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1. If y = ln

(
x

4

)
and the value of x decreases from 4 to 3.9,

then the corresponding change in y is approximated by the
differential dy, which equals

− 1

100
(a)

− 1

40
(b)

1

100
(c)

1

40
(d)

− ln

(
3.9

4

)
(e)

2. If f(3) = 4, g(3) = 2, f ′(3) = −6 and g′(3) = 5, then(
f

f − g

)′
(3) is equal to

16(a)

32(b)

8(c)

44(d)

12(e)
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3. The function f(x) = x4(x− 1)3 has

one local maximum and one local minimum(a)

two local maxima and one local minimum(b)

three local maxima and four local minima(c)

two local maxima and two local minima(d)

one local maximum and two local minima(e)

4. The slope of the tangent line to the gaph of x2y2+x sin y = 4

at the point

(
2

π
, π

)
is equal to

−2

3
π2(a)

1

2
π2(b)

−3

2
π(c)

3

2
π(d)

−1

2
π2(e)
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5. The number of the different equations of the normal lines

of slope 1 to the graph of y =
1

x + 1
is

1(a)

2(b)

4(c)

3(d)

0(e)

6. The graph of function f(x) = x + 2 sin x for 0 ≤ x < 2π, is
concave up on the interval I and has inflection point P (x, y)
where

I =

(
π

2
,
3π

2

)
; P (π, π)(a)

I = (π, 2π); P (π, π)(b)

I = (π, 2π); P

(
π

2
,
π

2
+ 2

)
(c)

I = (0, π); P (0, 0)(d)

I = (π, 2π); P (0, 0)(e)
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7. The value(s) of constant c making the function

g(x) =





x2 − c2 if x < 4
cx + 20 if x ≥ 4

continuous on (−∞,∞) is (are)

4 and − 4(a)

−2(b)

20(c)

−2 and 2(d)

4(e)

8. If a snowball melts so that its surface area decreases at a
rate of 1 cm2/min, then the rate at which the diamter
decreases, when the diameter is 10 cm, is

[Hint: (S = 4πr2) and (V =
4

3
πr3)]

20π cm/min(a)

1

20π
cm/min(b)

4

30π
cm/min(c)

10π cm/min(d)

1

10π
cm/min(e)
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9. If the line 2x + y = b is tangent to the parabola y = ax2 at
x = 2, then a− b =

−3

2
(a)

−5

2
(b)

1

2
(c)

3

2
(d)

−1

2
(e)

10. Let g be a twice differentiable function. If f(x) = g(
√

x),
then f ′′(x) is equal to

1

4x
g′′(
√

x)− 1

4
√

x3
g′(
√

x)(a)

1

4x
g′′(
√

x)(b)

−1

4
√

x3
g′′(
√

x)(c)

1

2
√

x
g′′(
√

x)(d)

1

2
√

x
g′′(
√

x)− 1

4x
(e)
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11. If y = (ln x)ln x, then

dy

dx
= (ln x)ln x−1(a)

dy

dx
=

ln(ln x + 1)

x
(b)

dy

dx
=


 ln(ln x) + 1

x


 (ln x)ln x(c)

dy

dx
=

1

x
ln(ln x)(d)

dy

dx
=

1

x
(ln x)ln x−1(e)

12. lim
x→1.5−

2x2 − 3x

|2x− 3| is equal to

3(a)

1(b)

3

2
(c)

−1(d)

−3

2
(e)
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13. Given f(x) = 4x− 5 and ε > 0. The largest possible value
of δ, such that |f(x)− 7| < ε whenever |x− 3| < δ, is given
by

ε

2
(a)

ε

5
(b)

ε(c)

ε

4
(d)

ε

3
(e)

14. Which one of the following statements is TRUE about the
graph of the function

y =
x

x2 − x− 2
?

