Solution of Selected Exercises

4.1.1

3. Given $y=c_{1} e^{4 x}+c_{2} x \ln x$, then
$y^{\prime}=c_{1}+c_{2}(1+\ln x)$,
$y(1)=c_{1}=3$,
$y^{\prime}(1)=c_{1}+c_{2}=-1$
From these two equations we get
$c_{1}=3, c_{2}=-4$. Thus the solution is $y=3 x-4 x \ln x$.
4. Since $a_{0}(x)=\tan x$ and $x_{0}=0$ the problem has a unique solution for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
5. Here $y=c_{1}+c_{2} x^{2}$. Therefore $y(0)=c_{1}=1, y^{\prime}(1)=2 c_{2}=6$ which implies that $c_{1}=1$ and $c_{2}=3$. The solution is $y=1+3 x^{2}$.
6. (a) Since $y=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x$ and so $y^{\prime}=c_{1} e^{x}(-\sin x+\cos x)+$ $c_{2} e^{x}(\cos x+\sin x)$. This implies that $y(0)=c_{1}=1, y^{\prime}(0)=c_{1}+c_{2}=0$ so that $c_{1}=1$ and $c_{2}=-1$. Therefore the solution is $y=e^{x} \cos x-$ $e^{x} \sin x$.
7. The functions are linearly dependent as $(-4) x+(3) x^{2}+(1)\left(4 x-3 x^{2}\right)=$ 0 .
8. $W\left(e^{-3 x}, e^{4 x}\right)=\left|\begin{array}{cc}e^{-3 x} & e^{4 x} \\ -3 e^{-3 x} & 4 e^{4 x}\end{array}\right|=4 e^{x}+3 e^{x}=7 e^{x} \neq 0$.

Hence $e^{-3 x}$ and $e^{4 x}$ are linearly independent solutions, so $e^{-3 x}, e^{4 x}$ is a fundamental set of solutions. This gives us $y=c_{1} e^{-3 x}+c_{2} e^{4 x}$ as the general solution.
28. The functions satisfy the differential equation and their Wronskian

$$
\begin{aligned}
W(\cos (\ln x), \sin (\ln x)) & =\left|\begin{array}{cc}
\cos (\ln x) & \sin (\ln x) \\
-\frac{\sin (\ln x)}{x} & \frac{\cos (\ln x)}{x}
\end{array}\right| \\
& =\frac{1}{x}\left[\cos ^{2} \ln x+\sin ^{2} \ln x\right] \\
& =\frac{1}{x} \quad \text { as } \cos ^{2} \ln x+\sin ^{2} \ln x=1 \\
& \neq 0 \quad \text { for } 0 \leq x<\infty
\end{aligned}
$$

$\{\cos (\ln x), \sin (\ln x)\}$ is a fundamental set of solutions. The general solution is $y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x)$.
33. $y_{1}=e^{2 x}$ and $y_{2}=x e^{2 x}$ form a fundamental set of solutions of the homogeneous equation $y^{\prime \prime}-4 y^{\prime}+4 y=0$, and y_{p} is a particular solution of non-homogeneous equation $y^{\prime \prime}-4 y^{\prime}+4 y=2 e^{2 x}+4 x-12$.

4.2

3.

$$
\begin{aligned}
y & =u(x) \cos 4 x, \quad \text { so } \\
y^{\prime} & =-4 u \sin 4 x+u^{\prime} \cos 4 x \\
y^{\prime \prime} & =u^{\prime \prime} \cos 4 x-8 u^{\prime} \sin 4 x-16 u \cos 4 x
\end{aligned}
$$

and

$$
\begin{aligned}
y^{\prime \prime}+16 y & =(\cos 4 x) u^{\prime \prime}-8(\sin 4 x) u^{\prime}=0, \quad \text { or } \\
u^{\prime \prime}-8(\tan 4 x) u^{\prime} & =0
\end{aligned}
$$

If $w=u^{\prime}$ we obtain the first-order equation $w^{\prime}-8(\tan 4 x) w=0$, which has the integrating factor $e^{-8} \int \tan 4 x d x=\cos ^{2} 4 x$.
Now, $\frac{d}{d x}\left[\left(\cos ^{2} 4 x\right) w\right]=0$ gives $\left(\cos ^{2} 4 x\right) w=0$. Therefore, $w=u^{\prime}=c \sec ^{2} 4 x$ and $u=c_{1} \tan 4 x$. A second solution is $y_{2}=\tan 4 x \cos 4 x=\sin 4 x$.
14.

$$
\begin{aligned}
y^{\prime \prime}-\frac{3 x}{x^{2}} y^{\prime}+\frac{5}{x} & =0 \\
p(x) & =-\frac{3}{x}, \text { we have } \\
y_{2} & =x^{2} \cos (\ln x) \int \frac{e^{-\int-3 \frac{d x}{x}}}{x^{4} \cos ^{2}(\ln x)} d x \\
& =x^{2} \cos (\ln x) \int \frac{x^{3}}{x^{4} \cos ^{2}(\ln x)} d x \\
& =x^{2} \cos (\ln x) \tan (\ln x) \\
& =x^{2} \sin (\ln x)
\end{aligned}
$$

Therefore, a second solution is

$$
y_{2}=x^{2} \sin (\ln x)
$$

19. Define $y=u(x) e^{x}$, so

$$
y^{\prime}=u e^{x}+u^{\prime} e^{x}, y^{\prime \prime}=u^{\prime \prime} e^{x}+2 u^{\prime} e^{x}+u e^{x}
$$

and

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{x} u^{\prime \prime}-e^{x} u^{\prime}=0 \text { or } u^{\prime \prime}-u^{\prime}=0
$$

