King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 001

Math 101 Final Exam 061

CODE 001

Wednesday 24/1/2007 Net Time Allowed: 150 minutes

Name:		
ID:	Sec:	

Check that this exam has 25 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. If $y = \ln\left(\frac{x}{4}\right)$ and the value of x decreases from 4 to 3.9, then the corresponding change in y is approximated by the differential dy, which equals
 - (a) $-\frac{1}{100}$
 - (b) $-\frac{1}{40}$
 - (c) $\frac{1}{100}$
 - (d) $\frac{1}{40}$
 - (e) $-\ln\left(\frac{3.9}{4}\right)$

- 2. If f(3) = 4, g(3) = 2, f'(3) = -6 and g'(3) = 5, then $\left(\frac{f}{f-g}\right)'(3)$ is equal to
 - (a) 16
 - (b) 32
 - (c) 8
 - (d) 44
 - (e) 12

- 3. The function $f(x) = x^4(x-1)^3$ has
 - (a) one local maximum and one local minimum
 - (b) two local maxima and one local minimum
 - (c) three local maxima and four local minima
 - (d) two local maxima and two local minima
 - (e) one local maximum and two local minima

- 4. The slope of the tangent line to the gaph of $x^2y^2 + x \sin y = 4$ at the point $\left(\frac{2}{\pi}, \pi\right)$ is equal to
 - (a) $-\frac{2}{3}\pi^2$
 - (b) $\frac{1}{2}\pi^2$
 - (c) $-\frac{3}{2}\pi$
 - (d) $\frac{3}{2}\pi$
 - (e) $-\frac{1}{2}\pi^2$

- 5. The number of the **different equations** of the normal lines of slope 1 to the graph of $y = \frac{1}{x+1}$ is
 - (a) 1
 - (b) 2
 - (c) 4
 - (d) 3
 - $(e) \quad 0$

6. The graph of function $f(x) = x + 2\sin x$ for $0 \le x < 2\pi$, is concave up on the interval I and has inflection point P(x, y) where

(a)
$$I = \left(\frac{\pi}{2}, \frac{3\pi}{2}\right); P(\pi, \pi)$$

(b)
$$I = (\pi, 2\pi); P(\pi, \pi)$$

(c)
$$I = (\pi, 2\pi); P\left(\frac{\pi}{2}, \frac{\pi}{2} + 2\right)$$

(d)
$$I = (0, \pi); P(0, 0)$$

(e)
$$I = (\pi, 2\pi); P(0, 0)$$

7. The value(s) of constant c making the function

$$g(x) = \begin{cases} x^2 - c^2 & \text{if } x < 4\\ cx + 20 & \text{if } x \ge 4 \end{cases}$$

continuous on $(-\infty, \infty)$ is (are)

- (a) 4 and -4
- (b) -2
- (c) 20
- (d) -2 and 2
- (e) 4

8. If a snowball melts so that its surface area decreases at a rate of $1 \text{ cm}^2/\text{min}$, then the rate at which **the diamter** decreases, when the diameter is 10 cm, is

[Hint:
$$(S = 4\pi r^2)$$
 and $(V = \frac{4}{3}\pi r^3)$]

- (a) 20π cm/min
- (b) $\frac{1}{20\pi}$ cm/min
- (c) $\frac{4}{30\pi}$ cm/min
- (d) 10π cm/min
- (e) $\frac{1}{10\pi}$ cm/min

- 9. If the line 2x + y = b is tangent to the parabola $y = ax^2$ at x = 2, then a b =
 - (a) $-\frac{3}{2}$
 - (b) $-\frac{5}{2}$
 - (c) $\frac{1}{2}$
 - (d) $\frac{3}{2}$
 - (e) $-\frac{1}{2}$

10. Let g be a twice differentiable function. If $f(x) = g(\sqrt{x})$, then f''(x) is equal to

(a)
$$\frac{1}{4x}g''(\sqrt{x}) - \frac{1}{4\sqrt{x^3}}g'(\sqrt{x})$$

(b)
$$\frac{1}{4x}g''(\sqrt{x})$$

(c)
$$\frac{-1}{4\sqrt{x^3}}g''(\sqrt{x})$$

(d)
$$\frac{1}{2\sqrt{x}}g''(\sqrt{x})$$

(e)
$$\frac{1}{2\sqrt{x}}g''(\sqrt{x}) - \frac{1}{4x}$$

11. If $y = (\ln x)^{\ln x}$, then

(a)
$$\frac{dy}{dx} = (\ln x)^{\ln x - 1}$$

(b)
$$\frac{dy}{dx} = \frac{\ln(\ln x + 1)}{x}$$

(c)
$$\frac{dy}{dx} = \left(\frac{\ln(\ln x) + 1}{x}\right) (\ln x)^{\ln x}$$

(d)
$$\frac{dy}{dx} = \frac{1}{x} \ln(\ln x)$$

(e)
$$\frac{dy}{dx} = \frac{1}{x} (\ln x)^{\ln x - 1}$$

12. $\lim_{x \to 1.5^{-}} \frac{2x^2 - 3x}{|2x - 3|}$ is equal to

- (a) 3
- (b) 1
- (c) $\frac{3}{2}$
- (d) -1
- (e) $-\frac{3}{2}$

- 13. Given f(x) = 4x 5 and $\epsilon > 0$. The largest possible value of δ , such that $|f(x) 7| < \epsilon$ whenever $|x 3| < \delta$, is given by
 - (a) $\frac{\epsilon}{2}$
 - (b) $\frac{\epsilon}{5}$
 - (c) ϵ
 - (d) $\frac{\epsilon}{4}$
 - (e) $\frac{\epsilon}{3}$

14. Which one of the following statements is **TRUE** about the graph of the function

$$y = \frac{x}{x^2 - x - 2}$$
?