It has a y-intercept and one vertical asymptote(a)

It has two vertical asymptotes and no horizontal asymptote(b)

It has two x-intercepts and one asymptote at x = 0(c)

It passes through the origin and has asymptotes at x = 2 and x = −1(d)

It passes through origin and has asymptotes at x = 1 and x =
−1
2

(e)
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15. If f ′(x) =
4√

1− x2
and f

(
1

2

)
= 1, then 1− f

(
−1

2

)
=

2(a)

0(b)

3π

4
(c)

−3π

4
(d)

4π

3
(e)

16. The picture shows the graphs of f, f ′ and f ′′. Identify each
curve.

f = C, f ′ = B, f ′′ = A(a)

f = B, f ′ = A, f ′′ = C(b)

f = B, f ′ = C, f ′′ = A(c)

f = C, f ′ = A, f ′′ = B(d)

f = A, f ′ = B, f ′′ = C(e)
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17. lim
x→∞x(ln 2)/(1+ln x) is equal to

ln 2(a)

1 + ln 2(b)

0(c)

2(d)

1(e)

18. Starting with x1 = 1, the next approximation x2 to a root
of tan−1 x = 1− x by Newton’s method is

[Use π = 22
7 ]

13

21
(a)

8

21
(b)

19

21
(c)

10

21
(d)

14

21
(e)
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19. Which of the following statements is TRUE about f(x) = x2/3?

f has no vertical tangent line(a)

f is differentiable on (−∞,∞)(b)

f has a vertical tangent line at (0, 0)(c)

f has a horizontal tangent line(d)

f has a vertical tangent line at x = 1(e)

20. If M and m are, respectively, the absolute maximum and
minimum of f(x) = xe−x on the interval [0, 2], then e2M − em =

e(a)

e + 1

e
(b)

−e(c)

2e(d)

2(e)
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21. The values for f, g, f ′, g′ are given by the table below:

x f(x) g(x) f ′(x) g′(x)

3 1 9 8 5

4 −3 3 2 −6

Then
d

dx
(g(x + f(x))) at x = 3 is

27(a)

−48(b)

5(c)

−54(d)

−6(e)

22. The x-coordinate of the point at which the tangent line to
the curve y = cosh(2x) has slope 2, is equal to

2

3
ln(1 +

√
2)(a)

2 ln(1 +
√

2)(b)

3 ln(1 +
√

2)(c)

3

2
ln(1 +

√
2)(d)

1

2
ln(1 +

√
2)(e)
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23. If f(1) = 10 and f ′(x) ≥ 2 for 1 ≤ x ≤ 4, then which of
the following statements is TRUE?

[Hint: Apply the Mean Value Theorem]

f(4) = 15(a)

f(4) < 16(b)

f(4) = 0(c)

f(4) ≥ 16(d)

f(4) ≤ 10(e)

24. The height of the right circular cylinder of largest volume
which is inscribed in a sphere of radius 9 cm is

5
√

3

2
cm(a)

9
√

3

2
cm(b)

6
√

3 cm(c)

4
√

3 cm(d)

9
√

3 cm(e)
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25. Given f(x) =
x− 1

x2 , f ′(x) = 2−x
x3 and f ′′(x) = 2(x−3)

x4 ’ Then

which one of the following statements is FALSE about the
graph of the function f(x).

[Hint: Sketch]

the graph has one inflection point(a)

the graph intersects its horizontal asymptote(b)

the graph has one local maximum(c)

the graph is concave up on (3,∞)(d)

the graph is concave up on (2, 3)(e)
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1. If the line 2x + y = b is tangent to the parabola y = ax2 at
x = 2, then a− b =

−1

2
(a)

−5

2
(b)

3

2
(c)

1

2
(d)

−3

2
(e)

2. The function f(x) = x4(x− 1)3 has

two local maxima and two local minima(a)

two local maxima and one local minimum(b)

one local maximum and one local minimum(c)

three local maxima and four local minima(d)

one local maximum and two local minima(e)
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3. Which one of the following statements is TRUE about the
graph of the function

y =
x

x2 − x− 2
?

It passes through origin and has asymptotes at x = 1 and x =
−1
2

(a)

It has two x-intercepts and one asymptote at x = 0(b)

It has two vertical asymptotes and no horizontal asymptote(c)

It passes through the origin and has asymptotes at x = 2 and x = −1(d)

It has a y-intercept and one vertical asymptote(e)

4. Let g be a twice differentiable function. If f(x) = g(
√

x),
then f ′′(x) is equal to

1

4x
g′′(
√

x)(a)

1

2
√

x
g′′(
√

x)(b)

1

4x
g′′(
√

x)− 1

4
√

x3
g′(
√

x)(c)

−1

4
√

x3
g′′(
√

x)(d)

