## KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES

## MATH 101 - EXAM II

## Sunday - December 9, 2007

| Test ( | Code: 1 Duration 120 Minutes                                                                                                                  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Stude  | ent's Name:                                                                                                                                   |
| ID #:  | Section #:                                                                                                                                    |
| Impo   | ertant Instructions:                                                                                                                          |
| 1.     | All types of CALCULATORS, PAGERS, OR MOBILES ARE NOT ALLOWED to be with you during the examination.                                           |
| 2.     | Use an HB 2 pencil.                                                                                                                           |
| 3.     | Use a good eraser. Do not use the eraser attached to the pencil.                                                                              |
| 4.     | Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.                      |
| 5.     | When bubbling your ID number and Section number, be sure that bubbles match with the number that you write.                                   |
| 6.     | The test Code Number is already typed and bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper. |

When bubbling, make sure that the bubbled space is fully covered.

When erasing a bubble, make sure that you do not leave any trace of

9. Check that the exam paper has 20 questions.

7.

8.

penciling.

- $1. \quad \lim_{t \to 0} t \cot 2t =$ 
  - (a) 0
  - (b) 4
  - (c)  $\frac{1}{2}$
  - (d)  $\infty$
  - (e) does not exist

- 2. If  $x^3 y^3 = 1$ , then y''(x) =
  - (a)  $-\frac{2x}{y^4}$
  - (b)  $\frac{2x}{y^5}$
  - (c)  $\frac{x}{y^5}$
  - $(d) -\frac{2x}{y^5}$
  - (e)  $\frac{2x}{y^4}$

- 3. If  $1 + xy + y \cos y = e^{1-x} \frac{\pi}{2}$ , then y' at  $\left(1, -\frac{\pi}{2}\right)$  is equal
  - (a)  $\frac{\pi}{2}$
  - (b) -1
  - (c) 0
  - (d) -2
  - (e) 1

- 4. If  $y = x^{\tan x}$ , then  $y'\left(\frac{\pi}{4}\right) =$ 
  - (a) 1
  - (b)  $\frac{\pi}{4} \ln \frac{\pi}{4}$
  - (c)  $1 + \frac{\pi}{4} \ln \frac{\pi}{4}$
  - (d)  $\frac{\pi}{2} \ln \frac{\pi}{4}$
  - (e)  $1 + \frac{\pi}{2} \ln \frac{\pi}{4}$

5. If 
$$f(x) = x \cos^{-1}(2x) - \frac{1}{2}\sqrt{1 - 4x^2}$$
, then  $f'(x) =$ 

- (a)  $4\cos^{-1}(2x)$
- (b)  $\cos^{-1}(2x)$
- (c)  $\frac{1}{4}\cos^{-1}(2x)$
- (d)  $\cos^{-1}(2x) \frac{x}{\sqrt{1-4x^2}}$
- (e)  $\frac{\cos^{-1}(2x)}{\sqrt{1-4x^2}}$

6. If 
$$y = 3^x \cdot x^3$$
, then  $y'(1) =$ 

- (a) 6
- (b)  $9 + 3 \ln 3$
- (c) 12
- (d)  $9 + \ln 9$
- (e)  $3 + 3 \ln 3$

- 7. An equation of the tangent line to the curve  $xe^y = y 1$  at x = 0 is given by
  - (a)  $y = e \cdot x$
  - (b) y = x + 1
  - (c)  $y = e \cdot x + 1$
  - (d)  $y = 2e \cdot x + 1$
  - (e) y = x

8. A particle moves in a straight line and its position is given by

$$s(t) = 2t^3 - 12t^2 + 18t + 5$$

feet in t seconds. The total distance traveled by the particle during the first 4 seconds is

- (a) s(1) + s(4) s(3)
- (b) 2s(1) + s(4) s(3) 5
- (c) 2s(1) + s(4) 2s(3) 5
- (d) s(4) 5
- (e) 2s(1) + s(4) 5