- (a) It has a y-intercept and one vertical asymptote
- (b) It has two vertical asymptotes and no horizontal asymptote
- (c) It has two x-intercepts and one asymptote at x = 0
- (d) It passes through the origin and has asymptotes at x = 2 and x = -1
- (e) It passes through origin and has asymptotes at x = 1 and $x = \frac{-1}{2}$

15. If
$$f'(x) = \frac{4}{\sqrt{1-x^2}}$$
 and $f(\frac{1}{2}) = 1$, then $1 - f(-\frac{1}{2}) = 1$

- (a) 2
- (b) 0
- (c) $\frac{3\pi}{4}$
- (d) $-\frac{3\pi}{4}$
- (e) $\frac{4\pi}{3}$

16. The picture shows the graphs of f, f' and f''. Identify each curve.

(a)
$$f = C$$
, $f' = B$, $f'' = A$

(b)
$$f = B, f' = A, f'' = C$$

(c)
$$f = B, f' = C, f'' = A$$

(d)
$$f = C, f' = A, f'' = B$$

(e)
$$f = A, f' = B, f'' = C$$

- 17. $\lim_{x \to \infty} x^{(\ln 2)/(1+\ln x)}$ is equal to
 - (a) ln 2
 - (b) $1 + \ln 2$
 - (c) 0
 - (d) 2
 - (e) 1

18. Starting with $x_1 = 1$, the next approximation x_2 to a root of $\tan^{-1} x = 1 - x$ by Newton's method is

[Use
$$\pi = \frac{22}{7}$$
]

- (a) $\frac{13}{21}$
- (b) $\frac{8}{21}$
- (c) $\frac{19}{21}$
- (d) $\frac{10}{21}$
- (e) $\frac{14}{21}$

19. Which of the following statements is **TRUE** about $f(x) = x^{2/3}$?

- (a) f has no vertical tangent line
- (b) f is differentiable on $(-\infty, \infty)$
- (c) f has a vertical tangent line at (0,0)
- (d) f has a horizontal tangent line
- (e) f has a vertical tangent line at x = 1

20. If M and m are, respectively, the absolute maximum and minimum of $f(x) = xe^{-x}$ on the interval [0,2], then $e^2M - em =$

- (a) e
- (b) $\frac{e+1}{e}$
- (c) -e
- (d) 2e
- (e) 2

21. The values for f, g, f', g' are given by the table below:

x	f(x)	g(x)	f'(x)	g'(x)
3	1	9	8	5
4	-3	3	2	-6

Then $\frac{d}{dx}(g(x+f(x)))$ at x=3 is

- (a) 27
- (b) -48
- (c) 5
- (d) -54
- (e) -6

22. The x-coordinate of the point at which the tangent line to the curve $y = \cosh(2x)$ has slope 2, is equal to

(a)
$$\frac{2}{3}\ln(1+\sqrt{2})$$

(b)
$$2\ln(1+\sqrt{2})$$

(c)
$$3\ln(1+\sqrt{2})$$

(d)
$$\frac{3}{2}\ln(1+\sqrt{2})$$

(e)
$$\frac{1}{2}\ln(1+\sqrt{2})$$

23. If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, then which of the following statements is **TRUE**?

[Hint: Apply the Mean Value Theorem]

- (a) f(4) = 15
- (b) f(4) < 16
- (c) f(4) = 0
- (d) $f(4) \ge 16$
- (e) $f(4) \le 10$

- 24. The **height** of the right circular cylinder of largest volume which is inscribed in a sphere of radius 9 cm is
 - (a) $\frac{5\sqrt{3}}{2}$ cm
 - (b) $\frac{9\sqrt{3}}{2}$ cm
 - (c) $6\sqrt{3}$ cm
 - (d) $4\sqrt{3}$ cm
 - (e) $9\sqrt{3}$ cm

25. Given $f(x) = \frac{x-1}{x^2}$, $f'(x) = \frac{2-x}{x^3}$ and $f''(x) = \frac{2(x-3)}{x^4}$. Then which one of the following statements is **FALSE** about the graph of the function f(x).

