King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 001

Calculus I EXAM II

CODE 001

Semester II, Term 072 Monday, April 28, 2008 Net Time Allowed: 120 minutes

Name:		
ID:	Sec:	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The limit $\lim_{x \to 1} \frac{x^{100} 1}{x 1}$
 - (a) does not exist
 - (b) equals 99
 - (c) equals -100
 - (d) equals 0
 - (e) equals 100

- 2. If $f(x) = \frac{g(\sqrt{x})}{2g(x)+1}$, g(1) = 2 and g'(1) = -1, then f'(1) equals
 - (a) $\frac{3}{50}$
 - (b) $\frac{2}{5}$
 - (c) $\frac{8}{50}$
 - (d) $\frac{-3}{25}$
 - (e) $\frac{1}{25}$

- 3. An equation of the tangent line to the curve $y = \pi x^2 + \cos\left(\frac{\pi}{2}x\right)$ at x = 1 is given by
 - (a) $y = \frac{3\pi}{2}(x-1)$
 - (b) $y = \frac{\pi}{2}(3x 1)$
 - (c) $y = -\frac{\pi}{2}(3x 1)$
 - (d) $y = \pi(3x 1)$
 - (e) $y = -\frac{3\pi}{2}(x-1)$

- 4. Which one of the following statements is **TRUE**?
 - (a) $\frac{d}{dx}(\ln 8) = \frac{1}{8}$
 - (b) If $f(x) = xe^x$, then $f'(x) = e^x + x^2e^{x-1}$
 - (c) If f is differentiable, then $\frac{d}{dx}[f(\tan x)] = f'(\tan x) \cdot \sec^2 x$
 - (d) $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$
 - (e) $\frac{d}{dx}|x^2 + x| = |2x + 1|$

5. Let

$$f(x) = \begin{cases} 3 & \text{if } x \le 0 \\ 3 - x^2 & \text{if } 0 < x < 3 \\ 6 - 4x & \text{if } x \ge 3. \end{cases}$$

Which one of the following statements is **TRUE**?

- (a) f is differentiable everywhere except at x = 0 and x = 3
- (b) f'(-1) = 2
- (c) f is differentiable at x = 3
- (d) f is differentiable everywhere except at x = 3
- (e) f'(5) = -14

- 6. The slope of the tangent line to the curve $y = (1 x^{-1})^{-1}$ at x = -1 is
 - (a) $-\frac{1}{4}$
 - (b) $-\frac{3}{4}$
 - (c) 1
 - (d) $-\frac{1}{2}$
 - $(e) \quad 0$

- 7. An equation of the tangent line to the curve $x^2 + 2xy y^2 + x = 2$ at the point (1, 2) is given by
 - (a) 2x 7y = -12
 - (b) y = -x + 3
 - (c) y = 4x 2
 - (d) y = 3x 1
 - (e) 7x 2y = 3

- 8. The position of a particle is given by the equation $s = f(t) = 2t^3 9t^2 + 12t$ (where t and s are measured in seconds and meters respectively.) The total distance traveled by the particle during the first three seconds is
 - (a) 20 m
 - (b) 9 m
 - (c) 6 m
 - (d) 11 m
 - (e) 18 m

- 9. If $f(x) = \cot^{-1}(e^{2x} \sqrt{1 + x^2})$, then f'(0) is equal to
 - (a) 0
 - (b) 1
 - (c) $\frac{3}{2}$
 - (d) -2
 - (e) $-\frac{1}{2}$

- 10. The slope of the tangent line to the curve $y = \ln(\ln(\ln x))$ at $x = e^e$ is
 - (a) e^{1-e}
 - (b) $1 e^{-1}$
 - (c) $\frac{e}{1+e}$
 - (d) e^{-1-e}
 - (e) e

