Chapter 6

Power Series Solutions of Linear Differential Equations

6.1 Review of Properties of Power Series 

6.2 Solutions about Ordinary Points 

6.3 Solutions about Regular Singular Points - The Method of Frobenius 

6.4 Bessel’s Equations and Functions 

6.5 Legendre’s Equations and Polynomials 

6.6 Orthogonality of Functions 

6.7 Sturm – Liouville Theory 

6.8 Exercises 

We have seen in chapter 5 that we can solve linear differential equations of order two or more with constant coefficients. The Cauchy-Euler equation is exception. In fact most linear differential equations of higher order with variable coefficients cannot be solved in terms of elementary functions. The usual strategy for solving such type of equations is to assume a solution in the form of an infinite series and proceed in a manner similar to the method of undetermined coefficients (Section 5.6). Since these series solutions often turn out to be power series, it is appropriate to summarise properties of power series in the first section of this chapter. We conclude this chapter with the Sturm-Liouville theory dealing with eigenvalues and eigenfunctions. Strum-Liouville’s differential equation includes Bessel’s and Legendre’s equations as special cases. Examples of Strum-Liouville problems are presented. 

6.1 Review of Properties of Power Series 

A power series  in (x-a) is an infinite series of the form

c0+ c1 (x-a) + c2 (x-a)2 +- - - - = 
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(6.1)

Series of (6.1) is also called a power series centered  at a. The power series centered at a=0 is often referred as the power series,  that is, the series 
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 A power series centered at a is called convergent  at a specified value of x if its sequence of partial sums SN(x) =
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, that is, {SN (x)} is convergent. In other words the limit of {SN (x)} exists. If the limit does not exist the power series is called divergent.  The set of points x at which the power series is convergent is called the interval of convergence of the power series.  For R >o, a power series 
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 converges if 
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>R. If the series converges only at a then R=0, and if it converges for all  x then R=(. 
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<R is equivalent to a-R<x<a+R. A power series may or may not converge at the end points a-R and a+R of this interval. 

A power series is called absolutely convergent if the series 
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 converges. A power series converges absolutely within its interval of convergence. By the Ratio test a power series centered at a, series given in (6.1) is absolutely convergent if L= (x-a( 
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 is less than 1, that is, L <1, the series diverges if L>1, and test fails if L=1. A power series defines a function f(x)= 
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whose domain is the interval of convergence of the series. If the radius of convergence R>o, then f is continuous, differentiable and integrable on the interval (a-R, a+R). Moreover f’(x) and (f(x)dx can be found by term  by  term differentiation and integration. Convergence at an endpoint may be either lost by differentiation or gained through integration. 

Let y = 
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     y' = 
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    y” = 
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We observe that the first term in y' and first two terms in y' are zero. Keeping this in mind we can write 

	                                          y' = 
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                                          y'' = 
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Identity property:  If 
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 =0, R>o for all x in the interval of convergence, then cn=0 for all n. 

Analytic at a point.  A function f is analytic at a point a if it can be represented by a power series in x-a with a positive or infinite radius of convergence. A power series where cn= 
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, that is, the series of the type 
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  is called the Taylor series. If a=o then Taylor series is called Maclaurin series. In calculus it is shown that ex, cos x, sin x,  ln (x-1) can be written in the form of a power series more precisely in the form of Maclaurin series. For example
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Arithmetic of Power Series: Two power series can be combined through the operation of addition, multiplication, and division. The procedures for power series are similar to those by which two polynomials are added, multiplied, and divided. For example: 
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Since the power series for ex and sin x converge for (x(<(,  the product series converges on the same interval. 

Shifting the Summation Index: In order to discuss power series solutions of differential equations it is advisable to learn combining two or more summations as a single summation.
Example 6.1  Express 
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 as one power series.

