CODE 001

Math 101 Exam 2 061

CODE 001

Tuesday 28/11/2006
Net Time Allowed: 90 minutes

Name:	
ID:	. Sec:

Check that this exam has $\underline{15}$ questions.

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The x-intercept of the tangent line to the curve $y = x\sqrt{x^2 8}$ at x = -3 is given by
 - (a) x = -27
 - (b) x = 27
 - (c) $x = -\frac{27}{10}$
 - (d) x = 10
 - (e) $x = \frac{27}{10}$

- 2. The values of x for which the function $f(x) = x + 2\sin x$ has tangent lines parallel to the line 2x + 2y = 5 are
 - (a) $(2k+1)\pi$, k is an integer
 - (b) $2k\pi$, k is an integer
 - (c) $k\pi$, k is an integer
 - (d) $(k+1)\pi$, k is an integer
 - (e) none of the above

3. If
$$y = \arctan(\arcsin \sqrt{x})$$
, then $\frac{dy}{dx} =$

(a)
$$\frac{1}{\sqrt{1-x^2}[1+\arcsin x]}$$

(b)
$$\frac{1}{\sqrt{1-x^2}[1+(\arcsin\sqrt{x})^2]}$$

(c)
$$\frac{1}{1 + (\arcsin\sqrt{x})^2}$$

(d)
$$\frac{1}{2\sqrt{x}\sqrt{1-x}\left[1+(\arcsin\sqrt{x})^2\right]}$$

(e)
$$\frac{1}{\sqrt{1-x}[1+(\arcsin\sqrt{x})^2]}$$

4. If
$$f(4) = \frac{1}{4}$$
, $f'(4) = -\frac{1}{4}$ and $g(x) = \frac{1 + xf(x)}{\sqrt{x}}$, then $g'(4) =$

(a)
$$-\frac{1}{2}$$

(b)
$$\frac{5}{8}$$

(c)
$$-\frac{5}{8}$$

(d)
$$-1$$

- 5. Suppose that L is a function such that $L'(x) = \frac{1}{x}$ for x > 0. Then the derivative of $F(x) = L(x^4) + L\left(\frac{1}{x}\right)$ is equal to
 - (a) $x^4 x$
 - (b) $\frac{5}{x}$
 - (c) x^3
 - (d) $\frac{3}{x}$
 - (e) $\frac{4}{x^3}$

- 6. If $u = \sqrt[3]{t^2} + 2\sqrt{t^3}$, then $\frac{du}{dt}$ is equal to
 - (a) $\frac{2+4\sqrt[4]{t^5}}{5\sqrt[5]{t^5}}$
 - (b) $\frac{2+9\sqrt[6]{t^5}}{3\sqrt[3]{t}}$
 - (c) $\frac{6+4\sqrt[4]{t^4}}{6\sqrt[6]{t}}$
 - (d) $\frac{9+4\sqrt{t^4}}{5\sqrt[5]{t}}$
 - (e) $\frac{2+3\sqrt{t}}{6\sqrt{t^3}}$

7. If
$$y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2}$$
, then y' is equal to

(a)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[2\sec x + \frac{4\sec x}{\sin x} - \frac{8x}{x^2+1} \right]$$

(b)
$$\frac{\sin^2 x \sec^8 x}{\cos^4 x (x^2 + 1)^2} \left[\cot x + \frac{5 \sec x}{\sin x} - \frac{6x}{x^2 + 1} \right]$$

(c)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[2\cot x + \frac{4\sec^2 x}{\tan x} - \frac{4x}{x^2+1} \right]$$

(d)
$$\frac{\sin^6 x}{\cos^4 x (x^2 + 1)^2} \left[2 \cot x + \frac{6 \cos x}{\cot x} - \frac{4x}{x^2 + 1} \right]$$

(e)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[\cot x + \frac{8 \sec x}{\tan x} - \frac{3x}{x^2+1} \right]$$

8.
$$\lim_{x \to \pi/4} \frac{\sin x - \cos x}{\cos(2x)}$$
 is equal to

- (a) 1
- (b) -1
- (c) $\sqrt{2}$
- $(d) -\frac{\sqrt{2}}{2}$
- $(e) \quad 0$

- 9. If $g(x) = \sqrt{5-2x}$, then g'''(2) is equal to
 - (a) 2
 - (b) -1
 - (c) $-\frac{1}{2}$
 - (d) -3
 - (e) 1

