d) $-\infty$
- (e) -2

Page 6 of 12

- 11. If the curve $y = ax^2 + bx + c$ passes through the point (2, 30) and is tangent to the line y = 3x at the origin, then
 - (a) a + b = 9
 - (b) a + b = 7
 - (c) a + b = 6
 - (d) a + b = 3
 - (e) a + b = 2

12. If

x	f(x)	g(x)	f'(x)	$\frac{g'(x)}{3}$	
3	1	4	8		
4	3	3	2	-5	

and $F(x) = [f(x)]^2 \cdot g(x)$, then F'(3) =

- (a) 67
- (b) 35
- (c) 48
- (d) 11
- (e) 61

- 13. The slope of normal line to the curve $x^4y^4 = 16$ at (2, 1) is
 - (a) 2
 - (b) -2
 - (c) $\frac{1}{8}$ (d) $\frac{-1}{2}$
 - (e) $\frac{1}{2}$

14. If
$$y = \sqrt[4]{\frac{(4x+1)(x+4)^2}{(x^3+9)(x^2+9)}}$$
, then $\frac{dy}{dx}\Big|_{x=0}$ is

- (a) $\frac{3}{4}$
- (b) 0
- (c) 12
- (d) $\frac{9}{2}$
- (e) $\frac{\ln 4 \ln 9}{2}$

15. If
$$f(x) = \operatorname{sech}^2(\ln(x+2))$$
, then $f'(0) =$

(a)
$$\frac{-48}{125}$$

(b) $\frac{-48}{25}$
(c) $\frac{-24}{125}$
(d) $\frac{-12}{25}$
(e) $\frac{12}{25}$

- 16. A particle moves along the curve $y = \sqrt{1 + x^3}$. As it reaches the point (2,3), the *y*-coordinate is increasing at a rate of 4 cm/s. At this instant, the *x*-coordinate is changing at the rate of
 - (a) 2 cm/s
 - (b) 4 cm/s
 - (c) 8 cm/s
 - (d) 3 cm/s
 - (e) 6 cm/s

- 17. The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, the **relative** error in the area is
 - (a) 0.02
 - (b) 0.03
 - (c) 0.01
 - (d) 0.04
 - (e) 0.06

- 18. $f(x) = -3x^2 + 5x + 5$ is continuous on [-3, -1] and differentiable on (-3, -1). Then, the value of 'c' that satisfies the conclusion of the Mean Value Theorem is
 - (a) c = -2
 - (b) $c = \frac{-6}{5}$
 - (c) c = -1
 - (d) c = 0
 - (e) $c = \frac{-11}{6}$

Page 10 of 12

19. Given the graph of y = f'(x) i.e. the **graph of first deriv**ative of function. Then which of the following is not true?

(a)
$$f(0) > f\left(\frac{1}{2}\right)$$

(b)
$$f(4) < f(3)$$

- (c) f is concave down on (0,3)
- (d) f has critical points at x = 1 and x = 5

(e)
$$f''(3) = 0$$

20.
$$\lim_{x \to 0} (\cos x)^{1/x^2} =$$

(a)
$$\frac{1}{\sqrt{e}}$$

(b) $-\infty$
(c) 0
(d) 1

(e) e^2

21.
$$\lim_{x \to \infty} x \sin \frac{16}{x} =$$

(a) 16
(b) 0
(c) 1

- (d) $\frac{1}{16}$
- (e) ∞

22. A cylindrical can is to be made to hold $16\pi \text{ cm}^3$ of laban. If r is the radius and h is the height of the can, then the dimensions that will minimize the cost of the metal to manufacture the can are

(a)
$$r = 2, h = 4$$

(b)
$$r = \sqrt[3]{16}, h = \frac{16}{(16)^{2/3}}$$

(c)
$$r = \sqrt{\frac{8}{3}}, \ h = \frac{2}{\sqrt{3}}$$

(d)
$$r = 8, h = 16$$

(e)
$$r = 4, h = 8$$

23. Starting with $x_1 = 1$, the third approximation x_3 to the root of $x^4 - 6x + 3 = 0$ is

[Hint: use Newton's method]

- (a) $\frac{1}{2}$
- (b) 0
- (c) $\frac{59}{26}$
- (d) 2
- (e) $\frac{40}{7}$

24. A curve f(x) has a slope at each point given by $\frac{-1}{x^2}$ and passes through the point $\left(\frac{1}{8}, 10\right)$. Then

(a)
$$f(x) = \frac{1}{x} + 2$$

(b) $f(x) = \frac{-1}{x} + 14$
(c) $f(x) = \frac{3}{x^3} + 2$
(d) $f(x) = \frac{2}{x} + 2$
(e) $f(x) = \frac{2}{x^3}$

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 001

Math 101 CODE 001 Final Exam 063 Thursday 23/8/2007 Net Time Allowed: 150 minutes

Name: _____

ID: ______ Sec: _____.

Check that this exam has $\underline{24}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If
$$f(x) = \begin{cases} c & \text{if } x = -3 \\ \frac{9 - x^2}{4 - \sqrt{x^2 + 7}} & \text{if } -3 < x < 3 \\ d & \text{if } x = 3 \end{cases}$$
,
then f is continuous on $[-3, 3]$ if

(a)
$$c = 8, d = 8$$

(b)
$$c = -8, d = 8$$

(c)
$$c = 1, d = -1$$

(d)
$$c = 8, d = -8$$

(e)
$$c = 0, d = 0$$

2. If
$$f(x) = \frac{x^2 + 1}{e^{3x}}$$
, then $f'(1) =$

(a) 0
(b)
$$\frac{-4}{e^3}$$

(c) $\frac{-4}{e^6}$
(d) $\frac{2}{e^5}$
(e) $\frac{8}{e^3}$

- 3. The critical values of $g(t) = t^2 (2t 5)^{1/3}$ are
 - (a) $\left\{\frac{5}{2}, \frac{15}{7}\right\}$ (b) $\left\{0, \frac{5}{2}\right\}$ (c) $\left\{0, \frac{5}{2}, \frac{15}{7}\right\}$ (d) $\{0\}$ (e) $\left\{0, \frac{15}{7}\right\}$

- 4. If $f(x) = 3x^{2/3} x$, then f(x) is increasing on the interval
 - (a) $(8,\infty)$
 - (b) (0,8)
 - (c) $(0,\infty)$
 - (d) $(-\infty, 8)$
 - (e) $(-\infty, 0)$

5.
$$\lim_{x \to 0} \frac{(4+x)^{-1} - 4^{-1}}{x} =$$

- (a) $\frac{-1}{4}$
- (b) 0
- (c) does not exist

(d)
$$\frac{1}{16}$$

(e)
$$\frac{-1}{16}$$

- 6. The graph of $y = \ln(x^3 + 1)$ is concave up on the interval
 - (a) $(0,\infty)$
 - (b) $(-\infty, -1)$ and $(0, \sqrt[3]{2})$
 - (c) $(0, \sqrt[3]{2})$
 - (d) (0, 2)
 - (e) (-1,2)

