King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 001

Name:

ID: ______ Sec: _____.

Check that this exam has $\underline{15}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

Page 1 of 8

- 1. The linearization L of the function $f(x) = \sqrt{6x+3}$ at a = 1 is given by
 - (a) $L(x) = \frac{7}{2} x$ (b) L(x) = 3 + x(c) $L(x) = \frac{5}{2} + \frac{1}{2}x$ (d) $L(x) = \frac{3}{2} + \frac{3}{2}x$

(e)
$$L(x) = 2 + x$$

2.
$$\lim_{x \to 0} \frac{\cos(9x) - 1}{x^2} =$$

(a) 0

(b)
$$\frac{81}{2}$$

(c)
$$\frac{-81}{2}$$

- (d) 1
- (e) $\frac{9}{2}$

- 3. Consider the function $f(x) = x^2 + 2x + 1$ on the interval [1,2]. If 'c' is the number satisfying the conclusion of the Mean Value Theorem, then 4c + 2 =
 - (a) 8
 - (b) 1
 - (c) 10
 - (d) -1
 - (e) 9

- 4. $\lim_{x \to \infty} (\sqrt{x^2 + 6x} x) =$
 - (a) ∞
 - (b) 3
 - (c) 6
 - (d) 0
 - (e) -3

5. A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 5 ft/s along a straight path. If he is 40 ft from the pole, then the tip of his shadow is moving at the rate of

(a)
$$5\frac{2}{3}$$
 ft/s
(b) $8\frac{1}{3}$ ft/s
(c) $48\frac{1}{3}$ ft/s
(d) $333\frac{1}{3}$ ft/s
(e) 9 ft/s

- 6. The radius of a circular disc is given as 24 cm with a maximum error in measurement of 0.2 cm. Using differentials the percentage error in the measurement of area of the disc will be
 - (a) $0.4\pi\%$
 - (b) $9.4\pi\%$
 - (c) $1\frac{2}{3}\%$

(d)
$$\frac{1}{16}\%$$

(e) $2\frac{1}{3}\%$

- 7. The absolute maximum of $f(x) = \sqrt[3]{x}(8-x)$ on [0,8] is
 - (a) $6\sqrt[3]{2}$
 - (b) $5\sqrt[3]{3}$
 - (c) $4\sqrt[3]{4}$
 - (d) 7
 - (e) 0

- 8. Square corners are cut out from a thin piece of carboard of size 3 ft by 3ft, so that the sides can be folded up to make a box with open top. The largest volume that such a box can have is given by
 - (a) $V = 4 \text{ ft}^3$
 - (b) $V = 2 \text{ ft}^3$
 - (c) $V = 3 \text{ ft}^3$
 - (d) $V = 1 \text{ ft}^3$
 - (e) $V = 5 \text{ ft}^3$

- 9. $\lim_{x \to 0^+} (1 + \sin(4x))^{\cot x} =$
 - (a) e^{-1}
 - (b) e^4
 - (c) e^{-2}
 - (d) e^{-4}
 - (e) e

- 10. The first derivative test tells that the function $f(x) = \sqrt[3]{x^2 x}$ has
 - (a) no local minimum and one local maximum
 - (b) one local minimum and no local maximum
 - (c) two local minima and one local maximum
 - (d) one local minimum and two local maxima
 - (e) neither local minimum nor local maximum

11. The **sum** of all critical points of the function

$$f(x) = \cos^2 x - 2\sin x$$

over the interval $0 \le x < 2\pi$ is

- (a) 2π
- (b) $\frac{5\pi}{2}$
- (c) $\frac{\pi}{2}$

(d)
$$\frac{3\pi}{2}$$

(e) π

12. A particle moves along the curve $y = \sqrt{1 + x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. How fast is the x-ccordinate of the point changing at that instant?

(a)
$$\frac{1}{4}$$
 cm/s
(b) 6 cm/s
(c) $\frac{2}{3}$ cm/s
(d) $\frac{1}{3}$ cm/s
(e) 2 cm/s

- 13. The **derivative** of f(x) is given by f'(x) = (1-x)(7-x). The intervals on which f(x) is increasing or decreasing are
 - (a) decreasing on (1,7) and increasing on $(-\infty,1) \cup (7,\infty)$
 - (b) decreasing on $(7, \infty)$ and increasing on $(-\infty, 1)$
 - (c) decreasing on $(-\infty, 1) \cup (7, \infty)$ and increasing on (1, 7)
 - (d) decreasing on $(-\infty, 1)$ and increasing on $(7, \infty)$
 - (e) decreasing on $(-\infty, -1) \cup (-7, \infty)$ and increasing on (-1, -7)

14. The graph of the first derivative f' of a function f is shown below. Which of the following statements is **WRONG** about f?