- 10. $\tanh(\ln x) =$
 - (a) $\frac{x^2+1}{1-x^2}$
 - (b) $\frac{1-x^2}{x^2+1}$
 - (c) $\frac{x^2 1}{x^2 + 1}$
 - (d) ∞
 - (e) $\frac{x^2+1}{x^2-1}$

11. If $(x - y)^2 = x + y$, then

(a)
$$\frac{dy}{dx} = \frac{2x - 2y + 1}{2x - 2y - 1}$$

(b)
$$\frac{dy}{dx} = \frac{2x - 2y - 1}{2x + 2y + 1}$$

(c)
$$\frac{dy}{dx} = \frac{2x - 2y - 1}{2x - 2y + 1}$$

$$(d) \quad \frac{dy}{dx} = 2x - 2y - 1$$

(e)
$$\frac{dy}{dx} = \frac{2x - 2y + 1}{2x + 2y + 1}$$

12. An equation of the normal line to the graph of $y = x^{x \cos x}$ when $x = \frac{\pi}{2}$ is given by

(a)
$$2\pi (\ln \sqrt{\pi} - \ln \sqrt{2})(y-1) = 2x - \pi$$

(b)
$$\pi \ln \sqrt{\pi} (y-1) = (\ln 2)x - \pi$$

(c)
$$(\ln \sqrt{\pi} - \ln \sqrt{2})(y-1) = 2x - \pi$$

(d)
$$\pi(\ln\sqrt{\pi} - \ln\sqrt{2})(y - \pi) = x - 1$$

(e)
$$2\pi \ln(\pi - 2)(y - 1) = x - \pi$$

- 13. Which one of the following statements is true about the function f(x) = x|x|?
 - (a) f is not differentiable at x = 0
 - (b) f'(-x) = -f'(x)
 - (c) f is differentiable on $(-\infty, \infty)$ and f'(x) = 2x
 - (d) f is differentiable on $(-\infty, \infty)$ and f'(x) = 2|x|
 - (e) f is differentiable on $(-\infty, \infty)$ and f'(x) = -2x

- 14. There are two lines through the point (2, -3) that are tangent to the parabola $y = x^2 + x$. Then the **sum** of the slopes of these lines is
 - (a) 11
 - (b) 13.5
 - (c) 7.5
 - (d) 10
 - (e) 9

15. If $\sqrt{x} + \sqrt{y} = 4$ defines implicitly a relation between x and y, then y'' is equal to

(a)
$$\frac{\sqrt{xy}}{2x^2y}(x+y)$$

(b)
$$\frac{xy + y\sqrt{xy}}{2x^2y}$$

(c)
$$-\sqrt{\frac{y}{x}}$$

(d)
$$-\sqrt{\frac{x}{y}}$$

(e)
$$\frac{x\sqrt{y} + y\sqrt{x}}{2x^2}$$

CODE 002

Math 101 Exam 2 061

$|CODE|_{002}$

Tuesday 28/11/2006
Net Time Allowed: 90 minutes

Name:	
ID:	. Sec:

Check that this exam has $\underline{15}$ questions.

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The x-intercept of the tangent line to the curve $y = x\sqrt{x^2 - 8}$ at x = -3 is given by

(a)
$$x = \frac{27}{10}$$

(b)
$$x = 27$$

(c)
$$x = -\frac{27}{10}$$

(d)
$$x = -27$$

(e)
$$x = 10$$

2. If
$$f(4) = \frac{1}{4}$$
, $f'(4) = -\frac{1}{4}$ and $g(x) = \frac{1 + xf(x)}{\sqrt{x}}$, then $g'(4) =$

(a)
$$-1$$

(b)
$$-\frac{5}{8}$$

(c)
$$\frac{5}{8}$$

$$(d)$$
 0

(e)
$$-\frac{1}{2}$$

- 3. If $u = \sqrt[3]{t^2} + 2\sqrt{t^3}$, then $\frac{du}{dt}$ is equal to
 - (a) $\frac{6+4\sqrt[4]{t^4}}{6\sqrt[6]{t}}$
 - (b) $\frac{2+3\sqrt{t}}{6\sqrt{t^3}}$
 - (c) $\frac{9+4\sqrt{t^4}}{5\sqrt[5]{t}}$
 - (d) $\frac{2+9\sqrt[6]{t^5}}{3\sqrt[3]{t}}$
 - (e) $\frac{2+4\sqrt[4]{t^5}}{5\sqrt[5]{t^5}}$

