	SOLUTIO	DNS			
	King Fahd University of Pe	etroleum & Minerals			
Department of Mathematics & Statistics					
STAT-319-Term073-Quiz3-A					
Name:	ID:	Sec.:	Serial:		

Q.1 In a semiconductor manufacturing process, **two** wafers from a lot is tested. Each wafer is classified as pass or fail. Assume that the probability that a wafer passes the test is 0.8 and that wafers are independent.

a. Determine the probability distribution of X: the number of wafers from a lot that pass the test.

Let: **P** The wafer is classified as Pass, **F**: The wafer is classified as Fail

 $S = \{PP, PF, FP, FF\}$ This implies that the values of X are: 0, 1, and 2. (3-Points)

f(0) = P(FF) = (0.2)(0.2) = 0.04 (1-Point)

$$f(1) = P(PF) + P(FP) = (0.8)(0.2) + (0.2)(0.8) = 0.32$$
(1-Point)

$$f(2) = P(PP) = (0.8)(0.8) = 0.64$$
 (1-Point)

The probability distribution of X is (2-Points)

Х	0	1	2
f(x)	0.04	0.32	0.64

b. If Y is a random variable given by $Y = (X - 1)^2$ find the expected value of Y.

$$E(Y) = E((X - 1)^{2}) = \sum_{all \ x} (x - 1)^{2} f(x) (1-Point)$$

= $(0-1)^{2} (0.04) + (1-1)^{2} (0.32) + (2-1)^{2} (0.64) (1-Point)$
= $0.04 + 0 + 0.64 = 0.68 (1-Point)$

Q2. If the probability density function for a random variable X is: $f(x) = \begin{cases} e^{-(x-k)}, & x > 4 \\ 0, & elsewhere \end{cases}$

a. Find the value of *K*

a

$$\int_{4}^{x} f(x) dx = 1 (1-\text{Point})$$

$$\int_{4}^{\infty} e^{-(x-k)} dx = -e^{-(x-k)} \int_{4}^{\infty} = 1$$

$$= -\left(0 - e^{-(4-k)}\right) = 1 \Rightarrow e^{-4+k} = 1$$

$$-4+k = 0 \Rightarrow k = 4 (1-\text{Point})$$
b. Find the distribution function $F(x)$

$$F(x) = \int_{4}^{x} f(t) dt (2-\text{Points})$$

$$\int_{4}^{x} e^{-(t-4)} dt = -e^{-(t-4)} \int_{4}^{x} (2-\text{Points})$$

$$= -\left(e^{-(x-4)} - 1\right) = 1 - e^{-(x-4)} (1-\text{Point})$$
So, $F(x) = \begin{cases} 1 - e^{-(x-4)}, & x \ge 4\\ 0, & x < 4 \end{cases}$