- (a) f is concave up on (1,3), and $(8,\infty)$
- (b) f is concave down on (6,7)
- (c) x = 1, x = 8 are inflection points of f
- (d) f has local extrema at x = 2 and x = 6
- (e) f is increasing on $(6, \infty)$ and decreasing on (0, 2)

Page 8 of 8

- 15. Using the derivative tests and equations of asymptotes, the graph of the curve $xy = x^2 + 4$
 - (a)
 - (b)
 - (c)
 - (d)
 - (e)

King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 002

Name:

ID: ______ Sec: _____.

Check that this exam has $\underline{15}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. $\lim_{x \to \infty} (\sqrt{x^2 + 6x} x) =$
 - (a) 0
 - (b) 3
 - (c) -3
 - (d) 6
 - (e) ∞

- 2. Consider the function $f(x) = x^2 + 2x + 1$ on the interval [1,2]. If 'c' is the number satisfying the conclusion of the Mean Value Theorem, then 4c + 2 =
 - (a) 1
 - (b) 9
 - (c) 8
 - (d) 10
 - (e) -1

- 3. The linearization L of the function $f(x) = \sqrt{6x+3}$ at a = 1 is given by
 - (a) L(x) = 3 + x(b) $L(x) = \frac{7}{2} - x$ (c) $L(x) = \frac{3}{2} + \frac{3}{2}x$ (d) L(x) = 2 + x(e) $L(x) = \frac{5}{2} + \frac{1}{2}x$

4.
$$\lim_{x \to 0} \frac{\cos(9x) - 1}{x^2} =$$

- (a) 0
- (b) 1
- (c) $\frac{9}{2}$
- (d) $\frac{81}{2}$ (e) $\frac{-81}{2}$

Page 3 of 8

- 5. The radius of a circular disc is given as 24 cm with a maximum error in measurement of 0.2 cm. Using differentials the percentage error in the measurement of area of the disc will be
 - (a) $9.4\pi\%$
 - (b) $2\frac{1}{3}\%$
 - (c) $\frac{1}{16}$ %

(d)
$$1\frac{2}{3}\%$$

(e) $0.4\pi\%$

6. A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 5 ft/s along a straight path. If he is 40 ft from the pole, then the tip of his shadow is moving at the rate of

(a)
$$333\frac{1}{3}$$
 ft/s
(b) $8\frac{1}{3}$ ft/s
(c) $5\frac{2}{3}$ ft/s
(d) $48\frac{1}{3}$ ft/s
(e) 9 ft/s

- The first derivative test tells that the function $f(x) = \sqrt[3]{x^2 x}$ 7.has
 - (a) one local minimum and no local maximum
 - neither local minimum nor local maximum (b)
 - no local minimum and one local maximum (c)
 - two local minima and one local maximum (d)
 - (e) one local minimum and two local maxima

The sum of all critical points of the function 8.

$$f(x) = \cos^2 x - 2\sin x$$

over the interval $0 \le x < 2\pi$ is

(a)
$$\frac{\pi}{2}$$

(b) 2π
(c) $\frac{5\pi}{2}$
(d) π
(e) $\frac{3\pi}{2}$

2

- 9. The **derivative** of f(x) is given by f'(x) = (1-x)(7-x). The intervals on which f(x) is increasing or decreasing are
 - (a) decreasing on (1,7) and increasing on $(-\infty,1) \cup (7,\infty)$
 - (b) decreasing on $(-\infty, 1)$ and increasing on $(7, \infty)$
 - (c) decreasing on $(7, \infty)$ and increasing on $(-\infty, 1)$
 - (d) decreasing on $(-\infty, -1) \cup (-7, \infty)$ and increasing on (-1, -7)
 - (e) decreasing on $(-\infty, 1) \cup (7, \infty)$ and increasing on (1, 7)