1

2
√

x
g′′(
√

x)− 1

4x
(e)
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5. If y = (ln x)ln x, then

dy

dx
=

1

x
ln(ln x)(a)

dy

dx
=

ln(ln x + 1)

x
(b)

dy

dx
=


 ln(ln x) + 1

x


 (ln x)ln x(c)

dy

dx
= (ln x)ln x−1(d)

dy

dx
=

1

x
(ln x)ln x−1(e)

6. The number of the different equations of the normal lines

of slope 1 to the graph of y =
1

x + 1
is

3(a)

1(b)

4(c)

2(d)

0(e)
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7. If a snowball melts so that its surface area decreases at a
rate of 1 cm2/min, then the rate at which the diamter
decreases, when the diameter is 10 cm, is

[Hint: (S = 4πr2) and (V =
4

3
πr3)]

4

30π
cm/min(a)

1

20π
cm/min(b)

1

10π
cm/min(c)

10π cm/min(d)

20π cm/min(e)

8. If f ′(x) =
4√

1− x2
and f

(
1

2

)
= 1, then 1− f

(
−1

2

)
=

2(a)

3π

4
(b)

−3π

4
(c)

0(d)

4π

3
(e)
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9. Given f(x) = 4x− 5 and ε > 0. The largest possible value
of δ, such that |f(x)− 7| < ε whenever |x− 3| < δ, is given
by

ε

5
(a)

ε(b)

ε

2
(c)

ε

4
(d)

ε

3
(e)

10. lim
x→1.5−

2x2 − 3x

|2x− 3| is equal to

−1(a)

3(b)

1(c)

3

2
(d)

−3

2
(e)



Page 6 of 13 002

11. If f(3) = 4, g(3) = 2, f ′(3) = −6 and g′(3) = 5, then(
f

f − g

)′
(3) is equal to

16(a)

8(b)

44(c)

12(d)

32(e)

12. If y = ln

(
x

4

)
and the value of x decreases from 4 to 3.9,

then the corresponding change in y is approximated by the
differential dy, which equals

1

40
(a)

− 1

100
(b)

− 1

40
(c)

1

100
(d)

− ln

(
3.9

4

)
(e)
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13. The value(s) of constant c making the function

g(x) =





x2 − c2 if x < 4
cx + 20 if x ≥ 4

continuous on (−∞,∞) is (are)

−2(a)

4 and − 4(b)

4(c)

−2 and 2(d)

20(e)

14. The slope of the tangent line to the gaph of x2y2+x sin y = 4

at the point

(
2

π
, π

)
is equal to

−3

2
π(a)

1

2
π2(b)

3

2
π(c)

−2

3
π2(d)

−1

2
π2(e)
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15. The graph of function f(x) = x + 2 sin x for 0 ≤ x < 2π, is
concave up on the interval I and has inflection point P (x, y)
where

I =

(
π

2
,
3π

2

)
; P (π, π)(a)

I = (π, 2π); P

(
π

2
,
π

2
+ 2

)
(b)

I = (π, 2π); P (π, π)(c)

I = (π, 2π); P (0, 0)(d)

I = (0, π); P (0, 0)(e)

16. The picture shows the graphs of f, f ′ and f ′′. Identify each
curve.

f = B, f ′ = C, f ′′ = A(a)

f = B, f ′ = A, f ′′ = C(b)

f = A, f ′ = B, f ′′ = C(c)

f = C, f ′ = A, f ′′ = B(d)

f = C, f ′ = B, f ′′ = A(e)
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17. The x-coordinate of the point at which the tangent line to
the curve y = cosh(2x) has slope 2, is equal to

3

2
ln(1 +

√
2)(a)

2

3
ln(1 +

√
2)(b)

1

2
ln(1 +

√
2)(c)

2 ln(1 +
√

2)(d)

3 ln(1 +
√

2)(e)

18. If M and m are, respectively, the absolute maximum and
minimum of f(x) = xe−x on the interval [0, 2], then e2M − em =

−e(a)

e + 1

e
(b)

e(c)

2e(d)

2(e)
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19. The values for f, g, f ′, g′ are given by the table below:

x f(x) g(x) f ′(x) g′(x)

3 1 9 8 5

4 −3 3 2 −6

Then
d

dx
(g(x + f(x))) at x = 3 is

−6(a)

−54(b)

5(c)

27(d)

−48(e)

20. Given f(x) =
x− 1

x2 , f ′(x) = 2−x
x3 and f ′′(x) = 2(x−3)

x4 ’ Then

which one of the following statements is FALSE about the
graph of the function f(x).