- 4. If $g(x) = \sqrt{5-2x}$, then g'''(2) is equal to
 - (a) $-\frac{1}{2}$
 - (b) 2
 - (c) -3
 - (d) 1
 - (e) -1

5. If
$$y = \arctan(\arcsin \sqrt{x})$$
, then $\frac{dy}{dx} =$

(a)
$$\frac{1}{1 + (\arcsin\sqrt{x})^2}$$

(b)
$$\frac{1}{\sqrt{1-x^2}[1+\arcsin x]}$$

(c)
$$\frac{1}{\sqrt{1-x^2}[1+(\arcsin\sqrt{x})^2]}$$

(d)
$$\frac{1}{2\sqrt{x}\sqrt{1-x}\left[1+(\arcsin\sqrt{x})^2\right]}$$

(e)
$$\frac{1}{\sqrt{1-x}[1+(\arcsin\sqrt{x})^2]}$$

6.
$$\lim_{x \to \pi/4} \frac{\sin x - \cos x}{\cos(2x)}$$
 is equal to

- (a) 0
- (b) $\sqrt{2}$
- (c) -1
- (d) 1
- (e) $-\frac{\sqrt{2}}{2}$

- 7. $\tanh(\ln x) =$
 - (a) $\frac{x^2+1}{x^2-1}$
 - (b) $\frac{x^2-1}{x^2+1}$
 - (c) $\frac{1-x^2}{x^2+1}$
 - (d) $\frac{x^2+1}{1-x^2}$
 - (e) ∞

- 8. Suppose that L is a function such that $L'(x) = \frac{1}{x}$ for x > 0. Then the derivative of $F(x) = L(x^4) + L\left(\frac{1}{x}\right)$ is equal to
 - (a) $\frac{4}{x^3}$
 - (b) $x^4 x$
 - (c) $\frac{5}{x}$
 - (d) $\frac{3}{x}$
 - (e) x^3

9. If
$$y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2}$$
, then y' is equal to

(a)
$$\frac{\sin^6 x}{\cos^4 x (x^2 + 1)^2} \left[2 \cot x + \frac{6 \cos x}{\cot x} - \frac{4x}{x^2 + 1} \right]$$

(b)
$$\frac{\sin^2 x \sec^8 x}{\cos^4 x (x^2 + 1)^2} \left[\cot x + \frac{5 \sec x}{\sin x} - \frac{6x}{x^2 + 1} \right]$$

(c)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[\cot x + \frac{8 \sec x}{\tan x} - \frac{3x}{x^2+1} \right]$$

(d)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[2\sec x + \frac{4\sec x}{\sin x} - \frac{8x}{x^2+1} \right]$$

(e)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[2\cot x + \frac{4\sec^2 x}{\tan x} - \frac{4x}{x^2+1} \right]$$

- 10. The values of x for which the function $f(x) = x + 2\sin x$ has tangent lines parallel to the line 2x + 2y = 5 are
 - (a) $2k\pi$, k is an integer
 - (b) $k\pi$, k is an integer
 - (c) none of the above
 - (d) $(k+1)\pi$, k is an integer
 - (e) $(2k+1)\pi$, k is an integer