If $w=u^{\prime}$, we obtain the first order equation $w^{\prime}-w=0$, which has the integrating factor $e^{-\int d x}=e^{-x}$.
Now,

$$
\frac{d}{d x}\left[e^{-x} w\right] \text { gives } e^{-x} w=c
$$

Therefore, $w=u^{\prime}=c e^{x}$ and $u=c e^{x}$. A second solution is $y_{2}=e^{x} e^{x}=e^{2 x}$. To find a particular solution we try $y_{p}=A e^{3 x}$. Then $y^{\prime}=3 A e^{3 x}, y^{\prime \prime}=9 A e^{3 x}$, and $9 A e^{3 x}-3\left(3 A e^{3 x}\right)+2 A e^{3 x}=5 e^{3 x}$. Thus $A=\frac{5}{2}$ and $y_{p}=\frac{5}{2} e^{3 x}$. The general solution is

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+\frac{5}{2} e^{3 x}
$$

4.3

9. The auxiliary equation is

$$
m^{2}+9=0 \Rightarrow m=3 i \text { and } m=-3 i
$$

so that

$$
y=c_{1} \cos 3 x+c_{2} \sin 3 x
$$

10. The auxiliary equation is

$$
2 m^{2}+2 m+1=0 \Rightarrow m=-\frac{1}{2} \pm i^{2}
$$

so that

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos \frac{x}{2}+c_{2} \sin \frac{x}{2}\right)
$$

15. The auxiliary equation is

$$
m^{3}-4 m^{2}-5 m=0 \Rightarrow m=0, m=5 \text { and } m=-1
$$

so that

$$
y=c_{1}+c_{2} e^{5 x}+c_{3} e^{-x}
$$

34. The auxiliary equation is

$$
m^{2}-2 m+1=0 \Rightarrow m=1 \text { and } m=-1
$$

so that

$$
y=c_{1} e^{x}+c_{2} x e^{x}
$$

If $y(0)=5$ and $y^{\prime}(0)=10$ then $c_{1}=5, c_{1}+c_{2}=10$ so $c_{1}=5, y^{\prime}(0)=10$ then $y=5 e^{x}+5 x e^{x}$
40. The auxiliary equation is

$$
m^{2}-2 m+2=0 \Rightarrow m=1 \pm i
$$

so that

$$
y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)
$$

If $y(0)=1$ and $y(\pi)=1$ then $c_{1}=1$ and $y(\pi)=e^{\pi} \cos \pi=-e^{\pi}$. Since $-e^{\pi} \neq 1$, the boundary-value problem has no solution.

4.5

8.

$$
\begin{aligned}
y^{\prime \prime \prime}+4 y^{\prime \prime}+3 y^{\prime} & =x^{2} \cos x-3 x \\
\left(D^{3}+4 D^{2}+3 D\right) y & =x^{2} \cos x-3 x \\
L y & =x^{2} \cos x-3 x \\
L & =\left(D^{3}+4 D^{2}+3 D\right) \\
& =D\left(D^{2}+4 D+3\right) \\
& =D(D+1)(D+3)
\end{aligned}
$$

where,
13.

$$
\begin{aligned}
& (D-2)(D+5)\left(e^{2 x}+3 e^{-5 x}\right) \\
= & (D-2)\left(2 e^{2 x}-15 e^{-5 x}+5 e^{2 x}+15 e^{-5 x}\right) \\
= & \left(4 e^{2 x}+75 e^{-5 x}+10 e^{2 x}-75 e^{-5 x}\right)-\left(4 e^{2 x}-30 e^{-5 x}+10 e^{2 x}+30 e^{-5 x}\right) \\
= & 0
\end{aligned}
$$

41.

$$
y^{\prime \prime \prime}+y^{\prime \prime}=8 x^{2}
$$

Apply D^{3} to the differential equation, we obtain

$$
D^{3}\left(D^{3}+D^{2}\right) y=D^{5}(D+1) y=0
$$

Then

$$
y=c_{1}+c_{2} x+c_{3} e^{-x}+c_{4} x^{4}+c_{5} x^{3}+c_{6} x^{2}
$$

and

$$
y_{p}=A x^{4}+B x^{3}+C x^{2}
$$

Substituting y_{p} into the differential equation yields

$$
12 A x^{2}+(24 A+6 B) x+(6 B+2 C)=8 x^{2}
$$

Equating coefficients give

$$
\begin{aligned}
12 A & =8 \\
24 A+6 B & =0 \\
6 B+2 C & =0
\end{aligned}
$$

Then

$$
\begin{aligned}
A & =\frac{2}{3} \\
B & =-\frac{8}{3} \\
C & =8
\end{aligned}
$$

and the general solution is

$$
y=c_{1}+c_{2} x+c_{3} e^{-x}+\frac{2}{3} x^{4}-\frac{8}{3} x^{3}+8 x^{2}
$$

48.

Applying $D\left(D^{2}+1\right)$ to the differential equation, we obtain

$$
D\left(D^{2}+1\right)\left(D^{2}+4\right) y=0
$$

Then

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x+c_{3} \cos x+c_{4} \sin x+c_{5}
$$

and

$$
y_{p}=A \cos x+B \sin x+C
$$

Substituting y_{p} into the differential equation yields

$$
3 A \cos x+3 B \sin x+4 C=4 \cos x+3 \sin x-8
$$

Equating coefficients gives

$$
\begin{aligned}
& A=\frac{4}{3} \\
& B=1 \\
& C=-2
\end{aligned}
$$

The general solution is

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{4}{3} \cos x+\sin x-2
$$

53. Applying $D^{2}-2 D+2$ to the differential equation, we obtain $\left(D^{2}-2 D+2\right)\left(D^{2}-2 D+5\right) y=0$

Then

$$
y=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)+e^{x}\left(c_{3} \cos x+c_{4} \sin x\right)
$$

and

$$
y_{p}=A e^{x} \cos x+B e^{x} \sin x .
$$

Substituting y_{p} into the differential equation yields

$$
3 A e^{x} \cos x+3 B e^{x} \sin x=e^{x} \sin x .
$$

Equating coefficients give

$$
\begin{aligned}
& A=0 \\
& B=\frac{1}{3}
\end{aligned}
$$

and the general solution is

$$
y=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)+\frac{1}{3} e^{x} \sin x .
$$