[Hint: Sketch]

- (a) the graph has one inflection point
- (b) the graph intersects its horizontal asymptote
- (c) the graph has one local maximum
- (d) the graph is concave up on $(3, \infty)$
- (e) the graph is concave up on (2,3)

King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 002

Math 101 Final Exam 061

CODE 002

Wednesday 24/1/2007 Net Time Allowed: 150 minutes

Name:		
ID:	Sec:	

Check that this exam has $\underline{25}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. If the line 2x + y = b is tangent to the parabola $y = ax^2$ at x = 2, then a b =
 - (a) $-\frac{1}{2}$
 - (b) $-\frac{5}{2}$
 - (c) $\frac{3}{2}$
 - (d) $\frac{1}{2}$
 - (e) $-\frac{3}{2}$

- 2. The function $f(x) = x^4(x-1)^3$ has
 - (a) two local maxima and two local minima
 - (b) two local maxima and one local minimum
 - (c) one local maximum and one local minimum
 - (d) three local maxima and four local minima
 - (e) one local maximum and two local minima

3. Which one of the following statements is **TRUE** about the graph of the function

$$y = \frac{x}{x^2 - x - 2}?$$

- (a) It passes through origin and has asymptotes at x = 1 and $x = \frac{-1}{2}$
- (b) It has two x-intercepts and one asymptote at x = 0
- (c) It has two vertical asymptotes and no horizontal asymptote
- (d) It passes through the origin and has asymptotes at x=2 and x=-1
- (e) It has a y-intercept and one vertical asymptote

4. Let g be a twice differentiable function. If $f(x) = g(\sqrt{x})$, then f''(x) is equal to

(a)
$$\frac{1}{4x}g''(\sqrt{x})$$

(b)
$$\frac{1}{2\sqrt{x}}g''(\sqrt{x})$$

(c)
$$\frac{1}{4x}g''(\sqrt{x}) - \frac{1}{4\sqrt{x^3}}g'(\sqrt{x})$$

$$(d) \quad \frac{-1}{4\sqrt{x^3}}g''(\sqrt{x})$$

(e)
$$\frac{1}{2\sqrt{x}}g''(\sqrt{x}) - \frac{1}{4x}$$

5. If $y = (\ln x)^{\ln x}$, then

(a)
$$\frac{dy}{dx} = \frac{1}{x} \ln(\ln x)$$

(b)
$$\frac{dy}{dx} = \frac{\ln(\ln x + 1)}{x}$$

(c)
$$\frac{dy}{dx} = \left(\frac{\ln(\ln x) + 1}{x}\right) (\ln x)^{\ln x}$$

(d)
$$\frac{dy}{dx} = (\ln x)^{\ln x - 1}$$

(e)
$$\frac{dy}{dx} = \frac{1}{x} (\ln x)^{\ln x - 1}$$

- 6. The number of the **different equations** of the normal lines of slope 1 to the graph of $y = \frac{1}{x+1}$ is
 - (a) 3
 - (b) 1
 - (c) 4
 - (d) 2
 - (e) 0

7. If a snowball melts so that its surface area decreases at a rate of $1 \text{ cm}^2/\text{min}$, then the rate at which **the diamter** decreases, when the diameter is 10 cm, is

[Hint:
$$(S = 4\pi r^2)$$
 and $(V = \frac{4}{3}\pi r^3)$]

- (a) $\frac{4}{30\pi}$ cm/min
- (b) $\frac{1}{20\pi}$ cm/min
- (c) $\frac{1}{10\pi}$ cm/min
- (d) 10π cm/min
- (e) 20π cm/min

- 8. If $f'(x) = \frac{4}{\sqrt{1-x^2}}$ and $f(\frac{1}{2}) = 1$, then $1 f(-\frac{1}{2}) = 1$
 - (a) 2
 - (b) $\frac{3\pi}{4}$
 - (c) $-\frac{3\pi}{4}$
 - (d) 0
 - (e) $\frac{4\pi}{3}$

- 9. Given f(x) = 4x 5 and $\epsilon > 0$. The largest possible value of δ , such that $|f(x) 7| < \epsilon$ whenever $|x 3| < \delta$, is given by
 - (a) $\frac{\epsilon}{5}$
 - (b) ϵ
 - (c) $\frac{\epsilon}{2}$
 - (d) $\frac{\epsilon}{4}$
 - (e) $\frac{\epsilon}{3}$

- 10. $\lim_{x \to 1.5^{-}} \frac{2x^2 3x}{|2x 3|}$ is equal to
 - (a) -1
 - (b) 3
 - (c) 1
 - (d) $\frac{3}{2}$
 - (e) $-\frac{3}{2}$

11. If f(3) = 4, g(3) = 2, f'(3) = -6 and g'(3) = 5, then $\left(\frac{f}{f-g}\right)'(3)$ is equal to

- (a) 16
- (b) 8
- (c) 44
- (d) 12
- (e) 32

12. If $y = \ln\left(\frac{x}{4}\right)$ and the value of x decreases from 4 to 3.9, then the corresponding change in y is approximated by the differential dy, which equals

- (a) $\frac{1}{40}$
- (b) $-\frac{1}{100}$
- (c) $-\frac{1}{40}$
- (d) $\frac{1}{100}$
- (e) $-\ln\left(\frac{3.9}{4}\right)$

13. The value(s) of constant c making the function

$$g(x) = \begin{cases} x^2 - c^2 & \text{if } x < 4\\ cx + 20 & \text{if } x \ge 4 \end{cases}$$

continuous on $(-\infty, \infty)$ is (are)