11. An equation of the normal line to the graph of $y = x^{x \cos x}$ when $x = \frac{\pi}{2}$ is given by

(a)
$$(\ln \sqrt{\pi} - \ln \sqrt{2})(y - 1) = 2x - \pi$$

(b)
$$\pi(\ln\sqrt{\pi} - \ln\sqrt{2})(y - \pi) = x - 1$$

(c)
$$2\pi (\ln \sqrt{\pi} - \ln \sqrt{2})(y-1) = 2x - \pi$$

(d)
$$2\pi \ln(\pi - 2)(y - 1) = x - \pi$$

(e)
$$\pi \ln \sqrt{\pi} (y-1) = (\ln 2)x - \pi$$

12. If $\sqrt{x} + \sqrt{y} = 4$ defines implicitly a relation between x and y, then y'' is equal to

(a)
$$\frac{x\sqrt{y} + y\sqrt{x}}{2x^2}$$

(b)
$$\frac{xy + y\sqrt{xy}}{2x^2y}$$

(c)
$$-\sqrt{\frac{x}{y}}$$

(d)
$$-\sqrt{\frac{y}{x}}$$

(e)
$$\frac{\sqrt{xy}}{2x^2y}(x+y)$$

- 13. There are two lines through the point (2, -3) that are tangent to the parabola $y = x^2 + x$. Then the **sum** of the slopes of these lines is
 - (a) 10
 - (b) 13.5
 - (c) 9
 - (d) 11
 - (e) 7.5

- 14. If $(x y)^2 = x + y$, then
 - (a) $\frac{dy}{dx} = \frac{2x 2y 1}{2x 2y + 1}$
 - (b) $\frac{dy}{dx} = \frac{2x 2y + 1}{2x 2y 1}$
 - (c) $\frac{dy}{dx} = \frac{2x 2y 1}{2x + 2y + 1}$
 - (d) $\frac{dy}{dx} = \frac{2x 2y + 1}{2x + 2y + 1}$
 - (e) $\frac{dy}{dx} = 2x 2y 1$

- 15. Which one of the following statements is true about the function f(x) = x|x|?
 - (a) f is differentiable on $(-\infty, \infty)$ and f'(x) = 2|x|
 - (b) f is not differentiable at x = 0
 - (c) f is differentiable on $(-\infty, \infty)$ and f'(x) = -2x
 - (d) f is differentiable on $(-\infty, \infty)$ and f'(x) = 2x
 - (e) f'(-x) = -f'(x)

CODE 003

Math 101 Exam 2 061

CODE 003

Tuesday 28/11/2006 Net Time Allowed: 90 minutes

Name:		
ID:	Sec:	

Check that this exam has $\underline{15}$ questions.

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If
$$f(4) = \frac{1}{4}$$
, $f'(4) = -\frac{1}{4}$ and $g(x) = \frac{1 + xf(x)}{\sqrt{x}}$, then $g'(4) =$

- (a) $-\frac{5}{8}$
- (b) 0
- (c) $-\frac{1}{2}$
- (d) $\frac{5}{8}$
- (e) -1

2. If
$$y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2}$$
, then y' is equal to

(a)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[\cot x + \frac{8 \sec x}{\tan x} - \frac{3x}{x^2+1} \right]$$

(b)
$$\frac{\sin^6 x}{\cos^4 x (x^2 + 1)^2} \left[2 \cot x + \frac{6 \cos x}{\cot x} - \frac{4x}{x^2 + 1} \right]$$

(c)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[2\sec x + \frac{4\sec x}{\sin x} - \frac{8x}{x^2+1} \right]$$

(d)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[2 \cot x + \frac{4 \sec^2 x}{\tan x} - \frac{4x}{x^2+1} \right]$$

(e)
$$\frac{\sin^2 x \sec^8 x}{\cos^4 x (x^2 + 1)^2} \left[\cot x + \frac{5 \sec x}{\sin x} - \frac{6x}{x^2 + 1} \right]$$

- 3. The values of x for which the function $f(x) = x + 2\sin x$ has tangent lines parallel to the line 2x + 2y = 5 are
 - (a) $(2k+1)\pi$, k is an integer
 - (b) none of the above
 - (c) $k\pi$, k is an integer
 - (d) $(k+1)\pi$, k is an integer
 - (e) $2k\pi$, k is an integer

- 4. $\lim_{x \to \pi/4} \frac{\sin x \cos x}{\cos(2x)}$ is equal to
 - (a) $-\frac{\sqrt{2}}{2}$
 - (b) 0
 - (c) $\sqrt{2}$
 - (d) 1
 - (e) -1

- 5. $\tanh(\ln x) =$
 - (a) $\frac{x^2+1}{1-x^2}$
 - (b) $\frac{x^2+1}{x^2-1}$
 - (c) $\frac{x^2 1}{x^2 + 1}$
 - (d) $\frac{1-x^2}{x^2+1}$
 - (e) ∞