10. $\lim_{x \to 0^+} (1 + \sin(4x))^{\cot x} =$

- (a) e^{-2}
- (b) *e*
- (c) e^4
- (d) e^{-4}
- (e) e^{-1}

- 11. A particle moves along the curve $y = \sqrt{1 + x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. How fast is the x-ccordinate of the point changing at that instant?
 - (a) 6 cm/s
 - (b) $\frac{1}{4}$ cm/s
 - (c) $\frac{1}{3}$ cm/s
 - (d) $\frac{2}{3}$ cm/s
 - (e) 2 cm/s

- 12. Square corners are cut out from a thin piece of carboard of size 3 ft by 3ft, so that the sides can be folded up to make a box with open top. The largest volume that such a box can have is given by
 - (a) $V = 3 \text{ ft}^3$
 - (b) $V = 1 \text{ ft}^3$
 - (c) $V = 4 \text{ ft}^3$
 - (d) $V = 2 \text{ ft}^3$
 - (e) $V = 5 \text{ ft}^3$

- 13. The absolute maximum of $f(x) = \sqrt[3]{x}(8-x)$ on [0,8] is
 - (a) $6\sqrt[3]{2}$
 - (b) $5\sqrt[3]{3}$
 - $(c) \quad 7$
 - (d) $4\sqrt[3]{4}$
 - (e) 0

14. The graph of the first derivative f' of a function f is shown below. Which of the following statements is **WRONG** about f?

- (a) f has local extrema at x = 2 and x = 6
- (b) f is increasing on $(6, \infty)$ and decreasing on (0, 2)
- (c) f is concave down on (6,7)
- (d) f is concave up on (1,3), and $(8,\infty)$
- (e) x = 1, x = 8 are inflection points of f

Page 8 of 8

- 15. Using the derivative tests and equations of asymptotes, the graph of the curve $xy = x^2 + 4$
 - (a)
 - (b)
 - (c)
 - (d)
 - (e)

King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 003

Name:

ID: ______ Sec: _____.

Check that this exam has $\underline{15}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

Page 1 of 8

- 1. Consider the function $f(x) = x^2 + 2x + 1$ on the interval [1,2]. If 'c' is the number satisfying the conclusion of the Mean Value Theorem, then 4c + 2 =
 - (a) 8
 - (b) 9
 - (c) -1
 - (d) 1
 - (e) 10

- 2. The linearization L of the function $f(x) = \sqrt{6x+3}$ at a = 1 is given by
 - (a) L(x) = 2 + x
 - (b) $L(x) = \frac{3}{2} + \frac{3}{2}x$
 - (c) L(x) = 3 + x
 - (d) $L(x) = \frac{7}{2} x$
 - (e) $L(x) = \frac{5}{2} + \frac{1}{2}x$

3.
$$\lim_{x \to 0} \frac{\cos(9x) - 1}{x^2} =$$

(a)
$$\frac{9}{2}$$

(b) $\frac{81}{2}$
(c) $\frac{-81}{2}$
(d) 0

$$4. \quad \lim_{x \to \infty} (\sqrt{x^2 + 6x} - x) =$$

- (a) ∞
- (b) 6
- (c) -3
- (d) 3
- (e) 0

The **sum** of all critical points of the function

$$f(x) = \cos^2 x - 2\sin x$$

over the interval $0 \le x < 2\pi$ is

(a) 2π

5.

- (b) $\frac{\pi}{2}$
- (c) $\frac{3\pi}{2}$

(d)
$$\frac{5\pi}{2}$$

(e) π

- 6. The radius of a circular disc is given as 24 cm with a maximum error in measurement of 0.2 cm. Using differentials the percentage error in the measurement of area of the disc will be
 - (a) $9.4\pi \%$ (b) $2\frac{1}{3}\%$ (c) $\frac{1}{16}\%$ (d) $0.4\pi \%$ (e) $1\frac{2}{3}\%$

Page 4 of 8

- 7. The absolute maximum of $f(x) = \sqrt[3]{x}(8-x)$ on [0,8] is
 - (a) $5\sqrt[3]{3}$
 - (b) $4\sqrt[3]{4}$
 - (c) 7
 - (d) $6\sqrt[3]{2}$
 - (e) 0

- 8. $\lim_{x \to 0^+} (1 + \sin(4x))^{\cot x} =$
 - (a) e^{-2}
 - (b) e^{-4}
 - (c) e^4
 - (d) *e*
 - (e) e^{-1}

9. A particle moves along the curve $y = \sqrt{1 + x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. How fast is the x-ccordinate of the point changing at that instant?