Solution:  In order to add the two given series, it is necessary that both summation indices start with the same number and the powers of x in each series be such that if one series starts with a multiple of x to the first power, then we want that the other series to start with the same power. In this problem the first series starts with xo where as the second series starts with x1. By writing the first term of the first series outside the summation notation, 
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=2.1c2x0+
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Both series on the right hand side start with the same power of x, namely x1. Let k=n-2 and k=n+1 respectively in first and second series. Then the right hand becomes 

2 c2+
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(6.3)
Keeping in mind that it is the value of the summation index that is important not the summation index which  is a dummy variable say k=n -1 or k=n+1. Now we are in position to add the series in (6.3) term by term and we have 
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=2c2+ 
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.
6.2 Solution about Ordinary Point 
We look for power series solution of linear second-order differential equation about a special point: 
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(6.4)

where a2 (x) ( 0.

This can be put into the standard form 
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or 
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(6.5)


A point xo is said to be an ordinary point of the differential equation (6.4) if P(x) and Q (x) of (6.5) are analytic at xo, that is, P(x) and are Q(x) represented by a power series. A point that is not an ordinary point is called a singular point. 

A solution of the form y =
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 is  said to be a solution about the ordinary point x0.

Remark 6.1  It has been proved that if x=x0 is an ordinary point of (6.4) then there exist two linearly independent solutions in the form of a power series centered at x0, that is, y = 
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. A series solution converges at least  on some interval defined by 
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Power series solution about an ordinary point: 

Let     y= 
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  and substitute values of y, 
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Combine series as in Example 6.1, and then equate all coefficients to the right hand side of the equation to determine the coefficients cn. We illustrate the method by the following examples. We also see through these examples how the single assumption that y= 
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 leads to two sets of coefficients, so we have two distinct power series y1 (x) and y2(x) both expanded about the ordinary point x=0. The general solution of the differential equation is y=C1y1(x)+C2y2(x), infact it can been shown that C1=c o and C2=c1.

The differential equation 
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 is known as Airy’s equation and used in the study of diffraction of light, diffraction of radio waves around the surface of the earth, aerodynamics etc. We discuss here power series solution of this equation around  its ordinary point x=0.

Example 6.2  Write the general solution of Airy’s equation y'+xy=0. 

Solution: In view of the remark, two power series solutions centred at 0, convergent for 
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 into Airy’s differential equation we get 

y''+xy=
[image: image46.wmf]2

n

n

2

n

x

)

1

n

(

n

c

-

¥

=

-

å


[image: image47.wmf]n

n

0

n

x

c

x

å

¥

=

+

, 
= 
[image: image48.wmf]2

n

n

2

n

x

)

1

n

(

n

c

-

¥

=

-

å



[image: image49.wmf]1

n

n

0

n

x

c

+

¥

=

å

+




(6.6)
As seen in the solution of Example 6.1, (6.6) can be written as y''+xy=2c2+
[image: image50.wmf]å

¥

=

1

k

[(k+1) (k+2)ck+2+ck-1]xk=0

(6.7)

Since (6.7) is identically zero, it is necessary that coefficient of each power of x be set equal to zero, that is, 

2c2=0 (It is the coefficient y x0) and 

(k+1)(k+2) ck+2+ck-1=0, k=1,2,3 - - - -- - - -..

(6.8)

The above holds in view of the identity property. It is clear that c2=0. The expression in (6.8) is called a recurrence relation  and it determines the ck in such a manner that we can choose a certain subset of the set of coefficients to be non-zero. Since (k+1)(k+2)(0 for all values of k, we can solve (6.8) for ck+2 in terms of ck-1.

ck+2= - 
[image: image51.wmf]-

 

-

 

-

 

-

,

3

,

2

,

1

k

,

)

2

k

)(

1

k

(

c

1

k

=

+

+

-





(6.9)
For k=1, c3 = - 
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For k = 2, c4 = - 
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For k= 3, c5 = - 
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For k= 4, c6 = - 
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For k= 5, c7 = - 
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For k= 6. c8 = - 
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For k= 7. c9 = - 
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For k = 8, c10 = - 
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For k = 9, c11= - 
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and so on, 

Substituting the coefficients just obtained into y=
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=c0+c1x+c2x2+c3x3+c4x4+c5x5+c6x6+c7x7+c8x8+c9x9+c10x10- - - -
we get 

y=c0+c1x+0 
[image: image63.wmf]-

 

-

 

-

 

-

0

x

10

.