- (a) -2
- (b) 4 and -4
- (c) 4
- (d) -2 and 2
- (e) 20

- 14. The slope of the tangent line to the gaph of $x^2y^2 + x \sin y = 4$ at the point $\left(\frac{2}{\pi}, \pi\right)$ is equal to
 - (a) $-\frac{3}{2}\pi$
 - (b) $\frac{1}{2}\pi^2$
 - (c) $\frac{3}{2}\pi$
 - (d) $-\frac{2}{3}\pi^2$
 - (e) $-\frac{1}{2}\pi^2$

15. The graph of function $f(x) = x + 2\sin x$ for $0 \le x < 2\pi$, is concave up on the interval I and has inflection point P(x,y) where

(a)
$$I = \left(\frac{\pi}{2}, \frac{3\pi}{2}\right); P(\pi, \pi)$$

(b)
$$I = (\pi, 2\pi); P\left(\frac{\pi}{2}, \frac{\pi}{2} + 2\right)$$

(c)
$$I = (\pi, 2\pi); P(\pi, \pi)$$

(d)
$$I = (\pi, 2\pi); P(0, 0)$$

(e)
$$I = (0, \pi); P(0, 0)$$

16. The picture shows the graphs of f, f' and f''. Identify each curve.

(a)
$$f = B, f' = C, f'' = A$$

(b)
$$f = B, f' = A, f'' = C$$

(c)
$$f = A, f' = B, f'' = C$$

(d)
$$f = C, f' = A, f'' = B$$

(e)
$$f = C$$
, $f' = B$, $f'' = A$

- 17. The x-coordinate of the point at which the tangent line to the curve $y = \cosh(2x)$ has slope 2, is equal to
 - (a) $\frac{3}{2}\ln(1+\sqrt{2})$
 - (b) $\frac{2}{3}\ln(1+\sqrt{2})$
 - $(c) \quad \frac{1}{2}\ln(1+\sqrt{2})$
 - (d) $2\ln(1+\sqrt{2})$
 - (e) $3\ln(1+\sqrt{2})$

- 18. If M and m are, respectively, the absolute maximum and minimum of $f(x) = xe^{-x}$ on the interval [0, 2], then $e^2M em =$
 - (a) -e
 - (b) $\frac{e+1}{e}$
 - (c) e
 - (d) 2e
 - (e) 2

19. The values for f, g, f', g' are given by the table below:

x	f(x)	g(x)	f'(x)	g'(x)
3	1	9	8	5
4	-3	3	2	-6

Then $\frac{d}{dx}(g(x+f(x)))$ at x=3 is

- (a) -6
- (b) -54
- (c) 5
- (d) 27
- (e) -48

20. Given $f(x) = \frac{x-1}{x^2}$, $f'(x) = \frac{2-x}{x^3}$ and $f''(x) = \frac{2(x-3)}{x^4}$. Then which one of the following statements is **FALSE** about the graph of the function f(x).

[Hint: Sketch]

- (a) the graph is concave up on (2,3)
- (b) the graph is concave up on $(3, \infty)$
- (c) the graph has one inflection point
- (d) the graph has one local maximum
- (e) the graph intersects its horizontal asymptote

- 21. The **height** of the right circular cylinder of largest volume which is inscribed in a sphere of radius 9 cm is
 - (a) $6\sqrt{3}$ cm
 - (b) $9\sqrt{3} \text{ cm}$
 - (c) $\frac{9\sqrt{3}}{2}$ cm
 - (d) $\frac{5\sqrt{3}}{2}$ cm
 - (e) $4\sqrt{3}$ cm

22. Starting with $x_1 = 1$, the next approximation x_2 to a root of $\tan^{-1} x = 1 - x$ by Newton's method is

[Use
$$\pi = \frac{22}{7}$$
]

- (a) $\frac{19}{21}$
- (b) $\frac{14}{21}$
- (c) $\frac{8}{21}$
- (d) $\frac{13}{21}$
- (e) $\frac{10}{21}$

- 23. Which of the following statements is **TRUE** about $f(x) = x^{2/3}$?
 - (a) f has a vertical tangent line at x = 1
 - (b) f has no vertical tangent line
 - (c) f has a horizontal tangent line
 - (d) f has a vertical tangent line at (0,0)
 - (e) f is differentiable on $(-\infty, \infty)$

24. If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, then which of the following statements is **TRUE**?

[Hint: Apply the Mean Value Theorem]

- (a) f(4) < 16
- (b) f(4) = 0
- (c) $f(4) \ge 16$
- (d) f(4) = 15
- (e) $f(4) \le 10$

- 25. $\lim_{x \to \infty} x^{(\ln 2)/(1+\ln x)}$ is equal to
 - (a) 0
 - (b) 2
 - (c) 1
 - (d) ln 2
 - (e) $1 + \ln 2$

King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 003

Math 101 Final Exam 061

CODE 003

Wednesday 24/1/2007 Net Time Allowed: 150 minutes

Name: _		
ID:	Sec:	

Check that this exam has $\underline{25}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. If f(3) = 4, g(3) = 2, f'(3) = -6 and g'(3) = 5, then $\left(\frac{f}{f-g}\right)'(3)$ is equal to
 - (a) 16
 - (b) 12
 - (c) 8
 - (d) 44
 - (e) 32