(a)
$$\frac{1}{4}$$
 cm/s
(b) $\frac{1}{3}$ cm/s
(c) $\frac{2}{3}$ cm/s

- (d) 2 cm/s
- (e) 6 cm/s

10. A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 5 ft/s along a straight path. If he is 40 ft from the pole, then the tip of his shadow is moving at the rate of

(a)
$$48\frac{1}{3}$$
 ft/s
(b) $333\frac{1}{3}$ ft/s
(c) $5\frac{2}{3}$ ft/s
(d) 9 ft/s
(e) $8\frac{1}{3}$ ft/s

- 11. The first derivative test tells that the function $f(x) = \sqrt[3]{x^2 x}$ has
 - (a) one local minimum and two local maxima
 - (b) one local minimum and no local maximum
 - (c) neither local minimum nor local maximum
 - (d) two local minima and one local maximum
 - (e) no local minimum and one local maximum

- 12. The **derivative** of f(x) is given by f'(x) = (1-x)(7-x). The intervals on which f(x) is increasing or decreasing are
 - (a) decreasing on $(7, \infty)$ and increasing on $(-\infty, 1)$
 - (b) decreasing on $(-\infty, -1) \cup (-7, \infty)$ and increasing on (-1, -7)
 - (c) decreasing on $(-\infty, 1)$ and increasing on $(7, \infty)$
 - (d) decreasing on (1,7) and increasing on $(-\infty,1) \cup (7,\infty)$
 - (e) decreasing on $(-\infty, 1) \cup (7, \infty)$ and increasing on (1, 7)

- 13. Square corners are cut out from a thin piece of carboard of size 3 ft by 3ft, so that the sides can be folded up to make a box with open top. The largest volume that such a box can have is given by
 - (a) $V = 5 \text{ ft}^3$
 - (b) $V = 3 \text{ ft}^3$
 - (c) $V = 4 \text{ ft}^3$
 - (d) $V = 1 \text{ ft}^3$
 - (e) $V = 2 \text{ ft}^3$

14. The graph of the first derivative f' of a function f is shown below. Which of the following statements is **WRONG** about f?

- (a) x = 1, x = 8 are inflection points of f
- (b) f is increasing on $(6, \infty)$ and decreasing on (0, 2)
- (c) f has local extrema at x = 2 and x = 6
- (d) f is concave down on (6,7)
- (e) f is concave up on (1,3), and $(8,\infty)$

Page 8 of 8

- 15. Using the derivative tests and equations of asymptotes, the graph of the curve $xy = x^2 + 4$
 - (a)
 - (b)
 - (c)
 - (d)
 - (e)

King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 004

Name:

ID: ______ Sec: _____.

Check that this exam has $\underline{15}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1.
$$\lim_{x \to 0} \frac{\cos(9x) - 1}{x^2} =$$

(a)
$$\frac{-81}{2}$$

(b) 0
(c) 1
(d) $\frac{9}{2}$

(e)
$$\frac{81}{2}$$

$$2. \qquad \lim_{x \to \infty} (\sqrt{x^2 + 6x} - x) =$$

- (a) ∞
- (b) 6
- (c) -3
- (d) 0
- (e) 3

- 3. The linearization L of the function $f(x) = \sqrt{6x+3}$ at a = 1 is given by
 - (a) L(x) = 2 + x
 - (b) $L(x) = \frac{7}{2} x$
 - (c) $L(x) = \frac{5}{2} + \frac{1}{2}x$
 - (d) $L(x) = \frac{3}{2} + \frac{3}{2}x$

(e)
$$L(x) = 3 + x$$

- 4. Consider the function $f(x) = x^2 + 2x + 1$ on the interval [1,2]. If 'c' is the number satisfying the conclusion of the Mean Value Theorem, then 4c + 2 =
 - (a) 1
 - (b) 9
 - (c) 10
 - (d) 8
 - (e) -1

5. A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 5 ft/s along a straight path. If he is 40 ft from the pole, then the tip of his shadow is moving at the rate of