7.
$$\lim_{x \to 2^+} \frac{4 - x^2}{(x - 2)^2} =$$
(a) ∞
(b) 4
(c) 0
(d) $-\infty$
(e) -4

8. If
$$y = \left(\frac{\cos x}{1+\sin x}\right)^4$$
, then $\frac{dy}{dx} =$

(a)
$$\frac{-4\cos^3 x}{(1+\sin x)^4}$$

(b)
$$\left(\frac{-4\sin x}{\cos x}\right) \left(\frac{\cos x}{1+\sin x}\right)^3$$

(c)
$$4 \left(\frac{\cos x}{1+\sin x}\right)^3$$

(d)
$$-4 \left(\frac{\sin x}{\cos x}\right)^3$$

(e)
$$0$$

9. A curve f(x) has a slope at each point given by $\frac{-1}{x^2}$ and passes through the point $\left(\frac{1}{8}, 10\right)$. Then

(a)
$$f(x) = \frac{2}{x} + 2$$

(b) $f(x) = \frac{1}{x} + 2$
(c) $f(x) = \frac{2}{x^3}$
(d) $f(x) = \frac{-1}{x} + 14$

(e)
$$f(x) = \frac{3}{x^3} + 2$$

10. The slope of normal line to the curve $x^4y^4 = 16$ at (2, 1) is

(a)
$$\frac{1}{8}$$

(b) -2
(c) $\frac{-1}{2}$
(d) 2
(e) $\frac{1}{2}$

11. If
$$f(x) = \operatorname{sech}^2(\ln(x+2))$$
, then $f'(0) =$

(a)
$$\frac{-48}{125}$$

(b) $\frac{-24}{125}$
(c) $\frac{12}{25}$
(d) $\frac{-12}{25}$
(e) $\frac{-48}{25}$

12. Given the graph of y = f'(x) i.e. the graph of first derivative of function. Then which of the following is not true?

- (a) f has critical points at x = 1 and x = 5
- (b) f(4) < f(3)
- (c) f is concave down on (0,3)

(d)
$$f(0) > f\left(\frac{1}{2}\right)$$

(e)
$$f''(3) = 0$$

13. If

x	f(x)	g(x)	f'(x)	$\frac{g'(x)}{3}$	
3	1	4	8		
4	3	3	2	-5	

and $F(x) = [f(x)]^2 \cdot g(x)$, then F'(3) =

- (a) 61
- (b) 67
- (c) 35
- (d) 48
- (e) 11

14. Starting with $x_1 = 1$, the third approximation x_3 to the root of $x^4 - 6x + 3 = 0$ is

[Hint: use Newton's method]

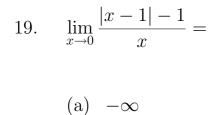
(a) 2 (b) $\frac{1}{2}$ (c) 0 (d) $\frac{59}{26}$ (e) $\frac{40}{7}$ 15. A cylindrical can is to be made to hold $16\pi \text{ cm}^3$ of laban. If r is the radius and h is the height of the can, then the dimensions that will minimize the cost of the metal to manufacture the can are

(a)
$$r = 8, h = 16$$

(b) $r = 2, h = 4$
(c) $r = 4, h = 8$
(d) $r = \sqrt[3]{16}, h = \frac{16}{(16)^{2/3}}$
(e) $r = \sqrt{\frac{8}{3}}, h = \frac{2}{\sqrt{3}}$

- 16. A particle moves along the curve $y = \sqrt{1 + x^3}$. As it reaches the point (2,3), the *y*-coordinate is increasing at a rate of 4 cm/s. At this instant, the *x*-coordinate is changing at the rate of
 - (a) 3 cm/s
 - (b) 6 cm/s
 - (c) 4 cm/s
 - (d) 8 cm/s
 - (e) 2 cm/s

Page 9 of 12


- 17. If the curve $y = ax^2 + bx + c$ passes through the point (2, 30) and is tangent to the line y = 3x at the origin, then
 - (a) a + b = 9
 - (b) a + b = 2
 - (c) a + b = 3
 - (d) a + b = 7

(e)
$$a + b = 6$$

18. If
$$y = \sqrt[4]{\frac{(4x+1)(x+4)^2}{(x^3+9)(x^2+9)}}$$
, then $\frac{dy}{dx}\Big|_{x=0}$ is

(a)
$$\frac{3}{4}$$

(b) 12
(c) 0
(d) $\frac{\ln 4 - \ln 9}{2}$

(e)
$$\frac{9}{2}$$

- (b) ∞
- (c) -1
- (d) -2
- (e) 0

- 20. $f(x) = -3x^2 + 5x + 5$ is continuous on [-3, -1] and differentiable on (-3, -1). Then, the value of 'c' that satisfies the conclusion of the Mean Value Theorem is
 - (a) $c = \frac{-6}{5}$
 - (b) c = -2
 - (c) c = -1
 - (d) $c = \frac{-11}{6}$
 - (e) c = 0

21. $\lim_{x \to \infty} x \sin \frac{16}{x} =$

- (a) 1
- (b) $\frac{1}{16}$
- (c) 16
- (d) 0
- (e) ∞

- 22. The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, the **relative** error in the area is
 - (a) 0.02
 - (b) 0.03
 - (c) 0.06
 - (d) 0.04
 - (e) 0.01

- (a) $\frac{1}{\sqrt{e}}$ (b) $-\infty$ (c) e^2
- (d) 1
- (e) 0

$$24. \quad \lim_{x \to \infty} (x - \sqrt{x^2 - 3x}) =$$

- (a) 0
- (b) $\frac{3}{2}$

(c)
$$\frac{-1}{2}$$

- (d) 3
- (e) ∞

Name ID

Sec

1						
	a	\mathbf{b}	с	d	е	f
2	a	b	с	d	е	f
3	a	b	с	d	е	f
4	a	b	с	d	е	f
5	a	b	с	d	е	f
6	a	b	с	d	е	f
7	a	b	с	d	е	f
8	a	b	с	d	е	f
9	a	b	с	d	е	f
10	a	b	с	d	е	f
11	a	b	с	d	е	f
12	a	b	с	d	е	f
13	a	b	с	d	е	f
14	a	b	с	d	е	f
15	a	b	с	d	е	f
16	a	b	с	d	е	f
17	a	b	с	d	е	f
18	a	b	с	d	е	f
19	a	b	с	d	е	f
20	a	b	с	d	е	f
21	a	b	с	d	е	f
22	a	b	с	d	е	f
23	a	b	с	d	е	f
24	a	b	с	d	е	f
25	a	b	с	d	е	f
26	a	b	с	d	е	f
27	a	b	с	d	е	f
28	a	b	с	d	е	f
29	a	b	с	d	е	f
30	a	b	с	d	е	f
31	a	b	с	d	е	f
32	a	b	с	d	е	f
33	a	b	с	d	е	f
		1		1		C
34	a	b	с	d	е	f