9

.

7

.

6

.

4

.

3

c

x

.

9

.

8

.

6

.

5

.

3

.

2

c

0

x

7

.

6

.

4

.

3

c

x

6

.

5

.

3

.

2

c

0

x

4

.

3

c

x

3

.

2

c

10

1

9

0

7

1

6

0

4

1

3

o

+

+

-

-

+

+

+

+

-

-


After grouping the terms containing co and the terms containing c1, we obtain y=c0y1(x)+c1y2(x), where 

y1(x)=1- 
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y2(x) = x - 
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Since the recursive use of (6.9) leaves c0 and c1 completely undetermined, they can be chosen arbitrarily. 
y=c0y1(x)+c1y2(x) is the general solution of the Airy’s equation. 

Example 6.3 : Find two power series solutions of the differential equation y"-xy=0 about the ordinary point x=0.
Solution: Substituting y  =
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 into the differential equation we get

 y"-xy= 
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Thus c2 = 0,

(k+2)(k+1)ck+2 –ck-1= 0

and 
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Choosing co= 1 and c1=0 we find
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 and so on.

For c0=0 and c1=1 we obtain
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 and so on. Thus two solutions are

y1 = 
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6.3 Solutions about Regular Singular Points – The Method of Frobenius

A singular point x0 of (6.4) is called a regular singular point of this equation  if the functions p(x) = (x-xo) P(x) and q(x)=(x-xo)2Q(x) are both analytic at x0. A singular point that is not regular is said to be on irregular singular point  of the equation. This means that one or both of the functions p(x)=(x-x0) P(x) and q(x) = (x-x0)2Q(x) fail to be analytic at x0.

In order to solve a differential equation given by (6.4) about a regular singular point we employ the following theorem due to Frobenius. 

Theorem 6.1 (Frobenius Theorem) If x=x0 is a regular singular point of the differential equation (6.4), then there exists at least one solution of the form 

y=(x-xo)r 
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where r is constant to be determined. The series will converge at least on some interval 0<x-x0<R. 

The method of Frobenius:  Finding series solutions about a regular singular point x0, is similar to the method of previous section  in which we substitute y= 
[image: image80.wmf]r

n

o

n

o

n

)

x

x

(

c

+

¥

=

-

å

 into the given differential equation and determine the unknown coefficients cn by a recurrence relation. However, we have an additional task in this procedure. Before  determining coefficients we must find unknown exponent r. Equate to 0 the coefficient of the lowest power of x. This equation is called the indicial equation  and determines the value(s) of the index r. 

If r is found to be number that is not a  non negative integer, then the corresponding solution y= 
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 is not a power series. For the sake of simplicity we assume that the regular singular point is x=0.

Example 6.4  Apply the Method of Frobenius to solve the differential equation 2x y"+3y’-y=0 about the regular singular point x=0.

Solution: Let us assume that the solution is of the form 


y= 
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y' = 
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y"= 
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Substituting these values of y', y' and y'' into 2x y''+3 y'-y=0, we get 

2 
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Shifting the index in the third series and combing the first two yields 
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Writing the term corresponding to n=0 and combining the terms for n(/ into one series, 

cor(2r+1)xr-1+ 
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(2n+2r+1)-cn-1]xn+r-1 = 0
Equating the coefficients of xr-1 to zero yields the indicial equation 

c0r(2r+1)=0

Since c0( 0, either r=0 or =  - 
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Hence two linearly independent solutions of the given differential equation have the form 

y1 = F0 (x) =
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y2 = F
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Since cn(n+r) (2n+2r+1) -cn-1=0 for all n ( 1, we have the following information on the coefficients for the two series: 

(i)
 co is arbitrary, and for n(1, cn= 
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(ii)       c*o is arbitrary, and for n(1,cn*= 
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Iteration of the formula for cn yields

n=1, c1 = 
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n= 2, c2=
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n= 3, c3 = 
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Each term of cn was multiplied by 
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 to make the denominator (2n+1)!. The general form of cn is then 


cn = 
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Similarly, the general form of cn*is found to be cn* = 
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The two solutions are 

y1=co 
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xn,y2= co*x-1/2  
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y2  is  not a power series.