[Hint: Sketch]

the graph is concave up on (2, 3)(a)

the graph is concave up on (3,∞)(b)

the graph has one inflection point(c)

the graph has one local maximum(d)

the graph intersects its horizontal asymptote(e)



Page 11 of 13 002

21. The height of the right circular cylinder of largest volume
which is inscribed in a sphere of radius 9 cm is

6
√

3 cm(a)

9
√

3 cm(b)

9
√

3

2
cm(c)

5
√

3

2
cm(d)

4
√

3 cm(e)

22. Starting with x1 = 1, the next approximation x2 to a root
of tan−1 x = 1− x by Newton’s method is

[Use π = 22
7 ]

19

21
(a)

14

21
(b)

8

21
(c)

13

21
(d)

10

21
(e)
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23. Which of the following statements is TRUE about f(x) = x2/3?

f has a vertical tangent line at x = 1(a)

f has no vertical tangent line(b)

f has a horizontal tangent line(c)

f has a vertical tangent line at (0, 0)(d)

f is differentiable on (−∞,∞)(e)

24. If f(1) = 10 and f ′(x) ≥ 2 for 1 ≤ x ≤ 4, then which of
the following statements is TRUE?

[Hint: Apply the Mean Value Theorem]

f(4) < 16(a)

f(4) = 0(b)

f(4) ≥ 16(c)

f(4) = 15(d)

f(4) ≤ 10(e)
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25. lim
x→∞x(ln 2)/(1+ln x) is equal to

0(a)

2(b)

1(c)

ln 2(d)

1 + ln 2(e)
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1. If f(3) = 4, g(3) = 2, f ′(3) = −6 and g′(3) = 5, then(
f

f − g

)′
(3) is equal to

16(a)

12(b)

8(c)

44(d)

32(e)

2. If the line 2x + y = b is tangent to the parabola y = ax2 at
x = 2, then a− b =

−3

2
(a)

3

2
(b)

−1

2
(c)

1

2
(d)

−5

2
(e)
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3. If f ′(x) =
4√

1− x2
and f

(
1

2

)
= 1, then 1− f

(
−1

2

)
=

3π

4
(a)

4π

3
(b)

−3π

4
(c)

0(d)

2(e)

4. Given f(x) = 4x− 5 and ε > 0. The largest possible value
of δ, such that |f(x)− 7| < ε whenever |x− 3| < δ, is given
by

ε

2
(a)

ε

4
(b)

ε

5
(c)

ε(d)

ε

3
(e)
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5. Which one of the following statements is TRUE about the
graph of the function

y =
x

x2 − x− 2
?

It has two vertical asymptotes and no horizontal asymptote(a)

It passes through the origin and has asymptotes at x = 2 and x = −1(b)

It has two x-intercepts and one asymptote at x = 0(c)

It has a y-intercept and one vertical asymptote(d)

It passes through origin and has asymptotes at x = 1 and x =
−1
2

(e)

6. If y = ln

(
x

4

)
and the value of x decreases from 4 to 3.9,

then the corresponding change in y is approximated by the
differential dy, which equals

− ln

(
3.9

4

)
(a)

1

100
(b)

1

40
(c)

− 1

40
(d)

− 1

100
(e)
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7. The graph of function f(x) = x + 2 sin x for 0 ≤ x < 2π, is
concave up on the interval I and has inflection point P (x, y)
where

I = (π, 2π); P (π, π)(a)

I = (π, 2π); P (0, 0)(b)

I = (π, 2π); P

(
π

2
,
π

2
+ 2

)
(c)

I = (0, π); P (0, 0)(d)

I =

(
π

2
,
3π

2

)
; P (π, π)(e)

8. If a snowball melts so that its surface area decreases at a
rate of 1 cm2/min, then the rate at which the diamter
decreases, when the diameter is 10 cm, is

[Hint: (S = 4πr2) and (V =
4

3
πr3)]

10π cm/min(a)

20π cm/min(b)

1

10π
cm/min(c)