- 2. If the line 2x + y = b is tangent to the parabola $y = ax^2$ at x = 2, then a b =
 - (a) $-\frac{3}{2}$
 - (b) $\frac{3}{2}$
 - (c) $-\frac{1}{2}$
 - (d) $\frac{1}{2}$
 - (e) $-\frac{5}{2}$

- 3. If $f'(x) = \frac{4}{\sqrt{1-x^2}}$ and $f(\frac{1}{2}) = 1$, then $1 f(-\frac{1}{2}) = 1$
 - (a) $\frac{3\pi}{4}$
 - (b) $\frac{4\pi}{3}$
 - (c) $-\frac{3\pi}{4}$
 - (d) 0
 - (e) 2

- 4. Given f(x) = 4x 5 and $\epsilon > 0$. The largest possible value of δ , such that $|f(x) 7| < \epsilon$ whenever $|x 3| < \delta$, is given by
 - (a) $\frac{\epsilon}{2}$
 - (b) $\frac{\epsilon}{4}$
 - (c) $\frac{\epsilon}{5}$
 - (d) ϵ
 - (e) $\frac{\epsilon}{3}$

5. Which one of the following statements is **TRUE** about the graph of the function

$$y = \frac{x}{x^2 - x - 2}?$$

- (a) It has two vertical asymptotes and no horizontal asymptote
- (b) It passes through the origin and has asymptotes at x = 2 and x = -1
- (c) It has two x-intercepts and one asymptote at x = 0
- (d) It has a y-intercept and one vertical asymptote
- (e) It passes through origin and has asymptotes at x = 1 and $x = \frac{-1}{2}$

6. If $y = \ln\left(\frac{x}{4}\right)$ and the value of x decreases from 4 to 3.9, then the corresponding change in y is approximated by the differential dy, which equals

(a)
$$-\ln\left(\frac{3.9}{4}\right)$$

- (b) $\frac{1}{100}$
- (c) $\frac{1}{40}$
- (d) $-\frac{1}{40}$
- (e) $-\frac{1}{100}$

7. The graph of function $f(x) = x + 2\sin x$ for $0 \le x < 2\pi$, is concave up on the interval I and has inflection point P(x, y) where

(a)
$$I = (\pi, 2\pi); P(\pi, \pi)$$

(b)
$$I = (\pi, 2\pi); P(0, 0)$$

(c)
$$I = (\pi, 2\pi); P\left(\frac{\pi}{2}, \frac{\pi}{2} + 2\right)$$

(d)
$$I = (0, \pi); P(0, 0)$$

(e)
$$I = \left(\frac{\pi}{2}, \frac{3\pi}{2}\right); P(\pi, \pi)$$

8. If a snowball melts so that its surface area decreases at a rate of $1 \text{ cm}^2/\text{min}$, then the rate at which **the diamter** decreases, when the diameter is 10 cm, is

[Hint:
$$(S = 4\pi r^2)$$
 and $(V = \frac{4}{3}\pi r^3)$]

- (a) 10π cm/min
- (b) 20π cm/min
- (c) $\frac{1}{10\pi}$ cm/min
- (d) $\frac{1}{20\pi}$ cm/min
- (e) $\frac{4}{30\pi}$ cm/min

9. If $y = (\ln x)^{\ln x}$, then

(a)
$$\frac{dy}{dx} = \left(\frac{\ln(\ln x) + 1}{x}\right) (\ln x)^{\ln x}$$

(b)
$$\frac{dy}{dx} = \frac{1}{x} \ln(\ln x)$$

(c)
$$\frac{dy}{dx} = \frac{\ln(\ln x + 1)}{x}$$

(d)
$$\frac{dy}{dx} = \frac{1}{x} (\ln x)^{\ln x - 1}$$

(e)
$$\frac{dy}{dx} = (\ln x)^{\ln x - 1}$$

10. Let g be a twice differentiable function. If $f(x) = g(\sqrt{x})$, then f''(x) is equal to

(a)
$$\frac{1}{4x}g''(\sqrt{x}) - \frac{1}{4\sqrt{x^3}}g'(\sqrt{x})$$

(b)
$$\frac{1}{2\sqrt{x}}g''(\sqrt{x}) - \frac{1}{4x}$$

(c)
$$\frac{1}{4x}g''(\sqrt{x})$$

(d)
$$\frac{-1}{4\sqrt{x^3}}g''(\sqrt{x})$$

(e)
$$\frac{1}{2\sqrt{x}}g''(\sqrt{x})$$

- 11. The number of the **different equations** of the normal lines of slope 1 to the graph of $y = \frac{1}{x+1}$ is
 - $(a) \quad 0$
 - (b) 1
 - (c) 3
 - (d) 4
 - (e) 2

- 12. The function $f(x) = x^4(x-1)^3$ has
 - (a) three local maxima and four local minima
 - (b) one local maximum and two local minima
 - (c) two local maxima and two local minima
 - (d) two local maxima and one local minimum
 - (e) one local maximum and one local minimum

13. The value(s) of constant c making the function

$$g(x) = \begin{cases} x^2 - c^2 & \text{if } x < 4\\ cx + 20 & \text{if } x \ge 4 \end{cases}$$

continuous on $(-\infty,\infty)$ is (are)