Example 6.5 Apply the method of Frobenius to obtain two linearly independent series solution of the differential equation 


2x y" – y'+2y= 0


about a regular singular point x=0 of the differential equation. 

Solution: Substituting y =
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y' = 
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and 


y" = 
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into the differential equation and collecting terms, we obtain

2x y''- y'+2y=(2r2-3r)c0xr-1+
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which implies that

2r2-3r=r(2r-3)=0

and

(k+r)(2k+2r-3)ck+2ck-1=0.

The indicial roots are r=0 and r=
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and 

c1 = 2c0, c2= - 2c0, c3= 
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ck =  - 
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and 

c1= - 
[image: image117.wmf].

0

3

0

2

0

c

945

4

c

,

c

35

2

c

,

c

5

2

-

=

=


The general solution is 

y = C1 (1+2x-2x2+
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6.4 Bessel's equation 

x2 y''+x y'+(x2-v2)y=0





(6.10)

(6.10) is called Bessel's equation.

Solution of Bessel's Equation:

Because x=0 is a regular singular point of Bessel's equation we know that there exists at least one solution of the form y=
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x2 y"+x y'+(x2-v2)y=
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(6.11)
From (6.11) we see that the indicial equation is r2-v2=0, so the indicial roots are r1=v and r2 = -v. When r1=v, (6.11) becomes 

xv
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Therefore by the usual argument we can write (1+2v)c1=0 and 

(k+2) (k+2+2v)ck+2+ck=0

or ck+2= 
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(6.12)

The choice c1=0 in (6.12) implies c3=c5=c7= - - - - = 0, so for k=0,2,4, - - - - we find, after letting k +2 = 2n, n = 1,2,3, - - - - that 


c2n = - 
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(6.13)

Thus c2 = - 
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c4 = - 
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c6 = - 
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c2n = 
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(6.14)

It is standard practice to choose c0 to be specific value – namely.




c0 = 
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where ( (1+v) is the gamma function. (See Appendix) Since this latter function  possesses the convenient property ( (1+() = ((((), we can reduce the indicated product in the denominator of (6.14) to one term. 

For example:
( (1+v+1)= (1+v) ( (1+v)

( (1+v+2)= (2+v) ( (2+v)= (2+v)(1+v)((1+v).

Hence we can write (6.14) as 
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for n=0,1,2, - - - - 
Bessel Function of the First Kind: Using the coefficients c2n just obtained and r=v, a series solution of (6.10) is y=
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(6.15)

If v(0, the series converges at least on the interval [o,
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). Also, for the second exponent r2= -v we obtain, in exactly the same manner,
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(6.16)

The functions Jv(x) and J-v(x) are called Bessel functions of the first kind of order v and –v, respectively. Depending on the value of v, (6.16) may contain negative powers of x and hence converge on (0, 
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6.5 Legendre's Equation 

(1-x2) y"-2x y'+n(n+1)y = 0



(6.17)

Equation (6.17) is known as Legendre's equation.

Solution of Legendre's Equation:  Since x=0 is an ordinary point of the equation, we substitute the power series y=
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(1-x2) y"-2x y'+n(n+1)y=[n(n+1)c0+2c2]+[(n-1)(n+2)c1+6c3]x

+ 
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c3 = - 
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(6.18)

If we let j take on the values 2,3,4,  - - - -, the recurrence relation (6.18) yields

c
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and so on. Thus for at least |x| <1 we obtain two linearly independent power series solutions:
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Notice that if n is an even integer, the first series terminates, whereas y2(x) is an infinite series. For example, if n=4, then
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Similarly, when n is an odd integer, the series for y2(x) terminates with xn; that is, when n is a nonnegative integer, we obtain an nth-degree polynomial solution of Legendre's equation.

