King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 001

Math 101 Exam 1 061

CODE 001

Sunday 8/10/2006 Net Time Allowed: 90 minutes

Name:	
ID:	. Sec:

Check that this exam has $\underline{15}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The graph of the function $f(x) = \frac{1+x}{x^4+x^3+4x^2+4x}$ has

- (a) three vertical and one horizontal asymptote
- (b) four vertical and one horizontal asymptote
- (c) one vertical and one horizontal asymptote
- (d) one vertical and no horizontal asymptotes
- (e) three vertical and no horizontal asymptotes

$$2. \qquad \lim_{x \to \frac{1}{2}^{-}} \frac{x+3}{1-3x+2x^2} =$$

- (a) $-\frac{5}{6}$
- (b) $\pm \infty$
- (c) $-\infty$
- (d) $\frac{5}{6}$
- (e) ∞

- 3. If the $\epsilon \delta$ definition of limit is used to prove that $\lim_{x \to \frac{1}{4}} (5 3x) = \frac{17}{4}$, then the largest possible value of δ in terms of ϵ is
 - (a) $\frac{\epsilon}{2}$
 - (b) $\frac{\epsilon}{3}$
 - (c) $\frac{3\epsilon}{4}$
 - (d) $\frac{\epsilon}{4}$
 - (e) $\frac{2\epsilon}{3}$

- 4. The y-intercept of the tangent line to the curve $f(x) = \sqrt{x}$ at x = 4 is
 - (a) $\left(0, -\frac{1}{2}\right)$
 - (b) $\left(0, -\frac{1}{4}\right)$
 - (c) (0,2)
 - (d) (0,1)
 - (e) (0,4)

5.
$$\lim_{x \to 15} \frac{x - 15}{4 - \sqrt{x + 1}} =$$

- (a) ∞
- (b) -8
- $(c) \quad 0$
- (d) $-\infty$
- (e) 1

6. The position of a particle is given by the equation of motion $s = f(t) = \frac{t}{t+1}$ where t is measured in seconds and s in meters. Then the average velocity v_{av} in the time interval [2, 2+h] and the velocity v at t=2 are given by

(a)
$$v_{av} = \frac{1}{18 + 3h} \ m/sec$$
, $v = \frac{1}{18} \ m/sec$

(b)
$$v_{av} = \frac{2}{18+h} \ m/sec$$
, $v = \frac{1}{9} \ m/sec$

(c)
$$v_{av} = \frac{1}{9+5h} \ m/sec$$
, $v = \frac{1}{9} m/sec$

(d)
$$v_{av} = \frac{4+h}{6+h} \ m/sec$$
, $v = \frac{2}{3} \ m/sec$

(e)
$$v_{av} = \frac{1}{9+3h} \ m/sec$$
, $v = \frac{1}{9} \ m/sec$

7. For the function f whose graph is shown, which one of the following statements is true?

(a)
$$\lim_{x \to -3} f(x) = 2$$

(b)
$$\lim_{x \to -2} f(x) = 3$$

(c)
$$\lim_{x \to -2^{-}} f(x) = 1$$

(d)
$$\lim_{x \to -3} f(x) = \infty$$

(e)
$$\lim_{x \to 2^+} f(x) = 2$$

8. The function
$$f(x) = \begin{cases} x & \text{if } x \le 1 \\ mx + n & \text{if } 1 < x \le 2 \\ x + 2 & \text{if } x > 2 \end{cases}$$

- (a) is continuous for m = 1 and n = 0
- (b) is continuous for m = 0 and n = 1
- (c) is continuous for all values of m and n
- (d) is continuous for m = 3 and n = -2
- (e) is discontinuous for all values of m and n

9.
$$\lim_{x \to 0} \left(\frac{2}{x\sqrt{4+x}} - \frac{1}{x} \right) =$$

- (a) 0
- (b) $-\frac{5}{8}$
- (c) ∞
- (d) $-\infty$
- (e) $-\frac{1}{8}$

10. Which one of the following statements is true for $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$ when $f(x) = \frac{\sqrt{9x^2+1}}{5-2x}$?