- 6. If $u = \sqrt[3]{t^2} + 2\sqrt{t^3}$, then $\frac{du}{dt}$ is equal to
 - (a) $\frac{2+3\sqrt{t}}{6\sqrt{t^3}}$
 - (b) $\frac{2 + 9\sqrt[6]{t^5}}{3\sqrt[3]{t}}$
 - (c) $\frac{9+4\sqrt{t^4}}{5\sqrt[5]{t}}$
 - (d) $\frac{6+4\sqrt[4]{t^4}}{6\sqrt[6]{t}}$
 - (e) $\frac{2+4\sqrt[4]{t^5}}{5\sqrt[5]{t^5}}$

- 7. The x-intercept of the tangent line to the curve $y = x\sqrt{x^2 8}$ at x = -3 is given by
 - (a) x = -27
 - (b) x = 10
 - (c) $x = -\frac{27}{10}$
 - (d) $x = \frac{27}{10}$
 - (e) x = 27

- 8. Suppose that L is a function such that $L'(x) = \frac{1}{x}$ for x > 0. Then the derivative of $F(x) = L(x^4) + L\left(\frac{1}{x}\right)$ is equal to
 - (a) $x^4 x$
 - (b) x^3
 - (c) $\frac{5}{x}$
 - (d) $\frac{4}{x^3}$
 - (e) $\frac{3}{x}$

9. If
$$y = \arctan(\arcsin\sqrt{x})$$
, then $\frac{dy}{dx} =$

(a)
$$\frac{1}{2\sqrt{x}\sqrt{1-x}\left[1+(\arcsin\sqrt{x})^2\right]}$$

(b)
$$\frac{1}{\sqrt{1-x}[1+(\arcsin\sqrt{x})^2]}$$

(c)
$$\frac{1}{\sqrt{1-x^2}[1+(\arcsin\sqrt{x})^2]}$$

(d)
$$\frac{1}{\sqrt{1-x^2}[1+\arcsin x]}$$

(e)
$$\frac{1}{1 + (\arcsin\sqrt{x})^2}$$

10. If
$$g(x) = \sqrt{5-2x}$$
, then $g'''(2)$ is equal to

(a)
$$-\frac{1}{2}$$

(c)
$$-1$$

$$(d)$$
 1

(e)
$$-3$$

11. An equation of the normal line to the graph of $y = x^{x \cos x}$ when $x = \frac{\pi}{2}$ is given by

(a)
$$\pi(\ln\sqrt{\pi} - \ln\sqrt{2})(y - \pi) = x - 1$$

(b)
$$2\pi (\ln \sqrt{\pi} - \ln \sqrt{2})(y-1) = 2x - \pi$$

(c)
$$2\pi \ln(\pi - 2)(y - 1) = x - \pi$$

(d)
$$(\ln \sqrt{\pi} - \ln \sqrt{2})(y-1) = 2x - \pi$$

(e)
$$\pi \ln \sqrt{\pi} (y-1) = (\ln 2)x - \pi$$

- 12. There are two lines through the point (2, -3) that are tangent to the parabola $y = x^2 + x$. Then the **sum** of the slopes of these lines is
 - (a) 9
 - (b) 13.5
 - (c) 10
 - (d) 7.5
 - (e) 11

- 13. Which one of the following statements is true about the function f(x) = x|x|?
 - (a) f is differentiable on $(-\infty, \infty)$ and f'(x) = 2x
 - (b) f is differentiable on $(-\infty, \infty)$ and f'(x) = -2x
 - (c) f is not differentiable at x = 0
 - (d) f'(-x) = -f'(x)
 - (e) f is differentiable on $(-\infty, \infty)$ and f'(x) = 2|x|

- 14. If $\sqrt{x} + \sqrt{y} = 4$ defines implicitly a relation between x and y, then y'' is equal to
 - (a) $-\sqrt{\frac{y}{x}}$
 - (b) $-\sqrt{\frac{x}{y}}$
 - (c) $\frac{\sqrt{xy}}{2x^2y}(x+y)$
 - (d) $\frac{x\sqrt{y} + y\sqrt{x}}{2x^2}$
 - (e) $\frac{xy + y\sqrt{xy}}{2x^2y}$

