

- 1. If the region enclosed by $y = \sin x$ and the x-axis from x = 0 to $x = \pi$ is revolved about the vertical line x = -1, then the volume of the solid generated is equal to
 - (a) $2\pi(\pi-4)$
 - (b) $2\pi^2$
 - (c) $2\pi(\pi 1)$
 - (d) $2\pi(\pi+2)$
 - (e) $2\pi(\pi + 4)$

2. If
$$a_k = \frac{(k!)^2(3^k)}{(2k)!}$$
 and $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = L$, then the series $\sum_{k=1}^{\infty} a_k$

(a) diverges because $L = \frac{4}{3} > 1$

- (b) diverges because L = 12 > 1
- (c) converges because $L = \frac{3}{4} < 1$
- (d) converges because $L = \frac{1}{12} < 1$
- (e) may converge or diverge because L = 1

Page 2 of 11

3.
$$\int \frac{3x^2 + x + 4}{x^3 + 4x} dx =$$

(a)
$$\ln |x(x^2+4)| + \frac{3}{2} \tan^{-1}\left(\frac{x}{2}\right) + c$$

(b)
$$\ln |x\sqrt{x^2+4}| + c$$

(c)
$$\ln |x\sqrt{x^2+4}| + \frac{3}{2}\tan^{-1}\left(\frac{x}{2}\right) + c$$

(d)
$$\ln |x(x^2+4)| + \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) + c$$

(e)
$$\ln |x\sqrt[3]{x^2+4}| + \frac{1}{2}\tan^{-1}\left(\frac{x}{2}\right) + c$$

4. If $\{S_n\}_{n=1}^{+\infty}$ is the sequence of partial sums of the series $\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \cdots$, then S_n is equal to

(a)
$$\frac{n+1}{6(2n+3)}$$

(b)
$$\frac{2}{(2n+1)(2n+3)}$$

(c)
$$\frac{\pi}{3(2n+3)}$$

(d)
$$\frac{6n}{2n+3}$$

(e) $\frac{n}{2n+3}$

$$(2n+1)$$

· ·

5.
$$\int_{0}^{\ln 2} \frac{\sinh x}{1 + \cosh x} \, dx =$$
(a) $\ln(9/8)$
(b) $\ln(4/5)$

- (c) $\ln(12/7)$
- (d) $\ln(15/8)$
- $(e) \ln 36$

6. If
$$a_k = \frac{19}{\sqrt[3]{27k^2 + 5k}}$$
, $b_k = \frac{1}{k^{2/3}}$, and $\lim_{k \to \infty} \frac{a_k}{b_k} = L$, then the series $\sum_{k=1}^{\infty} a_k$

- (a) converges because L > 1 and finite
- (b) diverges because L < 1 and finite
- (c) converges because L < 1 and finite
- (d) diverges because $L = +\infty$

·

(e) diverges because L > 1 and finite

١.

CODE 003

- 7. If the integral test is used in the interval $[0, \infty)$ for the series $\sum_{k=0}^{\infty} \frac{1}{1+9k^2}$, then the value of the integral is
 - (a) $+\infty$, and the series diverges
 - (b) $\frac{\pi}{9}$, and the series diverges
 - (c) $\frac{\pi}{6}$, and the series converges
 - (d) 9π , and the series converges
 - (c) $\frac{9\pi}{2}$, and the series converges

8. The improper integral
$$\int_0^e x \ln x \, dx$$

- (a) diverges
- (b) converges and has the value e^2
- (c) converges and has the value $4e^2$
- (d) converges and has the value $\frac{1}{4}e^2$
- (e) oscillates between e^2 and $4e^2$

1

- 9. If the area enclosed by the curves $y^2 = x$ and y = x 2 is revolved about the line x = 4, then the volume of the solid generated is equal to
 - (a) $\pi \int_0^4 [(4-x)^2 (2-x)^2] dx$

(b)
$$\pi \int_{-1}^{2} [(2+y-y^2)^2 dy]$$

(c)
$$2\pi \int_{1}^{1} (4-x)(\sqrt{x}-x+2)dx$$

(d) $2\pi \int_{1}^{4} (4-x)(2-\sqrt{x}+x)dx$

(e)
$$\pi \int_{-1}^{2} [(4-y^2)^2 - (2-y)^2] dy$$

10. Which one of the following series is absolutely convergent?

(a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}}$$

(b)
$$\sum_{k=1}^{\infty} \frac{(-1)^k k}{k+1}$$

(c)
$$\sum_{k=1}^{\infty} \cos(\pi k)$$

(d)
$$\sum_{k=1}^{\infty} (-1)^k \pi^k$$

(e)
$$\sum_{k=1}^{\infty} (-1)^k e^{-k}$$

MATH 102-15 Final (042)

CODE 003

11. The sequence $\left\{ \tan^{-1} n \right\}_{n=1}^{+\infty}$ is

- (a) increasing (not strictly) with an upper bound
- (b) strictly increasing without an upper bound
- (c) increasing (not strictly) without an upper bound
- (d) strictly increasing with an upper bound
- (e) neither increasing nor decreasing

12. The radius of convergence R and the interval of convergence I of the power series $\sum_{k=0}^{\infty} (-1)^k \frac{(x-5)^k}{3^k}$ are

- (a) $R = \frac{5}{3}$ and I = (2,8)
- (b) R = 3 and I = (2, 8)
- (c) R = 3 and I = (2, 8]
- (d) $R = \frac{5}{3}$ and I = [2, 8)
- (e) R = 3 and I = [2, 8)

MATH 102-15 Final (042)

13. The series
$$\sum_{k=1}^{\infty} 2^{3k} \cdot 3^{1-2k}$$

- (a) converges and has the sum 8/9
- (b) converges and has the sum 3/4
- (c) oscillates between 2 and 3
- (d) diverges
- (e) converges and has the sum 24

14. The sequence $\frac{\ln 3}{\ln 5}$, $\frac{\ln 6}{\ln 7}$, $\frac{\ln 9}{\ln 9}$, $\frac{\ln 12}{\ln 11}$, ...

- (a) converges to 3/2
- (b) converges to 1
- (c) converges to 2/3
- (d) diverges
- (e) oscillates between 2 and 3

- If the portion of the curve $y = 2\sqrt{x}$ between x = 0 and x = 8 is revolved about the 15.x-axis, then the area of the resulting surface is equal to
 - (a) 104π
 - $\underline{208\pi}$ (b) 3
 - $\frac{215\pi}{3}$ (c) $\frac{103\pi}{3}$ (d)
 - (e) 16π

 $\frac{2}{15}$ (a) $\frac{11}{15}$ (b) $\frac{8}{15}$ (c) 13 (d) $\overline{15}$ $\frac{14}{15}$

(e)