36	a	b	с	d	е	f
37	a	b	с	d	е	f
38	а	b	с	d	е	f
39	a	b	с	d	е	f
40	a	b	с	d	е	f
41	a	b	с	d	е	f
42	a	b	с	d	е	f
43	a	b	с	d	е	f
44	a	b	с	d	е	f
45	a	b	с	d	е	f
46	a	b	с	d	е	f
47	a	b	с	d	е	f
48	a	b	с	d	е	f
49	a	b	с	d	е	f
50	a	b	с	d	е	f
51	a	b	с	d	е	f
52	a	b	с	d	е	f
53	а	b	с	d	е	f
54	a	b	с	d	е	f
55	a	b	с	d	е	f
56	a	b	с	d	е	f
57	a	b	с	d	е	f
58	a	b	с	d	е	f
59	a	b	с	d	е	f
60	a	b	с	d	е	f
61	a	b	с	d	е	f
62	a	b	с	d	е	f
63	a	b	с	d	е	f
64	a	b	с	d	е	f
65	a	b	с	d	е	f
66	a	b	с	d	е	f
67	a	b	с	d	е	f
68	a	b	с	d	е	f
69	a	b	с	d	е	f
70	a	b	с	d	е	f

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 002

Math 101 CODE 002 Final Exam 063 Thursday 23/8/2007 Net Time Allowed: 150 minutes

Name: _____

ID: ______ Sec: _____.

Check that this exam has $\underline{24}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If
$$f(x) = \frac{x^2 + 1}{e^{3x}}$$
, then $f'(1) =$

(a)
$$\frac{2}{e^5}$$

(b) $\frac{-4}{e^3}$
(c) 0
(d) $\frac{-4}{e^6}$
(e) $\frac{8}{e^3}$

2. If $f(x) = 3x^{2/3} - x$, then f(x) is increasing on the interval

- (a) (0,8)
- (b) $(-\infty, 0)$
- (c) $(-\infty, 8)$
- (d) $(8,\infty)$
- (e) $(0,\infty)$

3.
$$\lim_{x \to 2^+} \frac{4 - x^2}{(x - 2)^2} =$$

(b) 0

(a) -4

- (c) ∞
- (d) $-\infty$
- (e) 4

4.
$$\lim_{x \to 0} \frac{(4+x)^{-1} - 4^{-1}}{x} =$$

(a)
$$\frac{1}{16}$$

- (b) does not exist
- (c) 0

(d)
$$\frac{-1}{16}$$

(e) $\frac{-1}{4}$

5. The critical values of $g(t) = t^2 (2t - 5)^{1/3}$ are

(a) $\left\{\frac{5}{2}, \frac{15}{7}\right\}$ (b) $\left\{0, \frac{5}{2}\right\}$ (c) $\left\{0, \frac{15}{7}\right\}$ (d) $\{0\}$

(e)
$$\left\{0, \frac{5}{2}, \frac{15}{7}\right\}$$

6. If
$$f(x) = \begin{cases} c & \text{if } x = -3 \\ \frac{9 - x^2}{4 - \sqrt{x^2 + 7}} & \text{if } -3 < x < 3 \\ d & \text{if } x = 3 \end{cases}$$
,
then f is continuous on $[-3, 3]$ if

(a) c = 8, d = 8(b) c = 8, d = -8(c) c = 0, d = 0(d) c = 1, d = -1(e) c = -8, d = 8

7. If
$$y = \left(\frac{\cos x}{1 + \sin x}\right)^4$$
, then $\frac{dy}{dx} =$

(a)
$$-4\left(\frac{\sin x}{\cos x}\right)^3$$

(b) $\left(\frac{-4\sin x}{\cos x}\right)\left(\frac{\cos x}{1+\sin x}\right)^3$
(c) 0
(d) $4\left(\frac{\cos x}{1+\sin x}\right)^3$

(e)
$$\frac{-4\cos^3 x}{(1+\sin x)^4}$$

- 8. The graph of $y = \ln(x^3 + 1)$ is concave up on the interval
 - (a) $(0,\infty)$
 - (b) (-1, 2)
 - (c) $(0, \sqrt[3]{2})$
 - (d) (0, 2)
 - (e) $(-\infty, -1)$ and $(0, \sqrt[3]{2})$

- 9. A particle moves along the curve $y = \sqrt{1 + x^3}$. As it reaches the point (2,3), the *y*-coordinate is increasing at a rate of 4 cm/s. At this instant, the *x*-coordinate is changing at the rate of
 - (a) 6 cm/s
 - (b) 4 cm/s
 - (c) 8 cm/s
 - (d) 3 cm/s
 - (e) 2 cm/s

10.
$$\lim_{x \to 0} (\cos x)^{1/x^2} =$$

(a) $-\infty$

(b)
$$\frac{1}{\sqrt{e}}$$

- (c) e^2
- (d) 0
- (e) 1

Page 6 of 12

- 11. If the curve $y = ax^2 + bx + c$ passes through the point (2, 30) and is tangent to the line y = 3x at the origin, then
 - (a) a + b = 3
 - (b) a + b = 7
 - (c) a + b = 9
 - (d) a + b = 2

(e)
$$a + b = 6$$

12. The slope of normal line to the curve $x^4y^4 = 16$ at (2, 1) is

(a) 2 (b) $\frac{1}{8}$ (c) $\frac{-1}{2}$ (d) $\frac{1}{2}$ (e) -2

13.
$$\lim_{x \to \infty} x \sin \frac{16}{x} =$$

(a) 0

(b)
$$\frac{1}{16}$$

- (c) ∞
- (d) 1
- (e) 16

14.
$$\lim_{x \to \infty} (x - \sqrt{x^2 - 3x}) =$$

- (a) $\frac{3}{2}$
- (b) 0
- (c) ∞

(d)
$$\frac{-1}{2}$$

(e) 3

- 15. A curve f(x) has a slope at each point given by $\frac{-1}{x^2}$ and passes through the point $\left(\frac{1}{8}, 10\right)$. Then
 - (a) $f(x) = \frac{3}{x^3} + 2$ (b) $f(x) = \frac{2}{x} + 2$ (c) $f(x) = \frac{2}{x^3}$

(d)
$$f(x) = \frac{1}{x} + 2$$

(e)
$$f(x) = \frac{-1}{x} + 14$$

16. If

x	f(x)	g(x)	f'(x)	g'(x)
3	1	4	8	3
4	3	3	2	-5

and $F(x) = [f(x)]^2 \cdot g(x)$, then F'(3) =

- (a) 48
- (b) 11
- (c) 61
- (d) 67
- (e) 35

17. If
$$y = \sqrt[4]{\frac{(4x+1)(x+4)^2}{(x^3+9)(x^2+9)}}$$
, then $\frac{dy}{dx}\Big|_{x=0}$ is

(a) $\frac{\ln 4 - \ln 9}{2}$ (b) 0 (c) 12 (d) $\frac{3}{4}$ (e) $\frac{9}{2}$

18. Starting with $x_1 = 1$, the third approximation x_3 to the root of $x^4 - 6x + 3 = 0$ is

[Hint: use Newton's method]