Since we know that a constant multiple of a solution of   Legendre's equation is also a solution, it is traditional to choose specific values for c0 or c1, depending on whether n is an even or odd positive integer, respectively. For n=0 we choose c0=1, and for n = 2,4,6, - - - -,
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where as for n=1 we choose c1 = 1, and for n=3,5,7, - - - -,
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For example, when n=4, we have
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Legendre Polynomials These specific nth-degree polynomial solutions are called Legendre polynomials and are denoted by Pn(x). From the series for y1(x) and y2(x) and from the above choices of c0 and c1 we find that the first several Legendre polynomials are



P0(x) =1



P1(x) = x
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Remember, P0(x), P1(x), P2(x), P3(x), - - - - are, in turn, particular solutions of the differential equations



n = 0: 
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n = 1:
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(6.21)



n = 2:
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n = 3:
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Properties
You are encouraged to verify the following properties using the Legendre polynomials in (6.20)

(i) Pn(-x)=(-1)nPn(x)


(ii) Pn(1)=1  


(iii)
Pn(-1)=(-1)n

(iv) Pn(0)=0, n odd

(v)
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6.6 Orthogonality of Functions 

The concept of orthogonality of functions is the generalization of the notion of orthogonality or perpendicularity of  two vectors in the plane. 

Deprition 6.1  (i) (Orthogonal Function) Two functions (1 and (2 defined on an interval (a,b) into R are said to be orthogonal  if 
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(1(x) (2 (x) dx = 0, (1((2  
       ( 0, (1= (2 

(ii) A set of real-valued functions {(1(x), (2 (x)- - - -} is said to be orthonormal  if 
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(iii) A set of real-valued functions {(0(x), (1 (x),(2 (x)- - - -} is said to be orthonormal if 


[image: image175.wmf]ò

b

a

(m(x) (n (x) dx = 0, m(n

                                       =1, m=n

In other words if {(n(x)} is an orthogonal set of functions on the interval [a,b] with the property that 
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|(n(x)(2dx = 1 for n= 0,1,2,3- - - -then {(n(x)} is orthonormal set on the interval. 

(iv) A set of functions  {(0,(1,(2, - - - - } is said to be orthogonal with respect to weight function p(x), if 
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Example 6.6  The set {1, cos x, cos 2x,- - - -} is orthogonal on the interval [-(,(]

Verification: If we make the identification (o(x)=1 and (n(x) = cos nx, we must then show that 
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We have, in the first place, 
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In the second place
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 by using a well known trigonometric identity,
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Example 6.7 (i) Compute 
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Show that the set 
[image: image189.wmf]þ

ý

ü

î

í

ì

p

p

p

-

 

-

 

-

 

-

,

x

2

cos

,

x

cos

,

2

1



is orthonormal on the interval [-(,(].

Solution: (i)  For (o(x) =1 we  have  
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For (n (x) = cosnx,n>0, 
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We are required to show that 

(a) 
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Verification of (a) : 
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Verification of (b): 
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Orthogonal Series Expansion


Let {(n (x)} be an infinite orthonormal set of functions on interval [a,b]. and f(x) be a function defined on [a,b]. Then f(x) can be written as f(x)=co(o(x)+c1(2(x)+c2(2(x)+- - - - +cn(n(x)+ - - - -
(6.22)

 where 
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(6.23)

n=0, 1,2,3 …

The series on the right hand side of (6.22) is called orthogonal expansion of f(x) defined on [a,b] in terms of the orthonormal set of functions {(n(x)} defined on [a,b]. cn's given by (6.23) are called coefficients of orthogonal expansion of f. If orthonormal set of Example 6.6 is considered we get cosine Fourier expansion of f(x), that is, (6.22) will be cosine Fourier series and (6.23) will give cosine Fourier coefficients. One can consider expansion of a function in terms of Bessel's orthonormal set of functions and Legendre's orthonormal set of functions.  

6.7 
Sturm-Liouville Theory 

Consider the linear differential equation of order two 



y"+R(x) y'+(Q(x)+( P(x)) y=0

(6.24)

Given an interval on which the coefficients R(x) and (Q(x)+( P(x)  are continuous we seek values of ( for which (6.24) has non-trivial solutions.