1

20π
cm/min(d)

4

30π
cm/min(e)
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9. If y = (ln x)ln x, then

dy

dx
=


 ln(ln x) + 1

x


 (ln x)ln x(a)

dy

dx
=

1

x
ln(ln x)(b)

dy

dx
=

ln(ln x + 1)

x
(c)

dy

dx
=

1

x
(ln x)ln x−1(d)

dy

dx
= (ln x)ln x−1(e)

10. Let g be a twice differentiable function. If f(x) = g(
√

x),
then f ′′(x) is equal to

1

4x
g′′(
√

x)− 1

4
√

x3
g′(
√

x)(a)

1

2
√

x
g′′(
√

x)− 1

4x
(b)

1

4x
g′′(
√

x)(c)

−1

4
√

x3
g′′(
√

x)(d)

1

2
√

x
g′′(
√

x)(e)
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11. The number of the different equations of the normal lines

of slope 1 to the graph of y =
1

x + 1
is

0(a)

1(b)

3(c)

4(d)

2(e)

12. The function f(x) = x4(x− 1)3 has

three local maxima and four local minima(a)

one local maximum and two local minima(b)

two local maxima and two local minima(c)

two local maxima and one local minimum(d)

one local maximum and one local minimum(e)
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13. The value(s) of constant c making the function

g(x) =





x2 − c2 if x < 4
cx + 20 if x ≥ 4

continuous on (−∞,∞) is (are)

−2 and 2(a)

4 and − 4(b)

4(c)

20(d)

−2(e)

14. lim
x→1.5−

2x2 − 3x

|2x− 3| is equal to

3(a)

−3

2
(b)

3

2
(c)

1(d)

−1(e)
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15. The slope of the tangent line to the gaph of x2y2+x sin y = 4

at the point

(
2

π
, π

)
is equal to

−2

3
π2(a)

3

2
π(b)

−1

2
π2(c)

1

2
π2(d)

−3

2
π(e)

16. Given f(x) =
x− 1

x2 , f ′(x) = 2−x
x3 and f ′′(x) = 2(x−3)

x4 ’ Then

which one of the following statements is FALSE about the
graph of the function f(x).

[Hint: Sketch]

the graph intersects its horizontal asymptote(a)

the graph is concave up on (2, 3)(b)

the graph has one local maximum(c)

the graph is concave up on (3,∞)(d)

the graph has one inflection point(e)
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17. The x-coordinate of the point at which the tangent line to
the curve y = cosh(2x) has slope 2, is equal to

3 ln(1 +
√

2)(a)

2 ln(1 +
√

2)(b)

2

3
ln(1 +

√
2)(c)

3

2
ln(1 +

√
2)(d)

1

2
ln(1 +

√
2)(e)

18. The height of the right circular cylinder of largest volume
which is inscribed in a sphere of radius 9 cm is

9
√

3 cm(a)

6
√

3 cm(b)

9
√

3

2
cm(c)

5
√

3

2
cm(d)

4
√

3 cm(e)
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19. lim
x→∞x(ln 2)/(1+ln x) is equal to

2(a)

1(b)

1 + ln 2(c)

0(d)

ln 2(e)

20. The values for f, g, f ′, g′ are given by the table below:

x f(x) g(x) f ′(x) g′(x)

3 1 9 8 5

4 −3 3 2 −6

Then
d

dx
(g(x + f(x))) at x = 3 is

−54(a)

−6(b)

27(c)

−48(d)

5(e)
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21. If M and m are, respectively, the absolute maximum and
minimum of f(x) = xe−x on the interval [0, 2], then e2M − em =

2(a)

e(b)

−e(c)

2e(d)

e + 1

e
(e)

22. Which of the following statements is TRUE about f(x) = x2/3?

f has no vertical tangent line(a)

f has a vertical tangent line at (0, 0)(b)

f has a vertical tangent line at x = 1(c)

f is differentiable on (−∞,∞)(d)

f has a horizontal tangent line(e)
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23. Starting with x1 = 1, the next approximation x2 to a root
of tan−1 x = 1− x by Newton’s method is

[Use π = 22
7 ]

8

21
(a)

14

21
(b)

13

21
(c)

10

21
(d)

19

21
(e)

24. The picture shows the graphs of f, f ′ and f ′′. Identify each
curve.

f = A, f ′ = B, f ′′ = C(a)

f = C, f ′ = B, f ′′ = A(b)

f = B, f ′ = C, f ′′ = A(c)

f = B, f ′ = A, f ′′ = C(d)

f = C, f ′ = A, f ′′ = B(e)
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25. If f(1) = 10 and f ′(x) ≥ 2 for 1 ≤ x ≤ 4, then which of
the following statements is TRUE?