(a)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \frac{3}{2}$$

(b)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$$

(c)
$$\lim_{x \to -\infty} f(x) = \frac{3}{2}$$
 and $\lim_{x \to \infty} f(x) = -\frac{3}{2}$

(d)
$$\lim_{x \to -\infty} f(x) = -\frac{3}{2}$$
 and $\lim_{x \to \infty} f(x) = \frac{3}{2}$

(e)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = -\frac{3}{2}$$

11. If $\lim_{x\to 0} \frac{\sqrt{mx+n}-2}{x} = 1$, then m+n = 1

- (a) 7
- (b) 8
- (c) 9
- (d) 0
- (e) 10

12. Which one of the following statements is true?

- (a) If $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = 5$, then f(2) = 5.
- (b) If $\lim_{x\to 2^-} f(x) = 3$ and $\lim_{x\to 2^+} f(x) = 4$, then either f(2) = 3 or f(2) = 4.
- (c) If $\lim_{x\to 2} f(x) = \infty$, then f is undefined at x=2.
- (d) If $\lim_{x\to 2} f(x) = 5$, then f(2) = 5.
- (e) If $\lim_{x\to 2^-} f(x) = -\infty$ and f(2) = 3 then y = 2 is vertical asymptote to f(x)

- 13. The limit $\lim_{x\to 0} \frac{x^2}{5} e^{\cos(\frac{3\pi}{2x})}$
 - (a) is equal to 0
 - (b) is equal to $\frac{3\pi}{2}$
 - (c) does not exist
 - (d) is equal to $\frac{1}{5}$
 - (e) is equal to ∞

14. Which one of the following functions has a removable discontinuity at x = 1?

(a)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$$

(b)
$$f(x) = \frac{1}{(x-1)^2}$$

(c)
$$f(x) = \begin{cases} \frac{1}{x-1} & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$$

(d)
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 1 \\ 2x - 2 & \text{if } x > 1 \end{cases}$$

(e)
$$f(x) = \frac{|x-1|}{x-1}$$

- 15. If f(x) = [x] + [-x], where [y] is the greatest integer less than or equal to y, then the $\lim_{x\to 3} f(x)$
 - (a) does not exist because $\lim_{x\to 3} f(x) \neq f(3)$
 - (b) exists and is equal to -2
 - (c) does not exist because $\lim_{x\to 3} [x]$ and $\lim_{x\to 3} [-x]$ do not exist
 - (d) exists and is equal to 0
 - (e) exists and is equal to -1

King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 002

Math 101 Exam 1 061

$|CODE|_{002}$

Sunday 8/10/2006
Net Time Allowed: 90 minutes

Name:		
ID:	Sec:	

Check that this exam has $\underline{15}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The function
$$f(x) = \begin{cases} x & \text{if } x \le 1 \\ mx + n & \text{if } 1 < x \le 2 \\ x + 2 & \text{if } x > 2 \end{cases}$$

- (a) is continuous for m = 0 and n = 1
- (b) is continuous for all values of m and n
- (c) is continuous for m = 1 and n = 0
- (d) is discontinuous for all values of m and n
- (e) is continuous for m = 3 and n = -2

- 2. The graph of the function $f(x) = \frac{1+x}{x^4+x^3+4x^2+4x}$ has
 - (a) one vertical and no horizontal asymptotes
 - (b) one vertical and one horizontal asymptote
 - (c) three vertical and no horizontal asymptotes
 - (d) four vertical and one horizontal asymptote
 - (e) three vertical and one horizontal asymptote