(a) 0 (b) $\frac{1}{2}$ (c) 2 (d) $\frac{59}{26}$ (e) $\frac{40}{7}$

19. If
$$f(x) = \operatorname{sech}^2(\ln(x+2))$$
, then $f'(0) =$

(a)
$$\frac{-48}{125}$$

(b) $\frac{-24}{125}$
(c) $\frac{12}{25}$
(d) $\frac{-12}{25}$
(e) $\frac{-48}{25}$

20. A cylindrical can is to be made to hold $16\pi \text{ cm}^3$ of laban. If r is the radius and h is the height of the can, then the dimensions that will minimize the cost of the metal to manufacture the can are

(a)
$$r = 2, h = 4$$

(b) $r = 8, h = 16$
(c) $r = \sqrt{\frac{8}{3}}, h = \frac{2}{\sqrt{3}}$
(d) $r = 4, h = 8$
(e) $r = \sqrt[3]{16}, h = \frac{16}{(16)^{2/3}}$

- 21. The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, the **relative** error in the area is
 - (a) 0.06
 - (b) 0.03
 - (c) 0.04
 - (d) 0.01
 - (e) 0.02

- 22. $f(x) = -3x^2 + 5x + 5$ is continuous on [-3, -1] and differentiable on (-3, -1). Then, the value of 'c' that satisfies the conclusion of the Mean Value Theorem is
 - (a) c = 0
 - (b) $c = \frac{-11}{6}$
 - (c) c = -2
 - (d) $c = \frac{-6}{5}$
 - (e) c = -1

23. Given the graph of y = f'(x) i.e. the graph of first derivative of function. Then which of the following is not true?

(a) f has critical points at x = 1 and x = 5

(b)
$$f''(3) = 0$$

- (c) f is concave down on (0,3)
- (d) $f(0) > f\left(\frac{1}{2}\right)$

(e)
$$f(4) < f(3)$$

24.
$$\lim_{x \to 0} \frac{|x - 1| - 1}{x} =$$
(a) -2
(b) ∞
(c) $-\infty$
(d) 0
(e) -1

Name ID

2abcdef3abcdef4abcdef5abcdef6abcdef7abcdef9abcdef9abcdef10abcdef11abcdef12abcdef13abcdef14abcdef15abcdef16abcdef17abcdef18abcdef20abcdef21abcdef23abcdef24abcdef25abcdef24abcdef25abcdef25abcdef26abc	1	a	b	с	d	е	f
4abcdef5abcdef6abcdef7abcdef8abcdef9abcdef10abcdef11abcdef12abcdef13abcdef14abcdef15abcdef16abcdef17abcdef18abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef24abcdef25abcdef24abcdef25abcdef26abc <td>2</td> <td>a</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td>f</td>	2	a	b	с	d	е	f
5abcdef6abcdef7abcdef8abcdef9abcdef10abcdef11abcdef12abcdef13abcdef14abcdef15abcdef16abcdef17abcdef18abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef26abcdef29abcdef31abcdef33abcdef	3	a	b	с	d	е	f
6abcdef7abcdef8abcdef9abcdef10abcdef11abcdef12abcdef13abcdef14abcdef15abcdef16abcdef17abcdef18abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef26abcdef24abcdef25abcdef26abcdef27abcdef30abcdef33abc<	4	a	b	с	d	е	f
7abcdef8abcdef9abcdef10abcdef11abcdef12abcdef13abcdef14abcdef15abcdef16abcdef17abcdef19abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef28abcdef30abcdef33abcdef34abcdef	5	a	b	с	d	е	f
8abcdef9abcdef10abcdef11abcdef12abcdef13abcdef14abcdef15abcdef16abcdef17abcdef18abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef26abcdef29abcdef30abcdef33abcdef34abcdef		a	b	с	d	е	
9abcdef10abcdef11abcdef11abcdef12abcdef13abcdef14abcdef15abcdef16abcdef17abcdef18abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef26abcdef29abcdef30abcdef33abcdef	7	a	b	с	d	е	
10abcdef11abcdef12abcdef13abcdef14abcdef15abcdef16abcdef17abcdef19abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef26abcdef29abcdef30abcdef33abcdef		a	b	с	d	е	
11abcdef12abcdef13abcdef14abcdef14abcdef15abcdef16abcdef17abcdef18abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef26abcdef24abcdef25abcdef26abcdeftd>27abcdef30abcdef31abcdef33abcdef	9	a		с	d	е	
12abcdef13abcdef14abcdef15abcdef16abcdef17abcdef18abcdef19abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef26abcdef27abcdef30abcdef31abcdef33abcdef	10	a	b	с	d	е	
13abcdef14abcdef15abcdef16abcdef17abcdef18abcdef19abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef26abcdef27abcdef30abcdef31abcdef33abcdef		a	b	с	d	е	
14abcdef 15 abcdef 16 abcdef 17 abcdef 17 abcdef 18 abcdef 19 abcdef 20 abcdef 21 abcdef 21 abcdef 23 abcdef 24 abcdef 29 abcdef 31 abcdef 33 abcdef		a	b	с		е	
15abcdef16abcdef17abcdef18abcdef19abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef26abcdef27abcdef28abcdef30abcdef31abcdef33abcdef		a	b	с	d	е	
16abcdef17abcdef18abcdef19abcdef20abcdef21abcdef22abcdef23abcdef24abcdef25abcdef26abcdef26abcdef27abcdef28abcdef30abcdef31abcdef33abcdef		a	b	с	d	е	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	a	b	с	d	е	f
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		a	b	с		е	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a	b	с		е	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	a	b	с	d	е	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	a	b	с	d	е	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a	b	с	d	е	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a	b	с	d	е	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a	b	с	d	е	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	a	b	с	d	е	
31 a b c d e f 32 a b c d e f 33 a b c d e f 34 a b c d e f	29	a	b	с	d	е	f
32 a b c d e f 33 a b c d e f 34 a b c d e f	30	a	b	с	d	е	f
33 a b c d e f 34 a b c d e f		a	b	с	d	е	
34 a b c d e f		a	b	с	d	е	f
34 a b c d e f	33	a	b	с	d	е	f
		a	b	с	d	е	f
	35	a	b	с		е	f

36	a	b	с	d	е	f
37	a	b	с	d	е	f
38	a	b	с	d	е	f
39	a	b	с	d	е	f
40	а	b	с	d	е	f
41	a	b	с	d	е	f
42	a	b	с	d	е	f
43	a	b	с	d	е	f
44	a	b	с	d	е	f
45	a	b	с	d	е	f
46	a	b	с	d	е	f
47	а	b	с	d	е	f
48	a	b	с	d	е	f
49	a	b	с	d	е	f
50	a	b	с	d	е	f
51	a	b	с	d	е	f
52	a	b	с	d	е	f
53	а	b	с	d	е	f
54	a	b	с	d	е	f
55	a	b	с	d	е	f
56	a	b	с	d	е	f
57	a	b	с	d	е	f
58	a	b	с	d	е	f
59	a	b	с	d	е	f
60	a	b	с	d	е	f
61	a	b	с	d	е	f
62	a	b	с	d	е	f
63	a	b	с	d	е	f
64	a	b	с	d	е	f
65	a	b	с	d	е	f
66	a	b	с	d	е	f
67	a	b	с	d	е	f
68	a	b	с	d	е	f
69	a	b	с	d	е	f
70	a	b	с	d	е	f
	1					

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 003

Math 101 CODE 003 Final Exam 063 Thursday 23/8/2007 Net Time Allowed: 150 minutes

Name: _____

ID: ______ Sec: _____.