11. If $y = 5^{\sin^2(x^3)}$, then $\frac{y'}{x^2y} =$

- (a) $3\sin(3x^2)$
- (b) $\ln(25) \cdot \sin(2x^3)$
- (c) $\ln(125) \cdot \sin(3x^2)$
- (d) $(\ln 5) \cdot \sin(2x^3)$
- (e) $\ln(125) \cdot \sin(2x^3)$

12. The graph of $y = \frac{x^2 - 1}{x^2 + 1}$ has a horizontal tangent line at the point

- (a) (0,0)
- (b) (0,1)
- (c) (-1,0)
- (d) (1,0)
- (e) (0,-1)

13. If $x^4 + y^4 = 3$, then y'' =

- (a) $\frac{-9x^2}{y^7}$
- (b) $\frac{-3x^2}{y^7}$
- (c) $\frac{3(x^3 y^3)}{y^6}$
- (d) $\frac{3x^2(x+y^2)}{y^4}$
- (e) $\frac{-x^3}{y^3}$

14. If $f(x) = (8x - 6)^x$, then f'(1) is equal to

- (a) $\frac{1}{6} + 2 \ln 2$
- (b) ln 2
- (c) 1
- (d) $4 + \ln 2$
- (e) $8 + 2 \ln 2$

15. $D^{51}\cos(2x)$ is equal to

- (a) $2^{50}\cos(2x)$
- (b) $-2^{50}\sin(2x)$
- (c) $2^{51}\cos(2x)$
- (d) $2^{51}\sin(2x)$
- (e) $-2^{51}\sin(2x)$

16. If $(\sin y)^x = x^{\sin y}$, then y' =

- (a) $\frac{\cos y \ln(\sin y)}{x \cot y \ln x \cdot \cos y}$
- (b) $\frac{x \cot y \ln x}{\sin y \ln(\sin y)}$
- (c) $\frac{\sin y \ln(\sin y)}{x^2 \cot y x \ln x \cdot \cos y}$
- (d) $\frac{\cos y x \ln(\sin y)}{x[x \tan y \ln x \cdot \sin y]}$
- (e) $\frac{\sin y x \ln(\sin y)}{x[x \cot y \ln x \cdot \cos y]}$

- 17. If the curves $y = ax^2 + b$ and $y = 2x^2 + cx$ have a common tangent line at the point (-1,0), then a-b+c equals
 - (a) -4
 - (b) -3
 - (c) 2
 - (d) 4
 - (e) 3

- 18. The value of the limit $\lim_{t\to 0} \frac{\tan t \sin t \cos t}{t \sin^2 t}$ is equal to
 - (a) $+\infty$
 - (b) -1
 - (c) 1/2
 - (d) 1
 - $(e) \quad 0$

19. If
$$y = \frac{1}{x^2 + 1}$$
, then $y''' =$

(a)
$$\frac{24x - 24x^3}{(x^2 + 1)^4}$$

(b)
$$\frac{40x^3 - 8x}{(x^2 + 1)^4}$$

(c)
$$\frac{40x^3 - 8x}{(x^2 + 1)^3}$$

(d)
$$\frac{8x^3 + 12x}{(x^2 + 1)^4}$$

(e)
$$\frac{10x^2 - 2}{(x^2 + 1)^3}$$

20. If
$$f(x) = (x+1)(x+2)^2(x+3)^3(x+4)^2(x+5)$$
, then $f'(-1)$ is equal to

- (a) 120
- (b) 0
- (c) -36
- (d) 72
- (e) 288

Q	MM	V1	V2	V3	V4
1	a	е	e	d	a
2	a	a	b	b	b
3	a	b	b	a	b
4	a	c	d	b	d
5	a	d	d	b	b
6	a	a	е	С	d
7	a	е	С	d	е
8	a	d	d	b	С
9	a	d	d	d	a
10	a	d	С	d	b
11	a	е	d	b	С
12	a	е	С	a	е
13	a	a	d	a	d
14	a	е	d	b	b
15	a	d	b	d	b
16	a	е	е	a	d
17	a	d	е	a	b
18	a	d	a	е	a
19	a	a	С	b	С
20	a	е	b	a	е