15. If $(x - y)^2 = x + y$, then

(a)
$$\frac{dy}{dx} = \frac{2x - 2y + 1}{2x + 2y + 1}$$

(b)
$$\frac{dy}{dx} = \frac{2x - 2y - 1}{2x + 2y + 1}$$

(c)
$$\frac{dy}{dx} = \frac{2x - 2y - 1}{2x - 2y + 1}$$

(d)
$$\frac{dy}{dx} = \frac{2x - 2y + 1}{2x - 2y - 1}$$

(e)
$$\frac{dy}{dx} = 2x - 2y - 1$$

CODE 004

Math 101 Exam 2 061

CODE 004

Tuesday 28/11/2006
Net Time Allowed: 90 minutes

Name:		
ID:	Sec	:

Check that this exam has 15 questions.

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The x-intercept of the tangent line to the curve $y = x\sqrt{x^2 8}$ at x = -3 is given by
 - (a) $x = -\frac{27}{10}$
 - (b) x = 27
 - (c) x = -27
 - (d) $x = \frac{27}{10}$
 - (e) x = 10

- 2. Suppose that L is a function such that $L'(x) = \frac{1}{x}$ for x > 0. Then the derivative of $F(x) = L(x^4) + L\left(\frac{1}{x}\right)$ is equal to
 - (a) $x^4 x$
 - (b) $\frac{3}{x}$
 - (c) $\frac{4}{x^3}$
 - (d) x^3
 - (e) $\frac{5}{x}$

- 3. If $f(4) = \frac{1}{4}$, $f'(4) = -\frac{1}{4}$ and $g(x) = \frac{1 + xf(x)}{\sqrt{x}}$, then g'(4) =
 - (a) $\frac{5}{8}$
 - (b) $-\frac{1}{2}$
 - (c) 0
 - (d) $-\frac{5}{8}$
 - (e) -1

- 4. $\tanh(\ln x) =$
 - (a) $\frac{x^2+1}{1-x^2}$
 - (b) $\frac{x^2+1}{x^2-1}$
 - (c) ∞
 - (d) $\frac{x^2 1}{x^2 + 1}$
 - (e) $\frac{1-x^2}{x^2+1}$

5. If
$$u = \sqrt[3]{t^2} + 2\sqrt{t^3}$$
, then $\frac{du}{dt}$ is equal to

(a)
$$\frac{2 + 9\sqrt[6]{t^5}}{3\sqrt[3]{t}}$$

(b)
$$\frac{9+4\sqrt{t^4}}{5\sqrt[5]{t}}$$

(c)
$$\frac{6+4\sqrt[4]{t^4}}{6\sqrt[6]{t}}$$

(d)
$$\frac{2+3\sqrt{t}}{6\sqrt{t^3}}$$

(e)
$$\frac{2+4\sqrt[4]{t^5}}{5\sqrt[5]{t^5}}$$

6. If
$$y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2}$$
, then y' is equal to

(a)
$$\frac{\sin^2 x \sec^8 x}{\cos^4 x (x^2 + 1)^2} \left[\cot x + \frac{5 \sec x}{\sin x} - \frac{6x}{x^2 + 1} \right]$$

(b)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[2\sec x + \frac{4\sec x}{\sin x} - \frac{8x}{x^2+1} \right]$$

(c)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[\cot x + \frac{8 \sec x}{\tan x} - \frac{3x}{x^2+1} \right]$$

(d)
$$\frac{\sin^6 x}{\cos^4 x (x^2 + 1)^2} \left[2 \cot x + \frac{6 \cos x}{\cot x} - \frac{4x}{x^2 + 1} \right]$$

(e)
$$\frac{\sin^2 x \tan^4 x}{(x^2+1)^2} \left[2 \cot x + \frac{4 \sec^2 x}{\tan x} - \frac{4x}{x^2+1} \right]$$