We can also seek values of ( when (6.24) is given with boundary conditions. Let us put this differential equation in a more convenient form. 

Multiply (6.24) by r=e
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Since r(x)(0, equation (6.25) has the same solutions as (6.24). This equation can be written as 

(r y')' + (q+( p) y=0





(6.26)

where q(x)=Q(x) e
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Equation (6.26) is called the Sturm-Liouville differential equation,  or the Sturm-Liouville form of equation (6.24). Through out this section we assume that p.q, and r and r’ are continuous on [a,b] or at least on (a,b), and p(x) >0 and r(x) >0 on (a,b).

Remark 6.2 Bessel’s equation given by (6.10)

and Legendre’s equation given by (6.17) are special cases of the Sturm-Liouville differential equation (6.26).

For Bessel’s equation we can choose r(x)= 
[image: image218.wmf]2
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2

, q(x)=x2, 

p(x)=1, (= -v2 in (6.26). 

For Legendre’s equation we take r(x) = 1-x2
q(x)=0, p(x)=1, and ( = n(n+1) in (6.26)

The Regular Sturm-Liouville Problem: Find numbers ( for which there are non-trivial solutions of (6.26) subject to the regular boundary conditions having  the following form

A1y(a) + A2 y' (a)=0, B1y(b) + B2 y' (b)=0

where A1 and A2 are given constants, at least one must be non-zero. Similarly B1 and B2 are given constants, at least one must be non-zero. 

The Periodic Sturm-Liouville Problem: 

Find numbers ( for which there are non-trivial solutions of (6.26) on an interval [a,b] where r(a)=r(b) and subject to the periodic boundary conditions y(a)=y(b), y' (a)= y' (b)

The Singular Sturm-Liouville Problem:

Find numbers ( for which there are non-trivial solutions of the Sturm-Liouville equation on (a,b), subject  to one of the following three kinds of boundary conditions: 

Case I.  r(a)=0 and there is no boundary condition at a, while at b the boundary condition is 

B1y(b)+B2 y' (b)=0,

where B1 and B2 are not both zero. 

Case 2. r(b)=0 and there is no boundary conditions at b, while at a the condition is 

A1y(a)+A2 y' (a)=0,

with A1 and A2 not both zero. 

Case 3. r(a)=r(b)=0, and no boundary condition is specified at a or b. We seek solutions that are bounded functions on [a,b].

Definition 6.2 A number ( for which Sturm-Liouville differential equation, (6.26), subject to boundary conditions of one of these three problems, has nontrivial solution is called an eigenvalue  of the problem. A corresponding nontrivial solution is called an eigenfunction associated with this eigenvalue. Remark 6.3 (i) The zero function cannot be an eigenfunctiion. Any nonzero constant multiple of an eigenfunction is an eigenfunction. 

(ii) In mathematical models of real systems, eigenvalues have some physical meaning. For example in the study of wave motion the eigenvalues are fundamental frequencies of vibration of the system. 

The fundamental properties of Sturm-Liouville problems are described by the following theorem which is considered as the heart of Sturm-Liouville theory. 

Theorem 6.2 (a) Each regular and each periodic Sturm-Liouville problem has 
an infinite number of distinct real eigenvalues. If these are labeled (1, (2. - - -, 
so that (n<(n+1, then lim ( n=(.

           n( (.

(b) If (n and (m are distinct eigenvalues of any of the three kinds of Sturm-Liouville problems defined on an interval (a,b) and (n and (m are corresponding eigenfunctions, then 
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(c) All eigenvalues of a Sturm-Liouville problem are real numbers. 

(d) For a regular Sturm-Liouville problem, any two eigenfunctions corresponding to a single eigenvalue are constant multiples of each other. 

Interested readers will find the proof of this theorem in references [.,.] or at website no. [               ].