- 3. $\lim_{x \to \frac{1}{2}^{-}} \frac{x+3}{1-3x+2x^2} =$
 - (a) $\frac{5}{6}$
 - (b) ∞
 - (c) $-\infty$
 - (d) $-\frac{5}{6}$
 - (e) $\pm \infty$

- $4. \qquad \lim_{x \to 0} \left(\frac{2}{x\sqrt{4+x}} \frac{1}{x} \right) =$
 - (a) $-\infty$
 - (b) $-\frac{5}{8}$
 - (c) ∞
 - (d) 0
 - (e) $-\frac{1}{8}$

- 5. The y-intercept of the tangent line to the curve $f(x) = \sqrt{x}$ at x = 4 is
 - (a) $\left(0, -\frac{1}{2}\right)$
 - (b) (0,4)
 - (c) $\left(0, -\frac{1}{4}\right)$
 - (d) (0,2)
 - (e) (0,1)

- 6. Which one of the following statements is true for $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$ when $f(x) = \frac{\sqrt{9x^2+1}}{5-2x}$?
 - (a) $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$
 - (b) $\lim_{x \to -\infty} f(x) = \frac{3}{2}$ and $\lim_{x \to \infty} f(x) = -\frac{3}{2}$
 - (c) $\lim_{x \to -\infty} f(x) = -\frac{3}{2}$ and $\lim_{x \to \infty} f(x) = \frac{3}{2}$
 - (d) $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = -\frac{3}{2}$
 - (e) $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \frac{3}{2}$

- 7. If the $\epsilon \delta$ definition of limit is used to prove that $\lim_{x \to \frac{1}{4}} (5 3x) = \frac{17}{4}$, then the largest possible value of δ in terms of ϵ is
 - (a) $\frac{\epsilon}{4}$
 - (b) $\frac{2\epsilon}{3}$
 - (c) $\frac{\epsilon}{2}$
 - (d) $\frac{\epsilon}{3}$
 - (e) $\frac{3\epsilon}{4}$

8. The position of a particle is given by the equation of motion $s = f(t) = \frac{t}{t+1}$ where t is measured in seconds and s in meters. Then the average velocity v_{av} in the time interval [2, 2+h] and the velocity v at t=2 are given by

(a)
$$v_{av} = \frac{2}{18+h} \ m/sec$$
, $v = \frac{1}{9} \ m/sec$

(b)
$$v_{av} = \frac{1}{9+3h} \ m/sec$$
, $v = \frac{1}{9} \ m/sec$

(c)
$$v_{av} = \frac{1}{9+5h} \ m/sec$$
, $v = \frac{1}{9} m/sec$

(d)
$$v_{av} = \frac{4+h}{6+h} \ m/sec$$
, $v = \frac{2}{3} \ m/sec$

(e)
$$v_{av} = \frac{1}{18 + 3h} \ m/sec$$
, $v = \frac{1}{18} \ m/sec$

9. For the function f whose graph is shown, which one of the following statements is true?

(a)
$$\lim_{x \to -3} f(x) = 2$$

(b)
$$\lim_{x \to -3} f(x) = \infty$$

(c)
$$\lim_{x \to 2^+} f(x) = 2$$

(d)
$$\lim_{x \to -2} f(x) = 3$$

(e)
$$\lim_{x \to -2^{-}} f(x) = 1$$

10.
$$\lim_{x \to 15} \frac{x - 15}{4 - \sqrt{x + 1}} =$$

(a)
$$-8$$

(b)
$$\infty$$

(e)
$$-\infty$$

11. Which one of the following statements is true?

(a) If
$$\lim_{x\to 2} f(x) = 5$$
, then $f(2) = 5$.

(b) If
$$\lim_{x\to 2^-} f(x) = 3$$
 and $\lim_{x\to 2^+} f(x) = 4$, then either $f(2) = 3$ or $f(2) = 4$.

(c) If
$$\lim_{x\to 2} f(x) = \infty$$
, then f is undefined at $x=2$.