7. If
$$y = \arctan(\arcsin \sqrt{x})$$
, then $\frac{dy}{dx} =$

(a)
$$\frac{1}{\sqrt{1-x^2}[1+(\arcsin\sqrt{x})^2]}$$

(b)
$$\frac{1}{2\sqrt{x}\sqrt{1-x}[1+(\arcsin\sqrt{x})^2]}$$

(c)
$$\frac{1}{1 + (\arcsin\sqrt{x})^2}$$

(d)
$$\frac{1}{\sqrt{1-x}[1+(\arcsin\sqrt{x})^2]}$$

(e)
$$\frac{1}{\sqrt{1-x^2}[1+\arcsin x]}$$

8. If
$$g(x) = \sqrt{5-2x}$$
, then $g'''(2)$ is equal to

- (a) 2
- (b) 1
- (c) $-\frac{1}{2}$
- (d) -1
- (e) -3

- 9. The values of x for which the function $f(x) = x + 2\sin x$ has tangent lines parallel to the line 2x + 2y = 5 are
 - (a) $(k+1)\pi$, k is an integer
 - (b) $2k\pi$, k is an integer
 - (c) $k\pi$, k is an integer
 - (d) none of the above
 - (e) $(2k+1)\pi$, k is an integer

- 10. $\lim_{x \to \pi/4} \frac{\sin x \cos x}{\cos(2x)}$ is equal to
 - (a) $-\frac{\sqrt{2}}{2}$
 - (b) $\sqrt{2}$
 - (c) -1
 - (d) 1
 - (e) 0

- 11. There are two lines through the point (2, -3) that are tangent to the parabola $y = x^2 + x$. Then the **sum** of the slopes of these lines is
 - (a) 9
 - (b) 13.5
 - (c) 10
 - (d) 11
 - (e) 7.5

12. If $\sqrt{x} + \sqrt{y} = 4$ defines implicitly a relation between x and y, then y'' is equal to

(a)
$$\frac{\sqrt{xy}}{2x^2y}(x+y)$$

(b)
$$-\sqrt{\frac{y}{x}}$$

(c)
$$-\sqrt{\frac{x}{y}}$$

(d)
$$\frac{x\sqrt{y} + y\sqrt{x}}{2x^2}$$

(e)
$$\frac{xy + y\sqrt{xy}}{2x^2y}$$

13. An equation of the normal line to the graph of $y = x^{x \cos x}$ when $x = \frac{\pi}{2}$ is given by

(a)
$$2\pi \ln(\pi - 2)(y - 1) = x - \pi$$

(b)
$$(\ln \sqrt{\pi} - \ln \sqrt{2})(y-1) = 2x - \pi$$

(c)
$$2\pi (\ln \sqrt{\pi} - \ln \sqrt{2})(y-1) = 2x - \pi$$

(d)
$$\pi(\ln\sqrt{\pi} - \ln\sqrt{2})(y - \pi) = x - 1$$

(e)
$$\pi \ln \sqrt{\pi} (y-1) = (\ln 2)x - \pi$$

14. Which one of the following statements is true about the function f(x) = x|x|?

(a)
$$f'(-x) = -f'(x)$$

(b)
$$f$$
 is differentiable on $(-\infty, \infty)$ and $f'(x) = 2x$

(c)
$$f$$
 is differentiable on $(-\infty, \infty)$ and $f'(x) = 2|x|$

(d)
$$f$$
 is not differentiable at $x = 0$

(e) f is differentiable on
$$(-\infty, \infty)$$
 and $f'(x) = -2x$

15. If $(x - y)^2 = x + y$, then

(a)
$$\frac{dy}{dx} = \frac{2x - 2y + 1}{2x - 2y - 1}$$

(b)
$$\frac{dy}{dx} = \frac{2x - 2y - 1}{2x - 2y + 1}$$

(c)
$$\frac{dy}{dx} = \frac{2x - 2y - 1}{2x + 2y + 1}$$

(d)
$$\frac{dy}{dx} = \frac{2x - 2y + 1}{2x + 2y + 1}$$

(e)
$$\frac{dy}{dx} = 2x - 2y - 1$$

Q	MM	V1	V2	V3	V4
1	a	С	c	c	a
2	a	a	е	d	b
3	a	d	d	a	b
4	a	a	С	a	d
5	a	d	d	С	a
6	a	b	е	b	e
7	a	С	b	С	b
8	a	d	d	е	e
9	a	d	е	a	e
10	a	c	е	е	a
11	a	С	С	b	С
12	a	a	b	С	е
13	a	d	a	е	С
14	a	d	a	е	c
15	a	b	a	С	b