4.6

6. The auxialiary equation is $m^{2}+1=0$, so

$$
\begin{aligned}
y_{c} & =c_{1} \cos x+c_{2} \sin x, \quad \text { and } \\
W & =\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
\end{aligned}
$$

Identifying $f(x)=\sec ^{2} x$, we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{\sin x}{\cos ^{2} x} \\
& u_{2}^{\prime}=\sec x
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{\cos x}=-\sec x \\
& u_{2}=\ln |\sec x+\tan x|
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x-\cos x \sec x+\sin x \ln |\sec x+\tan x| \\
& =c_{1} \cos x+c_{2} \sin x-1+\sin x \ln |\sec x+\tan x|
\end{aligned}
$$

11. The auxiliary equation is $m^{2}+3 m+2=(m+1)(m+2)=0$, so

$$
\begin{aligned}
y_{c} & =c_{1} e^{-x}+c_{2} e^{-2 x}, \quad \text { and } \\
W & =\left|\begin{array}{cc}
e^{-x} & e^{-2 x} \\
-e^{-x} & -2 e^{-2 x}
\end{array}\right|=-e^{-3 x}
\end{aligned}
$$

Identifying $f(x)=\frac{1}{\left(1+e^{x}\right)}$, we obtain

$$
\begin{aligned}
u_{1}^{\prime} & =\frac{e^{x}}{1+e^{x}} \\
u_{2}^{\prime} & =-\frac{e^{2 x}}{1+e^{x}}=\frac{e^{x}}{1+e^{x}}-e^{x}
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=\ln \left(1+e^{x}\right) \\
& u_{2}=\ln \left(1+e^{x}\right)-e^{x},
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} e^{-x}+c_{2} e^{-2 x}+e^{-x} \ln \left(1+e^{x}\right)+e^{-2 x} \ln \left(1+e^{x}\right)-e^{-x} \\
& =c_{3} e^{-x}+c_{2} e^{-2 x}+\left(1+e^{-x}\right) e^{-x} \ln \left(1+e^{x}\right)
\end{aligned}
$$

12. The auxiliary equation is $m^{2}-2 m+1=(m-1)^{2}=0$, so

$$
\begin{aligned}
y_{c} & =c_{1} e^{x}+c_{2} x e^{x}, \quad \text { and } \\
W & =\left|\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} & x e^{x}+e^{x}
\end{array}\right|=e^{2 x}
\end{aligned}
$$

Identifying $f(x)=\frac{e^{x}}{\left(1+x^{2}\right)}$, we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{x e^{x} e^{x}}{e^{2 x}\left(1+x^{2}\right)}=-\frac{x}{1+x^{2}} \\
& u_{2}^{\prime}=\frac{e^{x} e^{x}}{e^{2 x}\left(1+x^{2}\right)}=\frac{1}{1+x^{2}}
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{2} \ln \left(1+x^{2}\right) \\
& u_{2}=\tan ^{-1} x,
\end{aligned}
$$

and

$$
y=c_{1} e^{x}+c_{2} x e^{x}-\frac{1}{2} e^{x} \ln \left(1+x^{2}\right)+x e^{x} \tan ^{-1} x
$$

17. The auxiliary equation is $3 m^{2}-6 m+6=0$, so

$$
\begin{aligned}
y_{c} & =e^{x}\left(c_{1} \cos x+c_{2} \sin x\right), \\
W & =\left|\begin{array}{cc}
e^{x} \cos x & e^{x} \sin x \\
e^{x} \cos x-e^{x} \sin x & e^{x} \cos x+e^{x} \sin x
\end{array}\right|=e^{2 x}
\end{aligned}
$$

Identifying $f(x)=\frac{1}{1} e^{x} \sec x$, we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{\left(e^{x} \sin x\right)\left(e^{x} \sec x\right) / 3}{e^{2 x}}=-\frac{1}{3} \tan x \\
& u_{2}^{\prime}=\frac{\left(e^{x} \cos x\right)\left(e^{x} \sec x\right) / 3}{e^{2 x}}=\frac{1}{3}
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{3} \ln (\cos x) \\
& u_{2}=\frac{1}{3} x
\end{aligned}
$$

and

$$
y=c_{1} e^{x} \cos x+c_{2} e^{x} \cos x+\frac{1}{3} \ln (\cos x) e^{x} \cos x+\frac{1}{3} x e^{x} \sin ^{x}
$$

24. Write the equation in the form

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=\frac{\sec (\ln x)}{x^{2}}
$$

and identify $f(x)=\frac{\sec (\ln x)}{x^{2}}$. From

$$
\begin{aligned}
& y_{1}=\cos (\ln x) . \quad \text { and } \\
& y_{2}=\sin (\ln x)
\end{aligned}
$$

we compute

$$
W=\left|\begin{array}{cc}
\cos (\ln x) & \sin (\ln x) \\
-\frac{\sin (\ln x)}{x} & \frac{\cos (\ln x)}{x}
\end{array}\right|=\frac{1}{x}
$$

Now

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{\tan (\ln x)}{x}, \quad \text { so } \\
& u_{1}=\ln |\cos (\ln x)|
\end{aligned}
$$

and

$$
\begin{aligned}
& u_{2}^{\prime}=\frac{1}{x}, \quad \text { so } \\
& u_{2}=\ln x
\end{aligned}
$$