(d) If
$$\lim_{x\to 2^-} f(x) = -\infty$$
 and $f(2) = 3$ then $y = 2$ is vertical asymptote to $f(x)$

(e) If
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = 5$$
, then $f(2) = 5$.

12. Which one of the following functions has a removable discontinuity at x = 1?

(a)
$$f(x) = \begin{cases} \frac{1}{x-1} & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$$

(b)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$$

(c)
$$f(x) = \frac{1}{(x-1)^2}$$

(d)
$$f(x) = \frac{|x-1|}{x-1}$$

(e)
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 1 \\ 2x - 2 & \text{if } x > 1 \end{cases}$$

- 13. The limit $\lim_{x\to 0} \frac{x^2}{5} e^{\cos(\frac{3\pi}{2x})}$
 - (a) is equal to $\frac{3\pi}{2}$
 - (b) is equal to $\frac{1}{5}$
 - (c) is equal to ∞
 - (d) does not exist
 - (e) is equal to 0

- 14. If f(x) = [x] + [-x], where [y] is the greatest integer less than or equal to y, then the $\lim_{x\to 3} f(x)$
 - (a) exists and is equal to -1
 - (b) does not exist because $\lim_{x\to 3} f(x) \neq f(3)$
 - (c) does not exist because $\lim_{x\to 3} [x]$ and $\lim_{x\to 3} [-x]$ do not exist
 - (d) exists and is equal to -2
 - (e) exists and is equal to 0

15. If $\lim_{x\to 0} \frac{\sqrt{mx+n}-2}{x} = 1$, then m+n = 1

- (a) 10
- (b) 8
- (c) 9
- (d) 0
- (e) 7

King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 003

Math 101 Exam 1 061

CODE 003

Sunday 8/10/2006 Net Time Allowed: 90 minutes

Name:		
ID:	Sec:	

Check that this exam has 15 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The graph of the function $f(x) = \frac{1+x}{x^4+x^3+4x^2+4x}$ has

- (a) four vertical and one horizontal asymptote
- (b) one vertical and no horizontal asymptotes
- (c) three vertical and one horizontal asymptote
- (d) three vertical and no horizontal asymptotes
- (e) one vertical and one horizontal asymptote

2. The function
$$f(x) = \begin{cases} x & \text{if } x \le 1 \\ mx + n & \text{if } 1 < x \le 2 \\ x + 2 & \text{if } x > 2 \end{cases}$$

- (a) is continuous for m = 0 and n = 1
- (b) is continuous for m = 1 and n = 0
- (c) is discontinuous for all values of m and n
- (d) is continuous for m = 3 and n = -2
- (e) is continuous for all values of m and n

- 3. The y-intercept of the tangent line to the curve $f(x) = \sqrt{x}$ at x = 4 is
 - (a) (0,1)
 - (b) (0,2)
 - (c) (0,4)
 - (d) $\left(0, -\frac{1}{2}\right)$
 - (e) $\left(0, -\frac{1}{4}\right)$

4. Which one of the following statements is true for $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$ when $f(x) = \frac{\sqrt{9x^2+1}}{5-2x}$?

(a)
$$\lim_{x \to -\infty} f(x) = -\frac{3}{2}$$
 and $\lim_{x \to \infty} f(x) = \frac{3}{2}$

(b)
$$\lim_{x \to -\infty} f(x) = \frac{3}{2}$$
 and $\lim_{x \to \infty} f(x) = -\frac{3}{2}$