Remark 6.4  (i) Part (a) assures existence of eigenvalues, at least for regular and periodic problems. A singular problem may also have an infinite sequence of eigenvalues say for example, for Bessel’s equation. This part also asserts that the eigenvalues spread out so that if arranged in increasing order, they increase without bound. For example, numbers 1-
[image: image220.wmf]n

1

 could not be eigenvalues of a Sturm-Liouville problem, since these numbers approach 1 as n((
(ii) Part (b) can be stated as “Eigenfunctions associated with distinct eigenvalues are orthogonal on [a,b], with weight function p(x). The weight function p is the coefficient of ( in the Sturm-Liouville equation. 

This orthogonality provides the possibility of expansion of functions in series of eigenfunctions of a Sturm-Liouville problem, analogue of equation (6.22) is possible for eigenfunctions. 

(iii) Part (c) states that a Sturm Liouville problem can have no complex eigenvalue. 

(iv) Part (d) applies only to regular Sturm-Liouville problems. 

Example 6.8  Discuss solutions of regular Sturm-Liouville problem: 

y''+ (y=0, y(0)=y(l)=0

on an interval [0,l] in cases (i) ( = 0,  
(ii) ( is negative number, and (iii) ( is positive number

Case (i)  Let (=0, then y''=0 and integrating it twice we get  y(x)=cx+d for some constants c and d. Now y(0)=d=0, and y(l)=cl=0 implies c=0. This means that y(x)=cx+d must be the trivial solution. In the absence of a non-trivial solution, (=0 is not an eigenvalue of this problem.

Case (ii) Suppose that ( is negative, say (=-k2 for k>0

Now y"-k2y=0. This is homogeneous linear differential equation with constant coefficients. The auxiliary equation is m2-k2=0. Roots are m1=k,m2= -k. The general solution is 

y(x)=c1ekx+c2e-kx

Since y(0)=c1+c2=0, then 

c2=-c1, so y=c1(ekx-e-kx). since 

sin hkx = 
[image: image221.wmf],

2

e

e

kx

kx

-

 we  have 

y=2c1 sinh kx. But then 

y(l)=2c1 sinh kl=0

Since kl>0, sinh kl>0, so c1, = 0

This case also leads to the trivial solution, so this Sturm-Liouville problem has no negative eigenvalue. 

Case (iii) ( is positive, say (=k2
Now y''+k2y=0. The auxiliary equation of this homogeneous linear differential equation with constant coefficients is 

m2+k2=0. Roots are m1=ik, m2=-ik. 

As discussed in Section 5.5, equation (5.18) the general solution is

y(x)=c1cos (kx) +c2 sin(kx)

Now 

y(o)=c11 +c2.0=0 or c1=0

y(x)=c2 sin (kx). Finally, we need 

y(l)=c2 sin kl=0

To avoid trivial solution, we need c2(0.

Then we must choose k so that sin kl=0, which means that kl must be a positive multiple of (, say kl = n(.Then 

(n = 
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 for n=1,2,3,- - - -- - - -.
Each of these numbers is an eigenvalue of this Sturm-Liouville problem. Corresponding to each n, the eigenfunctions are 

yn(x) = c sin 
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where c is any non-zero real number. 

Example 6.9 Discuss solution of periodic Sturm-Liouville problem:

y''+(y=0, y(-l)=y(l), y'(-l)= y'(l)

on an interval [-l,l] for cases 

(i) ( = 0    (ii)   ( <0   (ii)  (>0

Solution: Case (i) (=0  Then y=cx+d. (See example 6.8)  Now
y(-l) = - cl+d=y(l)=cl+d implies c=0. The constant function y=d satisfies both boundary conditions. Thus (=0 is an eigenvalue with nonzero constant eigenfunctions. 

Case (ii)  (<0, say (= -k2
Solving as in case (ii) of Example 6.8
y(x)=c1ekx+c2e-kx is the general solution.

Since y(-l)=y(l), then 

c1e-kl+c2ekl=c1ekl+c2e-kl



(6.27)

And y' (-l)= y' (l) gives us after dividing out the common factor k 

c1e-kl-c2ekl=c1ekl-c2e-kl


(6.28)

Rewrite equation (6.27), as 

c1 (e-kl-ekl)=c2 (e-kl-ekl)


This implies that c1=c2. The equation (6.28) becomes 

c1(e-kl-ekl) = c1(ekl-e-kl)

But this implies that c1=-c1, hence c1=0. This solution is therefore trivial, hence this problem has no negative eigenvalue. 