- 9. Suppose that F(x) = f(g(x)) and g(3) = 6, g'(3) = 4, f'(3) = 2 and f'(6) = 7. Then F'(3) is equal to
  - (a) 8
  - (b) 14
  - (c) 24
  - (d) 42
  - (e) 28

- 10. If  $y = e^{x^2}$ , then y''' 2xy'' 6y' =
  - (a) 0
  - (b)  $8x e^{x^2}$
  - (c)  $-4x e^{x^2}$
  - (d)  $8x^3 e^{x^2}$
  - (e)  $(12x 8x^3) e^{x^2}$

11. If  $f(x) = \tanh^{-1}(\sin x)$ , then f'(0) =

- (a)  $\frac{1}{2}$
- (b) -1
- (c) 0
- $(d) -\frac{1}{2}$
- (e) 1

12. If  $g(2x+1) = \sqrt{x^2 + 8x}$ , then g'(3) =

- (a)  $\frac{5}{3}$
- (b)  $\frac{5}{6}$
- (c)  $\frac{7}{2\sqrt{37}}$
- (d)  $\frac{7}{\sqrt{37}}$
- (e)  $\frac{5}{12}$

- 13. If  $y = \log_3 \sqrt{x^2 + 1}$ , then y'(1) =
  - (a)  $\frac{2}{\ln 3}$
  - (b)  $\frac{1}{2}$
  - (c)  $\frac{1}{\ln 3}$
  - (d) ln 3
  - (e)  $\frac{1}{2\ln 3}$

- 14. Two ships start moving from the same point. One sails north at 60 mi/h and the other sails east at 25 mi/h. At what rate is the distance between the ships increasing two hours later?
  - (a) 130 mi/h
  - (b) 35 mi/h
  - (c) 85 mi/h
  - (d) 170 mi/h
  - (e) 65 mi/h

- 15. If  $y = \frac{(x^2 8)^{1/3}\sqrt{x^3 + 1}}{x^6 7x + 5}$ , then  $\frac{dy}{dx}\Big|_{x=0} =$ 
  - (a)  $\frac{14}{5}$
  - (b)  $\frac{14}{25}$
  - (c)  $-\frac{14}{5}$
  - (d)  $-\frac{14}{25}$
  - (e)  $-\frac{7}{25}$

- 16. If  $y = \tanh(\ln x)$ , then y'(1) =
  - (a) 2
  - (b)  $\frac{1}{2}$
  - (c) 1
  - (d)  $\frac{1}{4}$
  - (e) 0

17. Which of the following is **not** an identity:

- (a)  $\sinh(x+y) = \sinh x \cdot \cosh y + \cosh x \cdot \sinh y$
- (b)  $\sinh^2 x + \cosh^2 x = 1$
- (c)  $\cosh(x+y) = \cosh x \cdot \cosh y + \sinh x \cdot \sinh y$
- (d)  $\cosh x + \sinh x = e^x$
- (e)  $\cosh x \sinh x = e^{-x}$

18. If  $y = \sin(u^2 - 4)$  and  $u = 2e^x - x$ , then  $\frac{dy}{dx}\Big|_{x=0} =$ 

- (a) 4
- (b) -4
- (c) -2
- (d) 0
- (e) 2

19. If 
$$f(x) = (1-x)^{-1} + e^{-2x}$$
, then  $f^{(100)}(0) =$ 

- (a)  $-100! 2^{100}$
- (b)  $100! 2^{100}$
- (c)  $100! + (-2)^{100}$
- (d)  $-100! + 2^{100}$
- (e) 100!

- 20. The volume of a cube is increasing at a rate of 10 cm<sup>3</sup>/min. How fast is the surface area increasing when the length of an edge is 30 cm?
  - (a)  $120 \text{ cm}^2/\text{min}$
  - (b)  $\frac{4}{3}$  cm<sup>2</sup>/min
  - (c)  $4 \text{ cm}^2/\text{min}$
  - (d)  $\frac{2}{9}$  cm<sup>2</sup>/min
  - (e)  $\frac{8}{3}$  cm<sup>2</sup>/min