- (a) -2 and 2
- (b) 4 and -4
- (c) 4
- (d) 20
- (e) -2

- 14. $\lim_{x \to 1.5^{-}} \frac{2x^2 3x}{|2x 3|}$ is equal to
 - (a) 3
 - (b) $-\frac{3}{2}$
 - (c) $\frac{3}{2}$
 - (d) 1
 - (e) -1

- 15. The slope of the tangent line to the gaph of $x^2y^2 + x \sin y = 4$ at the point $\left(\frac{2}{\pi}, \pi\right)$ is equal to
 - (a) $-\frac{2}{3}\pi^2$
 - (b) $\frac{3}{2}\pi$
 - (c) $-\frac{1}{2}\pi^2$
 - (d) $\frac{1}{2}\pi^2$
 - (e) $-\frac{3}{2}\pi$

16. Given $f(x) = \frac{x-1}{x^2}$, $f'(x) = \frac{2-x}{x^3}$ and $f''(x) = \frac{2(x-3)}{x^4}$. Then which one of the following statements is **FALSE** about the graph of the function f(x).

[Hint: Sketch]

- (a) the graph intersects its horizontal asymptote
- (b) the graph is concave up on (2,3)
- (c) the graph has one local maximum
- (d) the graph is concave up on $(3, \infty)$
- (e) the graph has one inflection point

- 17. The x-coordinate of the point at which the tangent line to the curve $y = \cosh(2x)$ has slope 2, is equal to
 - (a) $3\ln(1+\sqrt{2})$
 - (b) $2\ln(1+\sqrt{2})$
 - (c) $\frac{2}{3}\ln(1+\sqrt{2})$
 - (d) $\frac{3}{2}\ln(1+\sqrt{2})$
 - (e) $\frac{1}{2}\ln(1+\sqrt{2})$

- 18. The **height** of the right circular cylinder of largest volume which is inscribed in a sphere of radius 9 cm is
 - (a) $9\sqrt{3} \text{ cm}$
 - (b) $6\sqrt{3}$ cm
 - (c) $\frac{9\sqrt{3}}{2}$ cm
 - (d) $\frac{5\sqrt{3}}{2}$ cm
 - (e) $4\sqrt{3}$ cm

- 19. $\lim_{x \to \infty} x^{(\ln 2)/(1+\ln x)}$ is equal to
 - (a) 2
 - (b) 1
 - (c) $1 + \ln 2$
 - (d) 0
 - (e) ln 2

20. The values for f, g, f', g' are given by the table below:

x	f(x)	g(x)	f'(x)	g'(x)
3	1	9	8	5
4	-3	3	2	-6

Then
$$\frac{d}{dx}(g(x+f(x)))$$
 at $x=3$ is

- (a) -54
- (b) -6
- (c) 27
- (d) -48
- (e) 5

- 21. If M and m are, respectively, the absolute maximum and minimum of $f(x) = xe^{-x}$ on the interval [0, 2], then $e^2M em =$
 - (a) 2
 - (b) e
 - (c) -e
 - (d) 2e
 - (e) $\frac{e+1}{e}$

- 22. Which of the following statements is **TRUE** about $f(x) = x^{2/3}$?
 - (a) f has no vertical tangent line
 - (b) f has a vertical tangent line at (0,0)
 - (c) f has a vertical tangent line at x = 1
 - (d) f is differentiable on $(-\infty, \infty)$
 - (e) f has a horizontal tangent line

23. Starting with $x_1 = 1$, the next approximation x_2 to a root of $\tan^{-1} x = 1 - x$ by Newton's method is

[Use $\pi = \frac{22}{7}$]

- (a) $\frac{8}{21}$
- (b) $\frac{14}{21}$
- (c) $\frac{13}{21}$
- (d) $\frac{10}{21}$
- (e) $\frac{19}{21}$

24. The picture shows the graphs of f, f' and f''. Identify each curve.

(a)
$$f = A, f' = B, f'' = C$$

(b)
$$f = C$$
, $f' = B$, $f'' = A$

(c)
$$f = B, f' = C, f'' = A$$

(d)
$$f = B, f' = A, f'' = C$$

(e)
$$f = C$$
, $f' = A$, $f'' = B$

25. If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, then which of the following statements is **TRUE**?

[Hint: Apply the Mean Value Theorem]

- (a) $f(4) \ge 16$
- (b) $f(4) \le 10$
- (c) f(4) = 15
- (d) f(4) = 0
- (e) f(4) < 16

King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 004

Math 101 Final Exam 061

$|CODE|_{004}$

Wednesday 24/1/2007 Net Time Allowed: 150 minutes

Name:		
ID:	Sec:	

Check that this exam has 25 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The function $f(x) = x^4(x-1)^3$ has
 - (a) one local maximum and two local minima
 - (b) three local maxima and four local minima
 - (c) one local maximum and one local minimum
 - (d) two local maxima and one local minimum
 - (e) two local maxima and two local minima