(c)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = -\frac{3}{2}$$

(d)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$$

(e)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \frac{3}{2}$$

5.
$$\lim_{x \to \frac{1}{2}^{-}} \frac{x+3}{1-3x+2x^2} =$$

- (a) $-\frac{5}{6}$
- (b) $-\infty$
- (c) $\pm \infty$
- (d) $\frac{5}{6}$
- (e) ∞

$$6. \qquad \lim_{x \to 0} \left(\frac{2}{x\sqrt{4+x}} - \frac{1}{x} \right) =$$

- (a) $-\frac{5}{8}$
- (b) $-\frac{1}{8}$
- (c) $-\infty$
- (d) ∞
- (e) 0

7. The position of a particle is given by the equation of motion $s = f(t) = \frac{t}{t+1}$ where t is measured in seconds and s in meters. Then the average velocity v_{av} in the time interval [2, 2+h] and the velocity v at t=2 are given by

(a)
$$v_{av} = \frac{2}{18+h} \ m/sec$$
, $v = \frac{1}{9} \ m/sec$

(b)
$$v_{av} = \frac{1}{9+3h} \ m/sec$$
, $v = \frac{1}{9} \ m/sec$

(c)
$$v_{av} = \frac{1}{18 + 3h} \ m/sec$$
, $v = \frac{1}{18} \ m/sec$

(d)
$$v_{av} = \frac{1}{9+5h} \ m/sec$$
, $v = \frac{1}{9} m/sec$

(e)
$$v_{av} = \frac{4+h}{6+h} \ m/sec$$
, $v = \frac{2}{3} \ m/sec$

- 8. If the $\epsilon \delta$ definition of limit is used to prove that $\lim_{x \to \frac{1}{4}} (5 3x) = \frac{17}{4}$, then the largest possible value of δ in terms of ϵ is
 - (a) $\frac{\epsilon}{2}$
 - (b) $\frac{\epsilon}{4}$
 - (c) $\frac{\epsilon}{3}$
 - (d) $\frac{2\epsilon}{3}$
 - (e) $\frac{3\epsilon}{4}$

- 9. $\lim_{x \to 15} \frac{x 15}{4 \sqrt{x + 1}} =$
 - (a) 1
 - (b) ∞
 - (c) 0
 - (d) -8
 - (e) $-\infty$

- 10. For the function f whose graph is shown, which one of the following statements is true?
 - (a) $\lim_{x \to -2} f(x) = 3$
 - (b) $\lim_{x \to -3} f(x) = 2$
 - (c) $\lim_{x \to 2^+} f(x) = 2$
 - (d) $\lim_{x \to -2^{-}} f(x) = 1$
 - (e) $\lim_{x \to -3} f(x) = \infty$

11. Which one of the following functions has a removable discontinuity at x = 1?

(a)
$$f(x) = \frac{1}{(x-1)^2}$$

(b)
$$f(x) = \frac{|x-1|}{x-1}$$

(c)
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 1 \\ 2x - 2 & \text{if } x > 1 \end{cases}$$

(d)
$$f(x) = \begin{cases} \frac{1}{x-1} & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$$

(e)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$$

12. If
$$\lim_{x\to 0} \frac{\sqrt{mx+n}-2}{x} = 1$$
, then $m+n = 1$

- (a) 9
- (b) 0
- (c) 7
- (d) 8
- (e) 10

13. The limit $\lim_{x\to 0} \frac{x^2}{5} e^{\cos(\frac{3\pi}{2x})}$

- (a) is equal to $\frac{3\pi}{2}$
- (b) does not exist
- (c) is equal to 0
- (d) is equal to $\frac{1}{5}$
- (e) is equal to ∞

14. If f(x) = [x] + [-x], where [y] is the greatest integer less than or equal to y, then the $\lim_{x\to 3} f(x)$

- (a) exists and is equal to -1
- (b) exists and is equal to -2
- (c) exists and is equal to 0
- (d) does not exist because $\lim_{x\to 3} f(x) \neq f(3)$
- (e) does not exist because $\lim_{x\to 3} [x]$ and $\lim_{x\to 3} [-x]$ do not exist

15. Which one of the following statements is true?

(a) If
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = 5$$
, then $f(2) = 5$.

(b) If
$$\lim_{x\to 2} f(x) = 5$$
, then $f(2) = 5$.