Thus, particular solution is

$$
y_{p}=\cos (\ln x) \ln |\cos (\ln x)|+(\ln x) \sin (\ln x)
$$

4.7

3. The auxiliary equation is $m^{2}=0$ so that $y=c_{1}+c_{2} \ln x$
4. The auxiliary equation is $m^{2}-4 m=m(m-4)=0$ so that $y=c_{1}+c_{2} x^{4}$
5. The auxiliary equation is $m^{2}+4=0$ so that $y=c_{1} \cos (2 \ln x)+c_{2} \sin (2 \ln x)$
6. The auxiliary equation is $m^{2}+4 m+4=(m+2)^{2}=0$ so that $y=c_{1} x^{-2}+c_{2} x^{-2} \ln x$
7. The auxiliary equation is $m^{2}-8 m+41=0$ so that $y=x^{4}\left[c_{1} \cos (5 \ln x)+c_{2} \sin (5 \ln x)\right]$
8. The auxiliary equation is $m^{2}-2 m+1=0$ or $(m-1)^{2}=0$, so that

$$
\begin{aligned}
y_{c} & =c_{1} x+c_{2} x \ln x, \quad \text { and } \\
W(x, x \ln x) & =\left|\begin{array}{cc}
x & x \ln x \\
1 & 1+\ln x
\end{array}\right|=x^{2}
\end{aligned}
$$

Identifying $f(x)=\frac{2}{x}$, we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-2 \frac{\ln x}{x} \\
& u_{2}^{\prime}=\frac{2}{x}
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-(\ln x)^{2} \\
& u_{2}=2 \ln x
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} x+c_{2} x \ln x-x(\ln x)^{2}+2 x(\ln x)^{2} \\
& =c_{1} x+c_{2} x \ln x+x(\ln x)^{2}
\end{aligned}
$$

22. The auxiliary equation is $m^{2}-3 m+2=(m-1)(m-2)=0$, so

$$
\begin{aligned}
y_{c} & =c_{1} x+c_{2} x^{2}, \quad \text { and } \\
W\left(x, x^{2}\right) & =\left|\begin{array}{ll}
x & x^{2} \\
1 & 2 x
\end{array}\right|=x^{2}
\end{aligned}
$$

Identifying $f(x)=x^{2} e^{x}$, we obtain

$$
\begin{aligned}
u_{1}^{\prime} & =-x^{2} e^{x} \\
u_{2}^{\prime} & =x e^{x}
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-x^{2} e^{x}+2 x e^{x}-2 e^{x} \\
& u_{2}=x e^{x}-e^{x},
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} x+c_{2} x^{2}-x^{3} e^{x}+2 x^{2} e^{x}-2 x e^{x}+x^{3} e^{x}-x^{2} e^{x} \\
& =c_{1} x+c_{2} x^{2}+x^{2} e^{x}-2 x e^{x}
\end{aligned}
$$

25. The auxiliary equation is $m^{2}+1=0$, so that

$$
\begin{gathered}
y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x), \quad \text { and } \\
y^{\prime}=-c_{1} \frac{1}{x} \sin (\ln x)+c_{2} \frac{1}{x} \cos (\ln x)
\end{gathered}
$$

The initial conditions imply $c_{1}=1$ and $c_{2}=2$. Thus

$$
y=\cos (\ln x)+2 \sin (\ln x)
$$

26. The auxiliary equation is $m^{2}-4 m+4=(m-2)^{2}=0$, so that

$$
\begin{aligned}
& y=c_{1} x^{2}+c_{2} x^{2} \ln x, \quad \text { and } \\
& y^{\prime}=2 c_{1} x+c_{2}(x+2 x \ln x)
\end{aligned}
$$

The initial conditions imply $c_{1}=5$ and $c_{2}+10=3$. Thus

$$
y=5 x^{2}-7 x^{2} \ln x
$$

35. We have

$$
\begin{gathered}
4 t^{2} \frac{d^{2} y}{d t^{2}}+y=0 ;\left.y(t)\right|_{t=1}=2, \\
\left.y^{\prime}(t)\right|_{t=1}=-4
\end{gathered}
$$

auxiliary equation is $4 m^{2}-4 m+1=(2 m-1)^{2}=0$, so that

$$
\begin{gathered}
y=c_{1} t^{\frac{1}{2}}+c_{2} t^{\frac{1}{2}} \ln t, \quad \text { and } \\
y^{\prime}=\frac{1}{2} c_{1} t^{-\frac{1}{2}}+c_{2}\left(t^{-\frac{1}{2}}+\frac{1}{2} t^{-\frac{1}{2}} \ln t\right)
\end{gathered}
$$

The initial conditions imply $c_{1}=2$ and $1+c_{2}=-4$. Thus

$$
y=2 t^{\frac{1}{2}}-5 t^{\frac{1}{2}} \ln t=2(-x)^{\frac{1}{2}}-5(-x)^{\frac{1}{2}} \ln (-x), \quad x<0
$$

36. The differential equation and initial conditions become

$$
\begin{gathered}
t^{2} \frac{d^{2} y}{d t^{2}}-4 t \frac{d y}{d t}+6 y=0 ;\left.y(t)\right|_{t=2}=8, \\
\left.y^{\prime}(t)\right|_{t=2}=0
\end{gathered}
$$

The auxiliary equation is $m^{2}-5 m+6=(m-2)(m-3)=0$, so that

$$
\begin{gathered}
y=c_{1} t^{2}+c_{2} t^{3}, \quad \text { and } \\
y^{\prime}=2 c_{1} t+3 c_{2} t^{2}
\end{gathered}
$$

The initial conditions imply

$$
4 c_{1}+8 c_{2}=84 c_{1}+12 c_{2}=0
$$

from which we find $c_{1}=6$ and $c_{2}=-2$. Thus

$$
y=6 t^{2}-2 t^{3}=6 x^{2}+2 x^{3}, \quad x<0
$$

6.1

1. $\lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} x^{n+1} /(n+1)}{2^{n} x^{n} / n}\right|=\lim _{n \rightarrow \infty} \frac{2 n}{n+1}|x|=2|x|$

This series is absolutely convergent for $2|x|<1$ or $|x|<1 / 2$. At $x=-1 / 2$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges by the alternating series test.
At $x=1 / 2$, the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is the harmonic series which diverges. Thus, the given series converges on $[-1 / 2,1 / 2)$.
9.