Check that this exam has $\underline{24}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1.
$$\lim_{x \to 0} \frac{(4+x)^{-1} - 4^{-1}}{x} =$$

(a) does not exist

(b)
$$\frac{-1}{16}$$

(c) 0

(d)
$$\frac{1}{16}$$

(e)
$$\frac{-1}{4}$$

2. If $f(x) = 3x^{2/3} - x$, then f(x) is increasing on the interval

- (a) (0,8)
- (b) $(0,\infty)$
- (c) $(-\infty, 0)$
- (d) $(-\infty, 8)$
- (e) $(8,\infty)$

- 3. The graph of $y = \ln(x^3 + 1)$ is concave up on the interval
 - (a) $(0,\infty)$
 - (b) (-1,2)
 - (c) (0, 2)
 - (d) $(0, \sqrt[3]{2})$
 - (e) $(-\infty, -1)$ and $(0, \sqrt[3]{2})$

4. If
$$f(x) = \frac{x^2 + 1}{e^{3x}}$$
, then $f'(1) =$

(a)
$$\frac{8}{e^3}$$

(b) $\frac{2}{e^5}$
(c) $\frac{-4}{e^6}$
(d) $\frac{-4}{e^3}$
(e) 0

5. If
$$y = \left(\frac{\cos x}{1+\sin x}\right)^4$$
, then $\frac{dy}{dx} =$

(a)
$$\frac{-4\cos^3 x}{(1+\sin x)^4}$$

(b)
$$4\left(\frac{\cos x}{1+\sin x}\right)^3$$

(c)
$$-4\left(\frac{\sin x}{\cos x}\right)^3$$

(d)
$$\left(\frac{-4\sin x}{\cos x}\right)\left(\frac{\cos x}{1+\sin x}\right)^3$$

(e)
$$0$$

6.
$$\lim_{x \to 2^+} \frac{4 - x^2}{(x - 2)^2} =$$

- (a) 4
- (b) 0
- (c) -4
- (d) ∞
- (e) $-\infty$

7. If
$$f(x) = \begin{cases} c & \text{if } x = -3 \\ \frac{9 - x^2}{4 - \sqrt{x^2 + 7}} & \text{if } -3 < x < 3 \\ d & \text{if } x = 3 \end{cases}$$
,
then f is continuous on $[-3, 3]$ if

(a) c = 8, d = 8

- (b) c = 8, d = -8
- (c) c = 0, d = 0

(d)
$$c = 1, d = -1$$

(e)
$$c = -8, d = 8$$

- 8. The critical values of $g(t) = t^2 (2t 5)^{1/3}$ are
 - (a) $\left\{ 0, \frac{5}{2} \right\}$ (b) $\{0\}$
 - (c) $\left\{0, \frac{15}{7}\right\}$
 - (d) $\left\{0, \frac{5}{2}, \frac{15}{7}\right\}$
 - (e) $\left\{\frac{5}{2}, \frac{15}{7}\right\}$

9. The slope of normal line to the curve $x^4y^4 = 16$ at (2, 1) is

(a) $\frac{1}{8}$ (b) -2 (c) 2 (d) $\frac{-1}{2}$ (e) $\frac{1}{2}$

10. If
$$y = \sqrt[4]{\frac{(4x+1)(x+4)^2}{(x^3+9)(x^2+9)}}$$
, then $\frac{dy}{dx}\Big|_{x=0}$ is

(a) 12
(b)
$$\frac{\ln 4 - \ln 9}{2}$$

(c) $\frac{3}{4}$
(d) 0
(e) $\frac{9}{2}$

11. If

x	f(x)	g(x)	f'(x)	g'(x)
3	1	4	8	3
4	3	3	2	-5

and $F(x) = [f(x)]^2 \cdot g(x)$, then F'(3) =

- (a) 61
- (b) 11
- (c) 67
- (d) 48
- (e) 35

12.
$$\lim_{x \to \infty} (x - \sqrt{x^2 - 3x}) =$$

- (a) 3
- (b) 0
- (c) $\frac{-1}{2}$
- (d) ∞

(e)
$$\frac{3}{2}$$

13. If
$$f(x) = \operatorname{sech}^2(\ln(x+2))$$
, then $f'(0) =$

(a)
$$\frac{-12}{25}$$

(b) $\frac{-48}{125}$
(c) $\frac{12}{25}$
(d) $\frac{-48}{25}$
(e) $\frac{-24}{125}$

14. Given the graph of y = f'(x) i.e. the graph of first derivative of function. Then which of the following is not true?

- (a) f has critical points at x = 1 and x = 5
- (b) f is concave down on (0,3)

(c)
$$f(4) < f(3)$$

(d)
$$f(0) > f\left(\frac{1}{2}\right)$$

(e)
$$f''(3) = 0$$

15.
$$\lim_{x \to \infty} x \sin \frac{16}{x} =$$

- (a) 1
- (b) $\frac{1}{16}$
- (c) 16
- (d) 0
- (e) ∞

- 16. A particle moves along the curve $y = \sqrt{1 + x^3}$. As it reaches the point (2,3), the *y*-coordinate is increasing at a rate of 4 cm/s. At this instant, the *x*-coordinate is changing at the rate of
 - (a) 3 cm/s
 - (b) 6 cm/s
 - (c) 2 cm/s
 - (d) 8 cm/s
 - (e) 4 cm/s

- Page 9 of 12
- 17. A cylindrical can is to be made to hold $16\pi \text{ cm}^3$ of laban. If r is the radius and h is the height of the can, then the dimensions that will minimize the cost of the metal to manufacture the can are

(a)
$$r = 8, h = 16$$

(b) $r = 2, h = 4$
(c) $r = \sqrt{\frac{8}{3}}, h = \frac{2}{\sqrt{3}}$
(d) $r = 4, h = 8$
(e) $r = \sqrt[3]{16}, h = \frac{16}{(16)^{2/3}}$