[Hint: Apply the Mean Value Theorem]

f(4) ≥ 16(a)

f(4) ≤ 10(b)

f(4) = 15(c)

f(4) = 0(d)

f(4) < 16(e)
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1. The function f(x) = x4(x− 1)3 has

one local maximum and two local minima(a)

three local maxima and four local minima(b)

one local maximum and one local minimum(c)

two local maxima and one local minimum(d)

two local maxima and two local minima(e)

2. Which one of the following statements is TRUE about the
graph of the function

y =
x

x2 − x− 2
?

It passes through origin and has asymptotes at x = 1 and x =
−1
2

(a)

It has a y-intercept and one vertical asymptote(b)

It has two x-intercepts and one asymptote at x = 0(c)

It passes through the origin and has asymptotes at x = 2 and x = −1(d)

It has two vertical asymptotes and no horizontal asymptote(e)
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3. lim
x→1.5−

2x2 − 3x

|2x− 3| is equal to

1(a)

3

2
(b)

−1(c)

3(d)

−3

2
(e)

4. Let g be a twice differentiable function. If f(x) = g(
√

x),
then f ′′(x) is equal to

1

4x
g′′(
√

x)(a)

−1

4
√

x3
g′′(
√

x)(b)

1

2
√

x
g′′(
√

x)(c)

1

2
√

x
g′′(
√

x)− 1

4x
(d)

1

4x
g′′(
√

x)− 1

4
√

x3
g′(
√

x)(e)
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5. If f(3) = 4, g(3) = 2, f ′(3) = −6 and g′(3) = 5, then(
f

f − g

)′
(3) is equal to

12(a)

32(b)

8(c)

44(d)

16(e)

6. If f ′(x) =
4√

1− x2
and f

(
1

2

)
= 1, then 1− f

(
−1

2

)
=

2(a)

0(b)

−3π

4
(c)

3π

4
(d)

4π

3
(e)
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7. The slope of the tangent line to the gaph of x2y2+x sin y = 4

at the point

(
2

π
, π

)
is equal to

1

2
π2(a)

−3

2
π(b)

−1

2
π2(c)

3

2
π(d)

−2

3
π2(e)

8. If the line 2x + y = b is tangent to the parabola y = ax2 at
x = 2, then a− b =

1

2
(a)

−1

2
(b)

3

2
(c)

−3

2
(d)

−5

2
(e)
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9. If a snowball melts so that its surface area decreases at a
rate of 1 cm2/min, then the rate at which the diamter
decreases, when the diameter is 10 cm, is

[Hint: (S = 4πr2) and (V =
4

3
πr3)]

20π cm/min(a)

1

20π
cm/min(b)

4

30π
cm/min(c)

1

10π
cm/min(d)

10π cm/min(e)

10. If y = ln

(
x

4

)
and the value of x decreases from 4 to 3.9,

then the corresponding change in y is approximated by the
differential dy, which equals

− ln

(
3.9

4

)
(a)

− 1

100
(b)

1

100
(c)

1

40
(d)

− 1

40
(e)
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11. The value(s) of constant c making the function

g(x) =





x2 − c2 if x < 4
cx + 20 if x ≥ 4

continuous on (−∞,∞) is (are)

−2 and 2(a)

−2(b)

20(c)

4(d)

4 and − 4(e)

12. The graph of function f(x) = x + 2 sin x for 0 ≤ x < 2π, is
concave up on the interval I and has inflection point P (x, y)
where

I = (π, 2π); P

(
π

2
,
π

2
+ 2

)
(a)

I = (0, π); P (0, 0)(b)

I = (π, 2π); P (0, 0)(c)

I = (π, 2π); P (π, π)(d)

I =

(
π

2
,
3π

2

)
; P (π, π)(e)
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13. The number of the different equations of the normal lines

of slope 1 to the graph of y =
1

x + 1
is

3(a)