Case (iii) ( >0, say (=k2
Now as in Example 6.8 (case iii) the general solution is

y(x)=c1cos (kx)+c2 sin (kx)

Now 

y(-l)=c1cos kl-c2 sin (kl)=y(l)=c1cos (kl)+c2sin (kl)

But this implies that 

-c2sin (kl)=c2 sin (kl)

or –c2=c2 implying c2=0

Also y' (-l)=kc1sin (kl) + kc2 cos (kl)

= y' (l)=-kc1 sin (kl) +kc2 cos (kl).

Then 

kc1 sin (kl)=0

If sin (kl)(0, then c1=c2=0, leaving the trivial solution. Thus we assume that sin kl=0 which requires that kl=n( for some positive integer n. Therefore, the numbers 

(n=
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are eigonvalues for n=1,2,- - - - , with corresponding eigenfunctions 

yn(x)=c1 cos 
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where c1 and c2 are not both zero 

6.8
Exercises: 

Review of Power Series 

1. Write excos x in the form of a power series. Examine whether this power series is convergent. 

Solution About Ordinary Points: 


Find the general solution of the following differential equations about an ordinary point in terms of two power series 

2. y''-(1+x)y=0

3. y''+(cos x) y = 0

4. y''+x2y=0

5. y''+y=ex
6. y'+xy=x2-2x

7. (x2-1) y'+y=0

8. y"-(x+1) y'-y=0


Use the power series method to solve the following initial value problems 

9. (x-1) y''-x y'+y=0


y(0)=-2, y' (0)=6

10. (x2+1) y''+2x y'=0, y(0)=0, y' (0)=1

11. y"+xy=0, y(0)=1, y' (0)=1

12. xy"+y+x=0, y(1)=1, y' (1)=1

Solution About Regular Singular Point: The method of Frobenius
Use the method of Frobenius to solve the following differential equations

13. x y''-x y'+y=0

14. y''+ 
[image: image227.wmf]x
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 y'-2y=0

15. x y''+ y'+y=0

16. 2x y'-3 y'-
[image: image228.wmf]x
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y = 0

17. 4x2y''+(3x+1)y=0

18. x y''-(x+5) y'+3y=0

19. x y''+(x-5) y'+3y=0

20. x y''+ y'+xy=0

Bessel’s Equation 

Find the general solution of the following equations

21. x2 y''+x y'+(x2-1)y=0

22. x y''+x y'+xy=0

23. Verify that y=xnJn(x) is a particular solution of x y"+(1-2n) y'+xy=0, x>0

Legendre’s Equation 

Solve the following equations 

24. (1-x2) y''-2x y'=0

25. (1-x2) y''-2x y'+12y=0 subject to initial conditions 


y(0)=0, y' (0)=1.

Sturm Liouville Theory


In each of problems 26 through 35, classify the Sturm-Liouville problem as regular, periodic, or singular; state the relevant interval, find the eigenvalues; corresponding to each eigenvalue, find an eigenfunction.

26. y''+( y=0; 
y' (0)= y' (l)=0

27. y''+( y=0;
y(0)=0, 3y(1)+ y' (1)=0

28. y''+( y=0;
y(0)=0, y' (l)=0

29. y''+( y=0;
y' (0)=0, y' (l)=0

30. y''+( y=0;
y' (0)=y(4)=0

31. y''+( y=0;
y(0)=y((),y' (0)= y' (()

32. y''+( y=0;
y(-3()=y(3(), y' (-3()= y' (3()

33. y''+( y=0;
y(0)=0, y(()+2 y' (()=0

34. y'+( y=0;
y(0)-2 y' (0)=0, y' (1)=0

35. y''+2 y'+(1+()y=0, 
y(0)=y(1)=0.
(6.2)





� EMBED Equation.3  ���








* When we replace x by � EMBED Equation.3  ���, the series given in (6.15) and (6.16)  converge for 0<� EMBED Equation.3  ���<� EMBED Equation.3  ���.
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