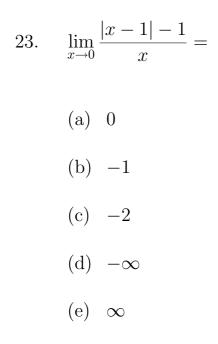
18.
$$\lim_{x \to 0} (\cos x)^{1/x^2} =$$

- (a) 1
- (b) $-\infty$
- (c) 0
- (d) e^2

(e)
$$\frac{1}{\sqrt{e}}$$

19. Starting with $x_1 = 1$, the third approximation x_3 to the root of $x^4 - 6x + 3 = 0$ is

[Hint: use Newton's method]


- (a) $\frac{59}{26}$
- (b) $\frac{1}{2}$
- (c) 0
- (d) $\frac{40}{7}$
- (e) 2

20. A curve f(x) has a slope at each point given by $\frac{-1}{x^2}$ and passes through the point $\left(\frac{1}{8}, 10\right)$. Then

(a) $f(x) = \frac{-1}{x} + 14$ (b) $f(x) = \frac{1}{x} + 2$ (c) $f(x) = \frac{2}{x^3}$ (d) $f(x) = \frac{2}{x} + 2$ (e) $f(x) = \frac{3}{x^3} + 2$

- 21. $f(x) = -3x^2 + 5x + 5$ is continuous on [-3, -1] and differentiable on (-3, -1). Then, the value of 'c' that satisfies the conclusion of the Mean Value Theorem is
 - (a) c = 0
 - (b) $c = \frac{-11}{6}$
 - (c) c = -2
 - (d) $c = \frac{-6}{5}$
 - (e) c = -1

- 22. The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, the **relative** error in the area is
 - (a) 0.01
 - (b) 0.06
 - (c) 0.04
 - (d) 0.03
 - (e) 0.02

- 24. If the curve $y = ax^2 + bx + c$ passes through the point (2, 30) and is tangent to the line y = 3x at the origin, then
 - (a) a + b = 6
 - (b) a + b = 9
 - (c) a + b = 7
 - (d) a + b = 3
 - (e) a + b = 2

1	a	b	с	d	е	f
2	a	b	с	d	е	f
3	a	b	с	d	е	f
4	a	b	с	d	е	f
5	a	b	с	d	е	f
6	a	b	с	d	е	f
7	a	b	с	d	е	f
8	a	b	с	d	е	f
9	a	b	с	d	е	f
10	a	b	с	d	е	f
11	a	b	с	d	е	f
12	a	b	с	d	е	f
13	a	b	с	d	е	f
14	a	b	с	d	е	f
15	a	b	с	d	е	f
16	a	b	с	d	е	f
17	a	b	с	d	е	f
18	a	b	с	d	е	f
19	a	b	с	d	е	f
20	a	b	с	d	е	f
21	a	b	с	d	е	f
22	a	b	с	d	е	f
23	a	b	с	d	е	f
24	a	b	с	d	е	f
25	a	b	с	d	е	f
26	a	b	с	d	е	f
27	a	b	с	d	е	f
28	a	b	с	d	е	f
29	a	b	с	d	е	f
30	a	b	с	d	е	f
31	a	b	с	d	е	f
32	a	b	с	d	е	f
33	a	b	с	d	е	f
34	a	b	с	d	е	f
35	a	b	с	d	е	f

36	a	b	с	d	е	f
37	a	b	с	d	е	f
38	а	b	с	d	е	f
39	a	b	с	d	е	f
40	a	b	с	d	е	f
41	a	b	с	d	е	f
42	a	b	с	d	е	f
43	a	b	с	d	е	f
44	a	b	с	d	е	f
45	a	b	с	d	е	f
46	a	b	с	d	е	f
47	a	b	с	d	е	f
48	a	b	с	d	е	f
49	a	b	с	d	е	f
50	a	b	с	d	е	f
51	a	b	с	d	е	f
52	a	b	с	d	е	f
53	a	b	с	d	е	f
54	a	b	с	d	е	f
55	a	b	с	d	е	f
56	a	b	с	d	е	f
57	a	b	с	d	е	f
58	a	b	с	d	е	f
59	a	b	с	d	е	f
60	a	b	с	d	е	f
61	a	b	с	d	е	f
62	a	b	с	d	е	f
63	a	b	с	d	е	f
64	a	b	с	d	е	f
65	a	b	с	d	е	f
66	a	b	с	d	е	f
67	a	b	с	d	е	f
68	a	b	с	d	е	f
69	a	b	с	d	е	f
70	a	b	с	d	е	f

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 004

Math 101 CODE 004 Final Exam 063 Thursday 23/8/2007 Net Time Allowed: 150 minutes

Name: _____

ID: ______ Sec: _____.

Check that this exam has $\underline{24}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If
$$f(x) = \begin{cases} c & \text{if } x = -3 \\ \frac{9 - x^2}{4 - \sqrt{x^2 + 7}} & \text{if } -3 < x < 3 \\ d & \text{if } x = 3 \end{cases}$$
,
then f is continuous on $[-3, 3]$ if

- (a) c = 8, d = 8
- (b) c = 8, d = -8
- (c) c = 0, d = 0

(d)
$$c = -8, d = 8$$

(e) c = 1, d = -1

2.
$$\lim_{x \to 0} \frac{(4+x)^{-1} - 4^{-1}}{x} =$$

(a)
$$\frac{1}{16}$$

(b) $\frac{-1}{4}$
(c) $\frac{-1}{16}$

(e) does not exist

3. If
$$y = \left(\frac{\cos x}{1+\sin x}\right)^4$$
, then $\frac{dy}{dx} =$

(a) 0
(b)
$$-4\left(\frac{\sin x}{\cos x}\right)^3$$

(c) $\left(\frac{-4\sin x}{\cos x}\right)\left(\frac{\cos x}{1+\sin x}\right)^3$
(d) $\frac{-4\cos^3 x}{(1+\sin x)^4}$
(e) $4\left(\frac{\cos x}{1+\sin x}\right)^3$

4.
$$\lim_{x \to 2^+} \frac{4 - x^2}{(x - 2)^2} =$$

- (a) ∞
- (b) 4
- (c) $-\infty$
- (d) 0
- (e) -4

5. The critical values of $g(t) = t^2 (2t - 5)^{1/3}$ are

(a) $\left\{0, \frac{15}{7}\right\}$ (b) $\left\{\frac{5}{2}, \frac{15}{7}\right\}$ (c) $\left\{0, \frac{5}{2}\right\}$ (d) $\{0\}$ (c) $\left\{-5, 15\right\}$

(e)
$$\left\{0, \frac{5}{2}, \frac{15}{7}\right\}$$

6. If
$$f(x) = 3x^{2/3} - x$$
, then $f(x)$ is increasing on the interval

- (a) $(8,\infty)$
- (b) $(0,\infty)$
- (c) (0, 8)
- (d) $(-\infty, 0)$
- (e) $(-\infty, 8)$