1(b)

2(c)

4(d)

0(e)

14. If y = (ln x)ln x, then

dy

dx
=


 ln(ln x) + 1

x


 (ln x)ln x(a)

dy

dx
=

1

x
(ln x)ln x−1(b)

dy

dx
= (ln x)ln x−1(c)

dy

dx
=

ln(ln x + 1)

x
(d)

dy

dx
=

1

x
ln(ln x)(e)
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15. Given f(x) = 4x− 5 and ε > 0. The largest possible value
of δ, such that |f(x)− 7| < ε whenever |x− 3| < δ, is given
by

ε

3
(a)

ε

4
(b)

ε

5
(c)

ε

2
(d)

ε(e)

16. The height of the right circular cylinder of largest volume
which is inscribed in a sphere of radius 9 cm is

6
√

3 cm(a)

9
√

3 cm(b)

9
√

3

2
cm(c)

4
√

3 cm(d)

5
√

3

2
cm(e)
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17. The x-coordinate of the point at which the tangent line to
the curve y = cosh(2x) has slope 2, is equal to

2 ln(1 +
√

2)(a)

3 ln(1 +
√

2)(b)

1

2
ln(1 +

√
2)(c)

3

2
ln(1 +

√
2)(d)

2

3
ln(1 +

√
2)(e)

18. lim
x→∞x(ln 2)/(1+ln x) is equal to

2(a)

0(b)

1 + ln 2(c)

ln 2(d)

1(e)
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19. If f(1) = 10 and f ′(x) ≥ 2 for 1 ≤ x ≤ 4, then which of
the following statements is TRUE?

[Hint: Apply the Mean Value Theorem]

f(4) ≤ 10(a)

f(4) = 15(b)

f(4) ≥ 16(c)

f(4) = 0(d)

f(4) < 16(e)

20. Starting with x1 = 1, the next approximation x2 to a root
of tan−1 x = 1− x by Newton’s method is

[Use π = 22
7 ]

13

21
(a)

10

21
(b)

8

21
(c)

19

21
(d)

14

21
(e)
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21. Which of the following statements is TRUE about f(x) = x2/3?

f has a vertical tangent line at x = 1(a)

f is differentiable on (−∞,∞)(b)

f has no vertical tangent line(c)

f has a horizontal tangent line(d)

f has a vertical tangent line at (0, 0)(e)

22. The values for f, g, f ′, g′ are given by the table below:

x f(x) g(x) f ′(x) g′(x)

3 1 9 8 5

4 −3 3 2 −6

Then
d

dx
(g(x + f(x))) at x = 3 is

−48(a)

5(b)

−54(c)

−6(d)

27(e)
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23. Given f(x) =
x− 1

x2 , f ′(x) = 2−x
x3 and f ′′(x) = 2(x−3)

x4 ’ Then

which one of the following statements is FALSE about the
graph of the function f(x).

[Hint: Sketch]

the graph is concave up on (2, 3)(a)

the graph has one local maximum(b)

the graph has one inflection point(c)

the graph is concave up on (3,∞)(d)

the graph intersects its horizontal asymptote(e)

24. If M and m are, respectively, the absolute maximum and
minimum of f(x) = xe−x on the interval [0, 2], then e2M − em =

−e(a)

2(b)

e(c)

e + 1

e
(d)

2e(e)
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25. The picture shows the graphs of f, f ′ and f ′′. Identify each
curve.

f = B, f ′ = C, f ′′ = A(a)

f = B, f ′ = A, f ′′ = C(b)

f = C, f ′ = A, f ′′ = B(c)

f = A, f ′ = B, f ′′ = C(d)

f = C, f ′ = B, f ′′ = A(e)



1 ANSWER KEY

Q MM V1 V2 V3 V4

1 a b b c c
2 a c c e d
3 a a d b e
4 a a c b e
5 a a c b c
6 a b b d e
7 a b b a e
8 a b e d e
9 a b d a b
10 a a e a e
11 a c b b b
12 a e c e d
13 a d a e b
14 a d d b a
15 a e c a b
16 a a e b a
17 a d c e c
18 a d c b a
19 a c b a c
20 a a a a b
21 a d a b e
22 a e e b c
23 a d d d a
24 a c c b c
25 a e b a e