(C) If
$$\lim_{x\to 2^-} f(x) = -\infty$$
 and $f(2) = 3$ then $y=2$ is vertical asymptote to $f(x)$

(d) If
$$\lim_{x\to 2} f(x) = \infty$$
, then f is undefined at $x=2$.

(e) If
$$\lim_{x \to 2^{-}} f(x) = 3$$
 and $\lim_{x \to 2^{+}} f(x) = 4$, then either $f(2) = 3$ or $f(2) = 4$.

King Fahd University of Petroleum and Minerals Department of Mathematical Sciences

CODE 004

Math 101 Exam 1 061

CODE 004

Sunday 8/10/2006
Net Time Allowed: 90 minutes

Name:		
ID:	Sec:	

Check that this exam has $\underline{15}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Which one of the following statements is true for $\lim_{x\to-\infty} f(x)$ and $\lim_{x\to\infty} f(x)$ when $f(x) = \frac{\sqrt{9x^2+1}}{5-2x}$?

(a)
$$\lim_{x \to -\infty} f(x) = -\frac{3}{2}$$
 and $\lim_{x \to \infty} f(x) = \frac{3}{2}$

(b)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$$

(c)
$$\lim_{x \to -\infty} f(x) = \frac{3}{2}$$
 and $\lim_{x \to \infty} f(x) = -\frac{3}{2}$

(d)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = -\frac{3}{2}$$

(e)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \frac{3}{2}$$

$$2. \qquad \lim_{x \to 15} \frac{x - 15}{4 - \sqrt{x + 1}} =$$

- (a) ∞
- (b) 1
- (c) -8
- (d) 0
- (e) $-\infty$

- 3. For the function f whose graph is shown, which one of the following statements is true?
 - (a) $\lim_{x \to 2^+} f(x) = 2$
 - (b) $\lim_{x \to -2^{-}} f(x) = 1$
 - (c) $\lim_{x \to -3} f(x) = \infty$
 - $(d) \lim_{x \to -2} f(x) = 3$
 - (e) $\lim_{x \to -3} f(x) = 2$

- 4. The y-intercept of the tangent line to the curve $f(x) = \sqrt{x}$ at x = 4 is
 - (a) (0,2)
 - (b) (0,4)
 - (c) $\left(0, -\frac{1}{2}\right)$
 - (d) $\left(0, -\frac{1}{4}\right)$
 - (e) (0,1)

- 5. If the $\epsilon \delta$ definition of limit is used to prove that $\lim_{x \to \frac{1}{4}} (5 3x) = \frac{17}{4}$, then the largest possible value of δ in terms of ϵ is
 - (a) $\frac{2\epsilon}{3}$
 - (b) $\frac{\epsilon}{4}$
 - (c) $\frac{3\epsilon}{4}$
 - (d) $\frac{\epsilon}{3}$
 - (e) $\frac{\epsilon}{2}$

- $6. \qquad \lim_{x \to 0} \left(\frac{2}{x\sqrt{4+x}} \frac{1}{x} \right) =$
 - (a) ∞
 - (b) $-\frac{5}{8}$
 - (c) $-\frac{1}{8}$
 - (d) 0
 - (e) $-\infty$

7. The function
$$f(x) = \begin{cases} x & \text{if } x \le 1 \\ mx + n & \text{if } 1 < x \le 2 \\ x + 2 & \text{if } x > 2 \end{cases}$$

- (a) is continuous for m = 3 and n = -2
- (b) is continuous for all values of m and n
- (c) is continuous for m = 1 and n = 0
- (d) is discontinuous for all values of m and n
- (e) is continuous for m = 0 and n = 1

8.
$$\lim_{x \to \frac{1}{2}^{-}} \frac{x+3}{1-3x+2x^2} =$$

- (a) $\frac{5}{6}$
- (b) $-\frac{5}{6}$
- (c) ∞
- (d) $-\infty$
- (e) $\pm \infty$