- 7. The graph of $y = \ln(x^3 + 1)$ is concave up on the interval
 - (a) $(-\infty, -1)$ and $(0, \sqrt[3]{2})$
 - (b) (-1,2)
 - (c) (0, 2)
 - (d) $(0,\infty)$
 - (e) $(0, \sqrt[3]{2})$

8. If
$$f(x) = \frac{x^2 + 1}{e^{3x}}$$
, then $f'(1) =$

(a) 0 (b) $\frac{-4}{e^6}$ (c) $\frac{-4}{e^3}$ (d) $\frac{8}{e^3}$ (e) $\frac{2}{e^5}$

9. If
$$y = \sqrt[4]{\frac{(4x+1)(x+4)^2}{(x^3+9)(x^2+9)}}$$
, then $\frac{dy}{dx}\Big|_{x=0}$ is

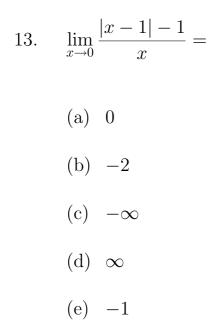
- (a) 12
- (b) $\frac{3}{4}$ (c) $\frac{9}{2}$

(d)
$$\frac{\ln 4 - \ln 9}{2}$$

$$(e) \quad 0$$

10.
$$\lim_{x \to \infty} x \sin \frac{16}{x} =$$

- (a) 0
- (b) ∞
- (c) $\frac{1}{16}$
- (d) 16
- (e) 1


11. If
$$f(x) = \operatorname{sech}^2(\ln(x+2))$$
, then $f'(0) =$

(a)
$$\frac{12}{25}$$

(b) $\frac{-48}{25}$
(c) $\frac{-48}{125}$
(d) $\frac{-12}{25}$
(e) $\frac{-24}{125}$

125

A cylindrical can is to be made to hold $16\pi\,\mathrm{cm}^3$ of laban. 12. If r is the radius and h is the height of the can, then the dimensions that will minimize the cost of the metal to manufacture the can are

(a)
$$r = \sqrt[3]{16}, h = \frac{16}{(16)^{2/3}}$$

(b) $r = 4, h = 8$
(c) $r = 2, h = 4$
(d) $r = 8, h = 16$
(e) $r = \sqrt{\frac{8}{3}}, h = \frac{2}{\sqrt{3}}$

14. Starting with $x_1 = 1$, the third approximation x_3 to the root of $x^4 - 6x + 3 = 0$ is

[Hint: use Newton's method]

(a) $\frac{1}{2}$ (b) $\frac{59}{26}$ (c) 2 (d) 0 (e) $\frac{40}{7}$ 15. A curve f(x) has a slope at each point given by $\frac{-1}{x^2}$ and passes through the point $\left(\frac{1}{8}, 10\right)$. Then

(a)
$$f(x) = \frac{-1}{x} + 14$$

(b) $f(x) = \frac{3}{x^3} + 2$
(c) $f(x) = \frac{2}{x} + 2$
(d) $f(x) = \frac{1}{x} + 2$
(e) $f(x) = \frac{2}{x^3}$

16. Given the graph of y = f'(x) i.e. the **graph of first deriv**ative of function. Then which of the following is not true?

- (a) f is concave down on (0,3)
- (b) f''(3) = 0
- (c) f has critical points at x = 1 and x = 5

(d)
$$f(0) > f\left(\frac{1}{2}\right)$$

(e) f(4) < f(3)

- 17. The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, the **relative** error in the area is
 - (a) 0.02
 - (b) 0.06
 - (c) 0.04
 - (d) 0.01
 - (e) 0.03

18. If

x	f(x)	g(x)	f'(x)	g'(x)
3	1	4	8	3
4	3	3	2	-5

and $F(x) = [f(x)]^2 \cdot g(x)$, then F'(3) =

- (a) 48
- (b) 11
- (c) 61
- (d) 67
- (e) 35

$$19. \quad \lim_{x \to \infty} (x - \sqrt{x^2 - 3x}) =$$

(a) $\frac{3}{2}$ (b) ∞ (c) 3 (d) 0 (e) $\frac{-1}{2}$

20. $f(x) = -3x^2 + 5x + 5$ is continuous on [-3, -1] and differentiable on (-3, -1). Then, the value of 'c' that satisfies the conclusion of the Mean Value Theorem is

(a) $c = \frac{-11}{6}$ (b) $c = \frac{-6}{5}$ (c) c = 0(d) c = -2(e) c = -1 21. The slope of normal line to the curve $x^4y^4 = 16$ at (2, 1) is

(a)
$$\frac{1}{8}$$

(b) $\frac{-1}{2}$
(c) 2
(d) $\frac{1}{2}$

(e) -2

22. If the curve $y = ax^2 + bx + c$ passes through the point (2, 30) and is tangent to the line y = 3x at the origin, then

- (a) a + b = 3
- (b) a + b = 7
- (c) a + b = 2
- (d) a + b = 6
- (e) a + b = 9

- 23. A particle moves along the curve $y = \sqrt{1 + x^3}$. As it reaches the point (2,3), the *y*-coordinate is increasing at a rate of 4 cm/s. At this instant, the *x*-coordinate is changing at the rate of
 - (a) 4 cm/s
 - (b) 6 cm/s
 - (c) 2 cm/s
 - (d) 8 cm/s
 - (e) 3 cm/s

24.
$$\lim_{x \to 0} (\cos x)^{1/x^2} =$$

(a) 0

(b)
$$\frac{1}{\sqrt{e}}$$

- (c) 1
- (d) $-\infty$
- (e) e^2

Name ID

Sec

1	a	b	с	d	е	f
2	a	b	с	d	е	f
3	a	b	с	d	е	f
4	a	b	с	d	е	f
5	a	b	с	d	е	f
6	a	b	с	d	е	f
7	a	b	с	d	е	f
8	a	b	с	d	е	f
9	a	b	с	d	е	f
10	a	b	с	d	е	f
11	a	b	с	d	е	f
12	a	b	с	d	е	f
13	a	b	с	d	е	f
14	a	b	с	d	е	f
15	a	b	с	d	е	f
16	a	b	с	d	е	f
17	a	b	с	d	е	f
18	a	b	с	d	е	f
19	a	b	с	d	е	f
20	a	b	с	d	е	f
21	a	b	с	d	е	f
22	a	b	с	d	е	f
23	a	b	с	d	е	f
24	a	b	с	d	е	f
25	a	b	с	d	е	f
26	a	b	с	d	е	f
27	a	b	с	d	е	f
28	а	b	с	d	е	f
29	a	b	с	d	е	f
30	а	b	с	d	е	f
31	a	b	с	d	е	f
32	a	b	с	d	е	f
33	a	b	с	d	е	f
34	a	b	с	d	е	f
35	a	b	с	d	е	f