2. Which one of the following statements is **TRUE** about the graph of the function

$$y = \frac{x}{x^2 - x - 2}?$$

- (a) It passes through origin and has asymptotes at x = 1 and $x = \frac{-1}{2}$
- (b) It has a y-intercept and one vertical asymptote
- (c) It has two x-intercepts and one asymptote at x = 0
- (d) It passes through the origin and has asymptotes at x=2 and x=-1
- (e) It has two vertical asymptotes and no horizontal asymptote

- 3. $\lim_{x \to 1.5^{-}} \frac{2x^2 3x}{|2x 3|}$ is equal to
 - (a) 1
 - (b) $\frac{3}{2}$
 - (c) -1
 - (d) 3
 - (e) $-\frac{3}{2}$

- 4. Let g be a twice differentiable function. If $f(x) = g(\sqrt{x})$, then f''(x) is equal to
 - (a) $\frac{1}{4x}g''(\sqrt{x})$
 - (b) $\frac{-1}{4\sqrt{x^3}}g''(\sqrt{x})$
 - (c) $\frac{1}{2\sqrt{x}}g''(\sqrt{x})$
 - (d) $\frac{1}{2\sqrt{x}}g''(\sqrt{x}) \frac{1}{4x}$
 - (e) $\frac{1}{4x}g''(\sqrt{x}) \frac{1}{4\sqrt{x^3}}g'(\sqrt{x})$

5. If f(3) = 4, g(3) = 2, f'(3) = -6 and g'(3) = 5, then $\left(\frac{f}{f-g}\right)'(3)$ is equal to

- (a) 12
- (b) 32
- (c) 8
- (d) 44
- (e) 16

6. If $f'(x) = \frac{4}{\sqrt{1-x^2}}$ and $f(\frac{1}{2}) = 1$, then $1 - f(-\frac{1}{2}) = 1$

- (a) 2
- (b) 0
- (c) $-\frac{3\pi}{4}$
- (d) $\frac{3\pi}{4}$
- (e) $\frac{4\pi}{3}$

- 7. The slope of the tangent line to the gaph of $x^2y^2 + x \sin y = 4$ at the point $\left(\frac{2}{\pi}, \pi\right)$ is equal to
 - (a) $\frac{1}{2}\pi^2$
 - (b) $-\frac{3}{2}\pi$
 - (c) $-\frac{1}{2}\pi^2$
 - (d) $\frac{3}{2}\pi$
 - (e) $-\frac{2}{3}\pi^2$

- 8. If the line 2x + y = b is tangent to the parabola $y = ax^2$ at x = 2, then a b =
 - (a) $\frac{1}{2}$
 - (b) $-\frac{1}{2}$
 - (c) $\frac{3}{2}$
 - $(d) -\frac{3}{2}$
 - (e) $-\frac{5}{2}$

9. If a snowball melts so that its surface area decreases at a rate of $1 \text{ cm}^2/\text{min}$, then the rate at which **the diamter** decreases, when the diameter is 10 cm, is

[Hint:
$$(S = 4\pi r^2)$$
 and $(V = \frac{4}{3}\pi r^3)$]

- (a) 20π cm/min
- (b) $\frac{1}{20\pi}$ cm/min
- (c) $\frac{4}{30\pi}$ cm/min
- (d) $\frac{1}{10\pi}$ cm/min
- (e) 10π cm/min

- 10. If $y = \ln\left(\frac{x}{4}\right)$ and the value of x decreases from 4 to 3.9, then the corresponding change in y is approximated by the differential dy, which equals
 - (a) $-\ln\left(\frac{3.9}{4}\right)$
 - (b) $-\frac{1}{100}$
 - (c) $\frac{1}{100}$
 - (d) $\frac{1}{40}$
 - (e) $-\frac{1}{40}$

11. The value(s) of constant c making the function

$$g(x) = \begin{cases} x^2 - c^2 & \text{if } x < 4\\ cx + 20 & \text{if } x \ge 4 \end{cases}$$

continuous on $(-\infty, \infty)$ is (are)

- (a) -2 and 2
- (b) -2
- (c) 20
- (d) 4
- (e) 4 and -4

12. The graph of function $f(x) = x + 2\sin x$ for $0 \le x < 2\pi$, is concave up on the interval I and has inflection point P(x,y) where

(a)
$$I = (\pi, 2\pi); P\left(\frac{\pi}{2}, \frac{\pi}{2} + 2\right)$$

(b)
$$I = (0, \pi); P(0, 0)$$

(c)
$$I = (\pi, 2\pi); P(0, 0)$$

(d)
$$I = (\pi, 2\pi); P(\pi, \pi)$$

(e)
$$I = \left(\frac{\pi}{2}, \frac{3\pi}{2}\right); P(\pi, \pi)$$

- 13. The number of the **different equations** of the normal lines of slope 1 to the graph of $y = \frac{1}{x+1}$ is
 - (a) 3
 - (b) 1
 - (c) 2
 - (d) 4
 - $(e) \quad 0$