$$
\begin{aligned}
\sum_{n=1}^{\infty} 2 n c_{n} x^{n-1}+\sum_{n=0}^{\infty} 6 c_{n} x^{n+1} & =2 \cdot 1 \cdot c_{1} x^{0}+\underbrace{\sum_{n=2}^{\infty} 2 n c_{n} x^{n-1}}_{k=n-1}+\underbrace{\sum_{n=2}^{\infty} 6 c_{n} x^{n+1}}_{k=n+1} \\
& =2 c_{1}+\sum_{k=1}^{\infty} 2(k+1) c_{k+1} x^{k}+\sum_{k=1}^{\infty} 6 c_{k-1} x^{k} \\
& =2 c_{1}+\sum_{k=1}^{\infty}\left[2(k+1) c_{k+1}+6 c_{k-1}\right] x^{k}
\end{aligned}
$$

17. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}+x^{2} y^{\prime}+x y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n+1}}_{k=n+1}+\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n+1}}_{k=n+1} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+\sum_{k=2}^{\infty}(k-1) c_{k-1} x^{k}+\sum_{k=1}^{\infty} c_{k-1} x^{k} \\
& =2 c_{2}+\left(6 c_{3}+c_{0}\right) x+\sum_{k=2}^{\infty}\left[(k+2)(k+1) c_{k+2}+k c_{k-1}\right] x^{k} \\
& =0
\end{aligned}
$$

Thus

$$
\begin{aligned}
c_{2} & =0 \cdot 6 c_{3}+c_{0} \\
(k+2)(k+1) c_{k+2}+k c k-1 & =0
\end{aligned}
$$

and

$$
\begin{aligned}
c_{3} & =-\frac{1}{6} c_{0} \\
c_{k+2} & =-\frac{k}{(k+2)(k+1)} c_{k-1}, \quad k=2,3,4, \cdots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
c_{3} & =-\frac{1}{6} \\
c_{4}=c_{5} & =0 \\
c_{6} & =\frac{1}{45}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
c_{3} & =0 \\
c_{4} & =-\frac{1}{6} \\
c_{5}=c_{6} & =0 \\
c_{7} & =\frac{5}{252}
\end{aligned}
$$

and so on. Thus, two solutions are

$$
\begin{aligned}
& y_{1}=1-\frac{1}{6} x^{3}+\frac{1}{45} x^{6}-\cdots \quad \text { and } \\
& y_{2}=x-\frac{1}{6} x^{4}+\frac{5}{252} x^{7}-\cdots
\end{aligned}
$$

18. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}+2 x^{2} y^{\prime}+2 y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+2 \underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n+1}}_{k=n}+2 \underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+2 \sum_{k=1}^{\infty} k c_{k} x^{k}+2 \sum_{k=0}^{\infty} c_{k} x^{k} \\
& =2 c_{2}+2 c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}+2(k+1) c_{k}\right] x^{k} \\
& =0
\end{aligned}
$$

Thus

$$
\begin{array}{r}
2 c_{2}+2 c_{0}=0 \\
(k+2)(k+1) c_{k+2}+2(k+1) c_{k}=0
\end{array}
$$

and

$$
\begin{aligned}
c_{2} & =-c_{0} \\
c_{k+2} & =-\frac{2}{k+2} c_{k}, \quad k=1,2,3, \cdots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
c_{2} & =-1 \\
c_{3}=c_{5}=c_{7}=\cdots & =0 \\
c_{4} & =\frac{1}{2} \\
c_{6} & =-\frac{1}{6}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
c_{2}=c_{4}=c_{6}=\cdots & =0 \\
c_{3} & =-\frac{2}{3} \\
c_{5} & =\frac{4}{15} \\
c_{7} & =-\frac{8}{105}
\end{aligned}
$$

and so on. Thus, two solutions are

$$
\begin{aligned}
& y_{1}=1-x^{2}+\frac{1}{2} x^{4}-\frac{1}{6} x^{6}+\cdots \\
& y_{2}=x-\frac{2}{3} x^{3}+\frac{4}{15} x^{5}-\frac{8}{105} x^{7}+\cdots
\end{aligned}
$$

6.2

19. Substituting $\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
\begin{aligned}
& 3 x y^{\prime \prime}+(2-x) y^{\prime}-y \\
= & \left(3 r^{2}-r\right) c_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[3(k+r-1)(k+r) c_{k}+2(k+r) c_{k}-(k+r) c_{k-1}\right] x^{k+r-1} \\
= & 0
\end{aligned}
$$

which implies

$$
3 r^{2}-r=r(3 r-1)=0
$$

and

$$
(k+r)(3 k+3 r-1) c_{k}-(k+r) c_{k-1}=0
$$

The indicial roots are $r=0$ and $r=1 / 3$. For $r=0$ the recurrence relation is

$$
c_{k}=\frac{c_{k-1}}{(3 k-1)}, \quad k=1,2,3, \cdots
$$

and

$$
c_{1}=\frac{1}{2} c_{0}, \quad c_{2}=\frac{1}{10} c_{0}, \quad c_{3}=\frac{1}{80} c_{0}
$$

For $r=1 / 3$ the recurrence relation is

$$
c_{k}=\frac{c_{k-1}}{3 k}, \quad k=1,2,3, \cdots
$$

and

$$
c_{1}=\frac{1}{3} c_{0}, \quad c_{2}=\frac{1}{18} c_{0}, \quad c_{3}=\frac{1}{162} c_{0}
$$