36abcdef 37 abcdef 38 abcdef 39 abcdef 40 abcdef 41 abcdef 42 abcdef 42 abcdef 43 abcdef 44 abcdef 45 abcdef 46 abcdef 47 abcdef 49 abcdef 50 abcdef 51 abcdef 53 abcdef 54 abcdef 54 abcdef 54 abcdef 54 abcdef 55 abcdef 56 abcdef 57 abcdef 59 abcde <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
38 a b c d e f 39 a b c d e f 40 a b c d e f 41 a b c d e f 42 a b c d e f 42 a b c d e f 44 a b c d e f 44 a b c d e f 44 a b c d e f 45 a b c d e f 47 a b c d e f 49 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b </td <td></td> <td>a</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td>f</td>		a	b	с	d	е	f
39 a b c d e f 40 a b c d e f 41 a b c d e f 42 a b c d e f 42 a b c d e f 43 a b c d e f 44 a b c d e f 44 a b c d e f 44 a b c d e f 45 a b c d e f 47 a b c d e f 49 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b </td <td>37</td> <td>a</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td>f</td>	37	a	b	с	d	е	f
40 a b c d e f 41 a b c d e f 42 a b c d e f 43 a b c d e f 44 a b c d e f 45 a b c d e f 45 a b c d e f 46 a b c d e f 47 a b c d e f 48 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b c d e f 53 a b c d e f 54 a b c <td< td=""><td>38</td><td>а</td><td>b</td><td>с</td><td>d</td><td>е</td><td>f</td></td<>	38	а	b	с	d	е	f
41 a b c d e f 42 a b c d e f 43 a b c d e f 44 a b c d e f 44 a b c d e f 45 a b c d e f 46 a b c d e f 47 a b c d e f 48 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b c d e f 53 a b c d e f 54 a b c d e f 55 a b c <td< td=""><td>39</td><td>a</td><td>b</td><td>с</td><td>d</td><td>е</td><td>f</td></td<>	39	a	b	с	d	е	f
42 a b c d e f 43 a b c d e f 44 a b c d e f 45 a b c d e f 46 a b c d e f 47 a b c d e f 49 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b c d e f 53 a b c d e f 54 a b </td <td>40</td> <td>a</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td>f</td>	40	a	b	с	d	е	f
43 a b c d e f 44 a b c d e f 45 a b c d e f 46 a b c d e f 47 a b c d e f 48 a b c d e f 49 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b c d e f 53 a b c d e f 54 a b c d e f 55 a b c d e f 56 a b c d e f 57 a b c <td< td=""><td>41</td><td>a</td><td>b</td><td>с</td><td>d</td><td>е</td><td>f</td></td<>	41	a	b	с	d	е	f
44 a b c d e f 45 a b c d e f 46 a b c d e f 47 a b c d e f 47 a b c d e f 47 a b c d e f 49 a b c d e f 50 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b c d e f 54 a b c d e f 55 a b c d e f 56 a b c d e f 57 a b </td <td></td> <td>a</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td>f</td>		a	b	с	d	е	f
45 a b c d e f 46 a b c d e f 47 a b c d e f 48 a b c d e f 49 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b c d e f 53 a b c d e f 54 a b c d e f 55 a b c d e f 56 a b c d e f 57 a b c d e f 58 a b c d e f 60 a b </td <td>43</td> <td>a</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td>f</td>	43	a	b	с	d	е	f
46 a b c d e f 47 a b c d e f 48 a b c d e f 49 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b c d e f 53 a b c d e f 54 a b c d e f 55 a b c d e f 56 a b c d e f 57 a b c d e f 58 a b c d e f 60 a b c d e f 61 a b c <td< td=""><td>44</td><td>a</td><td>b</td><td>с</td><td>d</td><td>е</td><td>f</td></td<>	44	a	b	с	d	е	f
47 a b c d e f 48 a b c d e f 49 a b c d e f 50 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b c d e f 52 a b c d e f 53 a b c d e f 54 a b c d e f 55 a b c d e f 56 a b c d e f 57 a b c d e f 58 a b c d e f 60 a b </td <td>45</td> <td>a</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td>f</td>	45	a	b	с	d	е	f
48 a b c d e f 49 a b c d e f 50 a b c d e f 51 a b c d e f 51 a b c d e f 52 a b c d e f 53 a b c d e f 53 a b c d e f 54 a b c d e f 55 a b c d e f 56 a b c d e f 57 a b c d e f 58 a b c d e f 60 a b c d e f 61 a b </td <td>46</td> <td>a</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td></td>	46	a	b	с	d	е	
49 a b c d e f 50 a b c d e f 51 a b c d e f 52 a b c d e f 52 a b c d e f 53 a b c d e f 53 a b c d e f 54 a b c d e f 55 a b c d e f 56 a b c d e f 57 a b c d e f 58 a b c d e f 59 a b c d e f 61 a b c d e f 62 a b </td <td>47</td> <td>а</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td>f</td>	47	а	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	a	b	с	d	е	f
52 a b c d e f 53 a b c d e f 54 a b c d e f 55 a b c d e f 55 a b c d e f 56 a b c d e f 57 a b c d e f 57 a b c d e f 58 a b c d e f 59 a b c d e f 60 a b c d e f 61 a b c d e f 62 a b c d e f 63 a b c d e f 64 a b </td <td>50</td> <td>a</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td>f</td>	50	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a	b	с	d	е	f
54 a b c d e f 55 a b c d e f 56 a b c d e f 57 a b c d e f 57 a b c d e f 58 a b c d e f 59 a b c d e f 60 a b c d e f 61 a b c d e f 62 a b c d e f 63 a b c d e f 64 a b c d e f 64 a b c d e f 64 a b c d e f 65 a b </td <td>52</td> <td>a</td> <td>b</td> <td>с</td> <td>d</td> <td>е</td> <td>f</td>	52	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	a	b	с	d	е	f
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64	a	b	с	d	е	f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	a	b	с	d	е	f
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	66	a	b	с	d	е	f
69 a b c d e f		a	b	с	d	е	f
69 a b c d e f	68	a	b	с	d	е	f
		a	b	с	d	е	f
		a	b	с		е	f

ANSWER KEY

1
Т

Q	MM	V1	V2	V3	V4
1	a	a	b	b	a
2	a	b	a	a	с
3	a	с	d	d	d
4	a	b	d	d	с
5	a	е	е	a	е
6	a	с	a	е	с
7	a	d	е	a	е
8	a	a	с	d	с
9	a	b	е	с	b
10	a	d	b	с	d
11	a	a	с	с	с
12	a	d	a	е	с
13	a	b	е	b	е
14	a	b	a	d	a
15	a	b	d	с	d
16	a	e	d	с	d
17	a	a	d	b	a
18	a	a	b	е	d
19	a	с	a	b	a
20	a	b	a	b	d
21	a	с	е	с	с
22	a	a	с	е	е
23	a	a	d	b	с
24	a	b	е	b	b

Answer Counts

V	a	b	с	d	е
1	8	7	5	2	2
2	4	7	4	7	2
3	7	3	2	7	5
4	2	4	5	6	7