- 14. If $y = (\ln x)^{\ln x}$, then
 - (a) $\frac{dy}{dx} = \left(\frac{\ln(\ln x) + 1}{x}\right) (\ln x)^{\ln x}$
 - (b) $\frac{dy}{dx} = \frac{1}{x} (\ln x)^{\ln x 1}$
 - (c) $\frac{dy}{dx} = (\ln x)^{\ln x 1}$
 - (d) $\frac{dy}{dx} = \frac{\ln(\ln x + 1)}{x}$
 - (e) $\frac{dy}{dx} = \frac{1}{x} \ln(\ln x)$

- 15. Given f(x) = 4x 5 and $\epsilon > 0$. The largest possible value of δ , such that $|f(x) 7| < \epsilon$ whenever $|x 3| < \delta$, is given by
 - (a) $\frac{\epsilon}{3}$
 - (b) $\frac{\epsilon}{4}$
 - (c) $\frac{\epsilon}{5}$
 - (d) $\frac{\epsilon}{2}$
 - (e) ϵ

- 16. The **height** of the right circular cylinder of largest volume which is inscribed in a sphere of radius 9 cm is
 - (a) $6\sqrt{3}$ cm
 - (b) $9\sqrt{3} \text{ cm}$
 - (c) $\frac{9\sqrt{3}}{2}$ cm
 - (d) $4\sqrt{3}$ cm
 - (e) $\frac{5\sqrt{3}}{2}$ cm

- 17. The x-coordinate of the point at which the tangent line to the curve $y = \cosh(2x)$ has slope 2, is equal to
 - (a) $2\ln(1+\sqrt{2})$
 - (b) $3\ln(1+\sqrt{2})$
 - (c) $\frac{1}{2}\ln(1+\sqrt{2})$
 - (d) $\frac{3}{2}\ln(1+\sqrt{2})$
 - (e) $\frac{2}{3}\ln(1+\sqrt{2})$

- 18. $\lim_{x \to \infty} x^{(\ln 2)/(1+\ln x)}$ is equal to
 - (a) 2
 - (b) 0
 - (c) $1 + \ln 2$
 - (d) ln 2
 - (e) 1

19. If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, then which of the following statements is **TRUE**?

[Hint: Apply the Mean Value Theorem]

- (a) $f(4) \le 10$
- (b) f(4) = 15
- (c) $f(4) \ge 16$
- $(d) \quad f(4) = 0$
- (e) f(4) < 16

20. Starting with $x_1 = 1$, the next approximation x_2 to a root of $\tan^{-1} x = 1 - x$ by Newton's method is

[Use
$$\pi = \frac{22}{7}$$
]

- (a) $\frac{13}{21}$
- (b) $\frac{10}{21}$
- (c) $\frac{8}{21}$
- (d) $\frac{19}{21}$
- (e) $\frac{14}{21}$

21. Which of the following statements is **TRUE** about $f(x) = x^{2/3}$?

- (a) f has a vertical tangent line at x = 1
- (b) f is differentiable on $(-\infty, \infty)$
- (c) f has no vertical tangent line
- (d) f has a horizontal tangent line
- (e) f has a vertical tangent line at (0,0)

22. The values for f, g, f', g' are given by the table below:

x	f(x)	g(x)	f'(x)	g'(x)
3	1	9	8	5
4	-3	3	2	-6

Then
$$\frac{d}{dx}(g(x+f(x)))$$
 at $x=3$ is

- (a) -48
- (b) 5
- (c) -54
- (d) -6
- (e) 27

23. Given $f(x) = \frac{x-1}{x^2}$, $f'(x) = \frac{2-x}{x^3}$ and $f''(x) = \frac{2(x-3)}{x^4}$. Then which one of the following statements is **FALSE** about the graph of the function f(x).

[Hint: Sketch]

- (a) the graph is concave up on (2,3)
- (b) the graph has one local maximum
- (c) the graph has one inflection point
- (d) the graph is concave up on $(3, \infty)$
- (e) the graph intersects its horizontal asymptote

- 24. If M and m are, respectively, the absolute maximum and minimum of $f(x) = xe^{-x}$ on the interval [0, 2], then $e^2M em =$
 - (a) -e
 - (b) 2
 - (c) e
 - (d) $\frac{e+1}{e}$
 - (e) 2e

25. The picture shows the graphs of f, f' and f''. Identify each curve.

(a)
$$f = B, f' = C, f'' = A$$

(b)
$$f = B, f' = A, f'' = C$$

(c)
$$f = C$$
, $f' = A$, $f'' = B$

(d)
$$f = A, f' = B, f'' = C$$

(e)
$$f = C$$
, $f' = B$, $f'' = A$

Q	MM	V1	V2	V3	V4
1	a	b	b	С	С
2	a	С	c	е	d
3	a	a	d	b	е
4	a	a	c	b	е
5	a	a	С	b	С
6	a	b	b	d	е
7	a	b	b	a	е
8	a	b	е	d	е
9	a	b	d	a	b
10	a	a	е	a	e
11	a	c	b	b	b
12	a	е	С	е	d
13	a	d	a	е	b
14	a	d	d	b	a
15	a	е	С	a	b
16	a	a	е	b	a
17	a	d	С	е	С
18	a	d	С	b	a
19	a	c	b	a	С
20	a	a	a	a	b
21	a	d	a	b	е
22	a	е	е	b	С
23	a	d	d	d	a
24	a	С	С	b	С
25	a	е	b	a	e