(a)
$$48\frac{1}{3}$$
 ft/s
(b) $5\frac{2}{3}$ ft/s
(c) 9 ft/s
(d) $333\frac{1}{3}$ ft/s
(e) $8\frac{1}{3}$ ft/s

6. The first derivative test tells that the function $f(x) = \sqrt[3]{x^2 - x}$ has

- (a) no local minimum and one local maximum
- (b) neither local minimum nor local maximum
- (c) one local minimum and no local maximum
- (d) two local minima and one local maximum
- (e) one local minimum and two local maxima

- Page 4 of 8
- 7. Square corners are cut out from a thin piece of carboard of size 3 ft by 3ft, so that the sides can be folded up to make a box with open top. The largest volume that such a box can have is given by
 - (a) $V = 3 \text{ ft}^3$
 - (b) $V = 2 \text{ ft}^3$
 - (c) $V = 5 \text{ ft}^3$
 - (d) $V = 1 \text{ ft}^3$
 - (e) $V = 4 \text{ ft}^3$

- 8. $\lim_{x \to 0^+} (1 + \sin(4x))^{\cot x} =$
 - (a) e^{-2}
 - (b) e^{-4}
 - (c) e^4
 - (d) *e*
 - (e) e^{-1}

9. The **sum** of all critical points of the function

$$f(x) = \cos^2 x - 2\sin x$$

over the interval $0 \le x < 2\pi$ is

(a)
$$\frac{5\pi}{2}$$

(b) $\frac{\pi}{2}$
(c) $\frac{3\pi}{2}$
(d) π

(e) 2π

- 10. The **derivative** of f(x) is given by f'(x) = (1-x)(7-x). The intervals on which f(x) is increasing or decreasing are
 - (a) decreasing on $(-\infty, 1)$ and increasing on $(7, \infty)$
 - (b) decreasing on $(-\infty, 1) \cup (7, \infty)$ and increasing on (1, 7)
 - (c) decreasing on (1,7) and increasing on $(-\infty,1) \cup (7,\infty)$
 - (d) decreasing on $(-\infty,-1)\cup(-7,\infty)$ and increasing on (-1,-7)
 - (e) decreasing on $(7, \infty)$ and increasing on $(-\infty, 1)$

- 11. A particle moves along the curve $y = \sqrt{1 + x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. How fast is the x-ccordinate of the point changing at that instant?
 - (a) 6 cm/s

(b)
$$\frac{2}{3}$$
 cm/s

- (c) $\frac{1}{4}$ cm/s
- (d) 2 cm/s

(e)
$$\frac{1}{3}$$
 cm/s

- 12. The radius of a circular disc is given as 24 cm with a maximum error in measurement of 0.2 cm. Using differentials the percentage error in the measurement of area of the disc will be
 - (a) $0.4\pi \%$ (b) $\frac{1}{16} \%$ (c) $1\frac{2}{3} \%$ (d) $2\frac{1}{3} \%$ (e) $9.4\pi \%$

- 13. The absolute maximum of $f(x) = \sqrt[3]{x}(8-x)$ on [0,8] is
 - (a) $5\sqrt[3]{3}$
 - (b) 7
 - (c) $4\sqrt[3]{4}$
 - (d) 0
 - (e) $6\sqrt[3]{2}$

14. The graph of the first derivative f' of a function f is shown below. Which of the following statements is **WRONG** about f?

- (a) f is increasing on $(6,\infty)$ and decreasing on (0,2)
- (b) x = 1, x = 8 are inflection points of f
- (c) f is concave up on (1,3), and $(8,\infty)$
- (d) f has local extrema at x = 2 and x = 6
- (e) f is concave down on (6,7)

004

Page 8 of 8

- 15. Using the derivative tests and equations of asymptotes, the graph of the curve $xy = x^2 + 4$
 - (a)
 - (b)
 - (c)
 - (d)
 - (e)

ANSWER KEY

Q	MM	V1	V2	V3	V4
1	a	e	b	a	a
2	a	с	с	а	е
3	a	a	d	с	a
4	a	b	е	d	d
5	a	b	d	а	е
6	a	с	b	е	с
7	a	a	a	d	b
8	a	b	b	с	с
9	a	b	a	d	е
10	a	b	с	е	с
11	a	a	е	b	d
12	a	е	d	d	с
13	a	a	a	е	е
14	a	b	с	d	е
15	a	с	b	d	с