9. The position of a particle is given by the equation of motion $s = f(t) = \frac{t}{t+1}$ where t is measured in seconds and s in meters. Then the average velocity v_{av} in the time interval [2, 2+h] and the velocity v at t=2 are given by

(a)
$$v_{av} = \frac{1}{9+3h} \ m/sec$$
, $v = \frac{1}{9} \ m/sec$

(b)
$$v_{av} = \frac{1}{18 + 3h} \ m/sec$$
, $v = \frac{1}{18} \ m/sec$

(c)
$$v_{av} = \frac{1}{9+5h} \ m/sec$$
, $v = \frac{1}{9} m/sec$

(d)
$$v_{av} = \frac{2}{18+h} \ m/sec$$
, $v = \frac{1}{9} \ m/sec$

(e)
$$v_{av} = \frac{4+h}{6+h} \ m/sec$$
, $v = \frac{2}{3} \ m/sec$

- 10. The graph of the function $f(x) = \frac{1+x}{x^4+x^3+4x^2+4x}$ has
 - (a) one vertical and one horizontal asymptote
 - (b) three vertical and one horizontal asymptote
 - (c) one vertical and no horizontal asymptotes
 - (d) three vertical and no horizontal asymptotes
 - (e) four vertical and one horizontal asymptote

11. The limit $\lim_{x\to 0} \frac{x^2}{5} e^{\cos(\frac{3\pi}{2x})}$

- (a) is equal to 0
- (b) does not exist
- (c) is equal to ∞
- (d) is equal to $\frac{3\pi}{2}$
- (e) is equal to $\frac{1}{5}$

12. If $\lim_{x\to 0} \frac{\sqrt{mx+n}-2}{x} = 1$, then m+n = 1

- (a) 0
- (b) 10
- (c) 9
- (d) 8
- (e) 7

- 13. Which one of the following statements is true?
 - (a) If $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = 5$, then f(2) = 5.
 - (b) If $\lim_{x\to 2^-} f(x) = -\infty$ and f(2) = 3 then y = 2 is vertical asymptote to f(x)
 - (c) If $\lim_{x\to 2} f(x) = \infty$, then f is undefined at x=2.
 - (d) If $\lim_{x\to 2^-} f(x) = 3$ and $\lim_{x\to 2^+} f(x) = 4$, then either f(2) = 3 or f(2) = 4.
 - (e) If $\lim_{x\to 2} f(x) = 5$, then f(2) = 5.

- 14. If f(x) = [x] + [-x], where [y] is the greatest integer less than or equal to y, then the $\lim_{x\to 3} f(x)$
 - (a) does not exist because $\lim_{x\to 3} [x]$ and $\lim_{x\to 3} [-x]$ do not exist
 - (b) does not exist because $\lim_{x\to 3} f(x) \neq f(3)$
 - (c) exists and is equal to -2
 - (d) exists and is equal to 0
 - (e) exists and is equal to -1

15. Which one of the following functions has a removable discontinuity at x = 1?

(a)
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 1 \\ 2x - 2 & \text{if } x > 1 \end{cases}$$

(b)
$$f(x) = \frac{|x-1|}{x-1}$$

(c)
$$f(x) = \frac{1}{(x-1)^2}$$

(d)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$$

(e)
$$f(x) = \begin{cases} \frac{1}{x-1} & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$$

Q	MM	V1	V2	V3	V4
1	a	С	е	е	С
2	a	е	b	d	С
3	a	b	b	a	b
4	a	d	е	b	е
5	a	b	е	е	d
6	a	е	b	b	С
7	a	С	d	b	a
8	a	d	b	С	С
9	a	е	е	d	a
10	a	c	a	d	a
11	a	b	d	c	a
12	a	e	е	d	d
13	a	a	е	С	b
14	a	d	a	a	е
15	a	е	b	С	a