The general solution on $(0, \infty)$ is
$y=C_{1}\left(1+\frac{1}{2} x+\frac{1}{10} x^{2}+\frac{1}{80} x^{3}+\cdots\right)+C_{2} x^{1 / 3}\left(1+\frac{1}{3} x+\frac{1}{18} x^{2}+\frac{1}{162} x^{3}+\cdots\right)$
20. Substituting $\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
\begin{aligned}
& x^{2} y^{\prime \prime}-\left(x-\frac{2}{9}\right) y \\
= & \left(r^{2}-r+\frac{2}{9}\right) c_{0} x^{r}+\sum_{k=1}^{\infty}\left[(k+r)(k+r-1) c_{k}+\frac{2}{9} c_{k}-c_{k-1}\right] x^{k+r} \\
= & 0,
\end{aligned}
$$

which implies

$$
r^{2}-r+\frac{2}{9}=\left(r-\frac{2}{3}\right)\left(r-\frac{1}{3}\right)=0
$$

and

$$
\left[(k+r)(k+r-1)+\frac{2}{9}\right] c_{k}-c_{k-1}=0
$$

8.1

4. Let $X=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. Then

$$
X^{\prime}=\left(\begin{array}{rrr}
1 & -1 & 0 \\
1 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right) X
$$

5. Let $X=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. Then

$$
X^{\prime}=\left(\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & -1 \\
1 & 1 & 1
\end{array}\right) X+\left(\begin{array}{c}
0 \\
-3 t^{2} \\
t^{2}
\end{array}\right)+\left(\begin{array}{r}
t \\
0 \\
-t
\end{array}\right)+\left(\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right)
$$

8.

$$
\frac{d x}{d t}=7 x+5 y-9 z-8 e^{-2 t} ; \quad \frac{d y}{d t}=4 x+y+z+2 e^{5 t} ; \quad \frac{d z}{d t}=-2 y+3 z+5 e^{5 t}-3 e^{-2 t}
$$

13. Since

$$
X^{\prime}=\binom{3 / 2}{-3} e^{-3 t / 2} \quad \text { and } \quad\left(\begin{array}{rr}
-1 & 1 / 4 \\
1 & -1
\end{array}\right) X=\binom{3 / 2}{-3} e^{-3 t / 2}
$$

we see that

$$
X^{\prime}=\left(\begin{array}{rc}
-1 & 1 / 4 \\
1 & 1
\end{array}\right) X
$$

14. Since

$$
X^{\prime}=\binom{5}{-1} e^{t}+\binom{4}{-4} t e^{t} \quad \text { and } \quad\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right) X=\binom{5}{-1} e^{t}+\binom{4}{-4} t e^{t}
$$

we see that

$$
X^{\prime}=\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right) X
$$

8.2

3. The system is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{cc}
-4 & 2 \\
-5 / 2 & 2
\end{array}\right) \mathbf{X}
$$

and $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-1)(\lambda+3)=0$. For $\lambda_{1}=1$ we obtain

$$
\left(\begin{array}{cc|c}
-5 & 2 & 0 \\
-5 / 2 & 1 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{rr|r}
-5 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{1}=\binom{2}{5}
$$

For $\lambda_{2}=-3$ we obtain

$$
\left(\begin{array}{cc|c}
-1 & 2 & 0 \\
-5 / 2 & 5 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{rr|r}
-1 & 2 \mid 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{2}=\binom{2}{1}
$$

Then

$$
X=c_{1}\binom{2}{5} e^{t}+c_{2}\binom{2}{1} e^{-3 t}
$$

6. The system is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
-6 & 2 \\
-3 & 1
\end{array}\right) \mathbf{X}
$$

and $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda(\lambda+5)=0$. For $\lambda_{1}=0$ we obtain

$$
\left(\begin{array}{ll|l}
-6 & 2 & 0 \\
-3 & 1 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{cc|c}
1 & -1 / 3 \mid c \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{1}=\binom{1}{3}
$$

For $\lambda_{2}=-5$ we obtain

$$
\left(\begin{array}{ll|l}
-1 & 2 & 0 \\
-3 & 6 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{rr|r}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right) \text { so that } \quad \mathbf{K}_{2}=\binom{2}{1}
$$

Then

$$
X=c_{1}\binom{1}{3}+c_{2}\binom{2}{1} e^{-5 t}
$$

7. The system is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & 0 \\
0 & 1 & -1
\end{array}\right) \mathbf{X}
$$

and $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-1)(2-\lambda)(\lambda+1)=0$. For $\lambda_{1}=1, \lambda_{2}=2$, and $\lambda_{3}=-1$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \mathbf{K}_{2}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right), \text { and } \mathbf{K}_{3}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right),
$$

so that

$$
X=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) e^{2 t}+c_{3}\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) e^{-t} .
$$

19. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}=0$. For $\lambda_{1}=0$ we obtain

$$
\mathbf{K}=\binom{1}{3}
$$

A solution of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\binom{1}{2}
$$

so that

$$
X=c_{1}\binom{1}{3}+c_{2}\left[\binom{1}{3} t+\binom{1}{2}\right]
$$

20. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda+1)^{2}=0$. For $\lambda_{1}=-1$ we obtain

$$
\mathbf{K}=\binom{1}{1}
$$

A solution of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\binom{0}{1 / 5}
$$

so that

$$
X=c_{1}\binom{1}{1} e^{-t}+c_{2}\left[\binom{1}{1} t e^{-t}+\binom{0}{1 / 5} e^{-t}\right]
$$

21. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-2)^{2}=0$. For $\lambda_{1}=2$ we obtain

$$
\mathbf{K}=\binom{1}{1}
$$

A solution of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\binom{-1 / 3}{0}
$$

so that

$$
X=c_{1}\binom{1}{1} e^{2 t}+c_{2}\left[\binom{1}{1} t e^{2 t}+\binom{-1 / 3}{0} e^{2 t}\right]
$$

26. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(1-\lambda)(\lambda-2)^{2}=0$. For $\lambda_{1}=1$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

For $\lambda=2$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right)
$$

A solution of $\left(\mathbf{A}-\lambda_{2} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\left(\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right)
$$

so that

$$
X=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) e^{2 t}+c_{3}\left[\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) t e^{2 t}+\left(\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right) e^{2 t}\right]
$$

27. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-(\lambda-1)^{3}=0$. For $\lambda_{1}=1$ we obtain

$$
\mathbf{K}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Solutions of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ and $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{Q}=\mathbf{P}$

$$
\mathbf{P}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad \mathbf{Q}=\left(\begin{array}{c}
1 / 2 \\
0 \\
0
\end{array}\right)
$$

so that

$$
X=c_{1}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+c_{2}\left[\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) t e^{t}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{t}\right]+c_{3}\left[\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \frac{t^{2}}{2} e^{t}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) t e^{t}+\left(\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right) e^{t}\right]
$$

34. We have $\operatorname{det}(\mathbf{A}+\lambda \mathbf{I})=\lambda^{2}+1=0$. For $\lambda_{1}=i$ we obtain

$$
\mathbf{K}_{1}=\binom{-1-i}{2}
$$

so that

$$
\mathbf{X}_{1}=\binom{-1-i}{2} e^{i t}=\binom{\sin t-\cos t}{2 \cos t}+i\binom{\cos t-\sin t}{2 \sin t}
$$

Then

$$
\mathbf{X}=c_{1}\binom{\sin t-\cos t}{2 \cos t}+c_{2}\binom{\cos t-\sin t}{2 \sin t}
$$

35. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}-8 \lambda+17=0$. For $\lambda_{1}=4+i$ we obtain

$$
\mathbf{K}_{1}=\binom{-1-i}{2}
$$

so that

$$
\mathbf{X}_{1}=\binom{-1-i}{2} e^{(4+i) t}=\binom{\sin t-\cos t}{2 \cos t} e^{4 t}+i\binom{-\sin t-\cos t}{2 \sin t} e^{4 t}
$$

Then

$$
\mathbf{X}=c_{1}\binom{\sin t-\cos t}{2 \cos t} e^{4 t}+c_{2}\binom{-\sin t-\cos t}{2 \sin t} e^{4 t}
$$

36. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}-10 \lambda+34=0$. For $\lambda_{1}=5+3 i$ we obtain

$$
\mathbf{K}_{1}=\binom{1-3 i}{2}
$$

so that
$\mathbf{X}_{1}=\binom{1-3 i}{2} e^{(5+3 i) t}=\binom{\cos 3 t+3 \sin t}{2 \cos 3 t} e^{5 t}+i\binom{\sin 3 t-3 \cos 3 t}{2 \cos 3 t} e^{5 t}$
Then

$$
\mathbf{X}=c_{1}\binom{\cos 3 t+3 \sin 3 t}{2 \cos 3 t} e^{5 t}+c_{2}\binom{\sin 3 t-3 \cos 3 t}{2 \cos 3 t} e^{5 t}
$$

39. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-\lambda\left(\lambda^{2}+1\right)=0$. For $\lambda_{1}=0$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

For $\lambda_{2}=i$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{r}
-i \\
i \\
0
\end{array}\right)
$$

so that

$$
\mathbf{X}_{2}=\left(\begin{array}{r}
-i \\
i \\
1
\end{array}\right) e^{i t}=\left(\begin{array}{c}
\sin t \\
-\sin t \\
\cos t
\end{array}\right)+i\left(\begin{array}{r}
-\cos t \\
\cos t \\
\sin t
\end{array}\right)
$$

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
\sin t \\
-\sin t \\
\cos t
\end{array}\right)+c_{3}\left(\begin{array}{c}
-\cos t \\
\cos t \\
\sin t
\end{array}\right)
$$

41. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(1-\lambda)\left(\lambda^{2}-2 \lambda+2\right)=0$. For $\lambda_{1}=1$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)
$$

For $\lambda_{2}=1+i$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{l}
1 \\
i \\
i
\end{array}\right)
$$

so that

$$
\mathbf{X}_{2}=\left(\begin{array}{c}
1 \\
i \\
i
\end{array}\right) e^{(1+i) t}=\left(\begin{array}{c}
\cos t \\
-\sin t \\
-\sin t
\end{array}\right) e^{t}+i\left(\begin{array}{c}
\sin t \\
\cos t \\
\cos t
\end{array}\right)
$$

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{c}
\cos t \\
-\sin t \\
-\sin t
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{c}
\sin t \\
\cos t \\
\cos t
\end{array}\right) e^{t}
$$

8.3

1. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
3 & -3 \\
2 & -2
\end{array}\right) \mathbf{X}+\binom{4}{-1}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{1}{1}+c_{2}\binom{3}{2} e^{t}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{ll}
1 & 3 e^{t} \\
1 & 2 e^{t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-\mathbf{1}}=\left(\begin{array}{cc}
-2 & 3 \\
e^{-t} & -e^{-t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \boldsymbol{\Phi}^{-\mathbf{1}} \mathbf{F} d t=\int\binom{-11}{5 e^{-t}} d t=\binom{-11 t}{-5 e^{-t}}
$$

and

$$
\mathbf{X}_{\mathbf{p}}=\boldsymbol{\Phi} \mathbf{U}=\binom{-11}{-11} t+\binom{-15}{-10}
$$

2. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) \mathbf{X}+\binom{0}{4}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{1}{1} e^{t}+c_{2}\binom{1}{3} e^{-t}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-\mathbf{1}}=\left(\begin{array}{cc}
\frac{3}{2} e^{-t} & -\frac{1}{2} e^{-t} \\
-\frac{1}{2} e^{t} & \frac{1}{2} e^{t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \mathbf{\Phi}^{-\mathbf{1}} \mathbf{F} d t=\int\binom{-2 t e^{-t}}{2 t e^{t}} d t=\binom{2 t e^{-t}+2 e^{-t}}{2 t e^{t}-2 e^{t}}
$$

and

$$
\mathbf{X}_{\mathbf{p}}=\boldsymbol{\Phi} \mathbf{U}=\binom{4}{8} t+\binom{0}{-4}
$$

7. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
1 & 8 \\
1 & -1
\end{array}\right) \mathbf{X}+\binom{12}{12}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{4}{1} e^{3 t}+c_{2}\binom{-2}{1} e^{-3 t}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
4 e^{3 t} & -2 e^{-3 t} \\
e^{3 t} & e^{-3 t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-\mathbf{1}}=\left(\begin{array}{cc}
\frac{1}{6} e^{-3 t} & \frac{1}{3} e^{-3 t} \\
-\frac{1}{6} e^{3 t} & \frac{2}{3} e^{3 t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \boldsymbol{\Phi}^{-\mathbf{1}} \mathbf{F} d t=\int\binom{6 t e^{-3 t}}{6 t e^{3 t}} d t=\binom{-2 t e^{-3 t}-\frac{2}{3} e^{-3 t}}{2 t e^{3 t}-\frac{2}{3} e^{3 t}}
$$

and

$$
\mathbf{X}_{\mathbf{p}}=\boldsymbol{\Phi} \mathbf{U}=\binom{-12}{0} t+\binom{-4 / 3}{-4 / 3}
$$

8.4

1. For $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ we have

$$
\begin{aligned}
& \mathbf{A}^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right), \\
& \mathbf{A}^{3}=\mathbf{A A}^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right), \\
& \mathbf{A}^{4}=\mathbf{A} \mathbf{A}^{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 16
\end{array}\right),
\end{aligned}
$$

and so on. In general

$$
\mathbf{A}^{k}=\left(\begin{array}{cc}
1 & 0 \\
0 & 2^{k}
\end{array}\right) \quad \text { for } k=1,2,3, \cdots
$$

Thus

$$
\begin{aligned}
e^{\mathbf{A} t} & =\mathbf{I}+\frac{\mathbf{A}}{1!} t+\frac{\mathbf{A}^{2}}{2!} t+\frac{\mathbf{A}^{3}}{3!} t+\cdots \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)+\frac{1}{1!}\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) t+\frac{1}{2!}\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right) t^{2}+\frac{1}{3!}\left(\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right) t^{3}+\cdots \\
& =\left(\begin{array}{cc}
1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\cdots & 0 \\
0 & 1+t+\frac{(2 t)^{2}}{2!}+\frac{(2 t)^{3}}{3!}+\cdots
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)
\end{aligned}
$$

and

$$
e^{-\mathbf{A} t}=\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-2 t}
\end{array}\right)
$$

2. For $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ we have

$$
\begin{aligned}
& \mathbf{A}^{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\mathbf{I} \\
& \mathbf{A}^{3}=\mathbf{A} \mathbf{A}^{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \mathbf{I}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\mathbf{A} \\
& \mathbf{A}^{4}=\left(\mathbf{A}^{2}\right)^{2}=\mathbf{I} \\
& \mathbf{A}^{5}=\mathbf{A} \mathbf{A}^{4}=\mathbf{A} \mathbf{I}=\mathbf{A}
\end{aligned}
$$

and so on. In general

$$
\mathbf{A}^{k}= \begin{cases}\mathbf{A}, & k=1,3,5, \cdots \\ \mathbf{I}, & k=2,4,6, \cdots\end{cases}
$$

Thus

$$
\begin{aligned}
e^{\mathbf{A} t} & =\mathbf{I}+\frac{\mathbf{A}}{1!} t+\frac{\mathbf{A}^{2}}{2!} t+\frac{\mathbf{A}^{\mathbf{3}}}{3!} t+\cdots \\
& =\mathbf{I}+\mathbf{A} t+\frac{1}{2!} \mathbf{I} t^{2}+\frac{1}{3!} \mathbf{A} t^{3}+\cdots \\
& =\mathbf{I}\left(1+\frac{1}{2!} t^{2}+\frac{1}{4!} t^{4}+\cdots\right)+\mathbf{A}\left(t+\frac{1}{3!} t^{3}+\frac{1}{5!} t^{5}+\cdots\right) \\
& =\mathbf{I} \cosh t+\mathbf{A} \sinh t \\
& =\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
e^{-\mathbf{A} t} & =\left(\begin{array}{cc}
\cosh (-t) & \sinh (-t) \\
\sinh (-t) & \cosh (-t)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cosh t & -\sinh t \\
-\sinh t & \cosh t
\end{array}\right)
\end{aligned}
$$

3. For

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right)
$$

we have

$$
\mathbf{A}^{2}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Thus, $\mathbf{A}^{3}=\mathbf{A}^{4}=\mathbf{A}^{5}=\cdots=\mathbf{0}$ and

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{ccc}
t & t & t \\
t & t & t \\
-2 t & -2 t & -2 t
\end{array}\right)=\left(\begin{array}{ccc}
t+1 & t & t \\
t & t+1 & t \\
-2 t & -2 t & -2 t+1
\end{array}\right)
$$

9. To solve

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \mathbf{X}+\binom{3}{-1}
$$

we identify $t_{0}=0, \mathbf{F}(s)=\binom{3}{-1}$, and use the results of the main equation to get

$$
\begin{aligned}
\mathbf{X}(t) & =e^{\mathbf{A} t} \mathbf{C}+e^{\mathbf{A} t} \int_{t_{0}}^{t} e^{-\mathbf{A} s} \mathbf{F}(s) d s \\
& =\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{c_{1}}{c_{2}}+\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right) \int_{0}^{t}\left(\begin{array}{cc}
e^{-s} & 0 \\
0 & e^{-2 s}
\end{array}\right)\binom{3}{-1} d s \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right) \int_{0}^{t}\binom{3 e^{-s}}{-e^{-2 s}} d s \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\left.\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{-3 e^{-s}}{\frac{1}{2} e^{-2 s}}\right|_{0} ^{t} \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{-3 e^{-t}-3}{\frac{1}{2} e^{-2 t}-\frac{1}{2}} \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\binom{-3-3 e^{t}}{\frac{1}{2}-\frac{1}{2} e^{2 t}} \\
& =c_{3}\binom{1}{0} e^{t}+c_{4}\binom{0}{1} e^{2 t}+\binom{-3}{\frac{1}{2}}
\end{aligned}
$$

