CHAPTER 2

FIRST ORDER DIFFERENTIAL EQUATIONS

2.1 
Separable Variables

2.2 
Exact Equations

2.2.1
Equations Reducible to Exact Form.

2.3 
Linear Equations

2.4 Solutions by Substitutions

2.4.1
Homogenous Equations 

2.4.2   Bernoulli’s Equation
2.5      Exercises

In this chapter we describe procedures for solving 4 types of differential equations of first order, namely, the class of differential equations of first order where variables x and y can be separated, the class of exact equations (equation (2.3) is to be satisfied by the coefficients of dx and dy, the class of linear differential equations having a standard form (2.7) and the class of those differential equations of first order which can be reduced to separable differential equations or standard linear form by appropriate.

2.1 Separable Variables

Definition 2.1: A first order differential equation of the form
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is called separable or to have separable variables.

Method or Procedure for solving  separable differential equations

(i) If h(y) = 1, then
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dy = g(x) dx

Integrating both sides we get
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where c is the constant of integral

We can write
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where G(x) is an anti-derivative (indefinite integral) of g(x)
(ii) Let 
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that is f(x,y)  can be written as the product of two functions, one function of variable x and other of y. Equation
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can be written as
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By integrating both sides we get
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where 
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where H(y) and G(x) are anti-derivatives of 
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Example 2.1: Solve the differential equation
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Solution:  Here 
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Hence



H(y) = G(x) + C

or lny = lnx + lnc
(See Appendix     )


lny – lnx = lnc
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Example 2.2: Solve the initial-value problem
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Solution: g(x) = x, h(y) = -1/y, p(y) = -y



H(y) = G(x) + c
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or
y2 = -x2 – 2c


or
x2 + y2 = c12

where c12 = -2c

By given initial-value condition



16+9 = c12

or
c1 = ( 5


or
x2 + y2 = 25


Thus the initial value problem determines




x2 + y2 = 25

Example 2.3: Solve the following differential equation
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Solution:

dy = cos5xdx



Integrating both sides we get
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2.2 
Exact Differential Equations



We consider here a special kind of non-separable differential equation called an exact differential equation. We recall that the total differential of a function of two variables U(x,y) is given by
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Definition 2.2.1 : The first order differential equation 


M(x,y)dx + N(x,y)dy=0  


(2.2)

 is called an exact differential equation if left hand side of (2.2) is the total differential of some function U(x,y).

Remark 2.2.1: (a) It is clear that a differential equation of the form (2.2) is exact if there is a function of two variables U(x,y) such that
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(b) Let M(x,y) and N(x,y) be continuous and have continuous first derivatives in a rectangular region R defined by a<x<b, c<y<d. Then a necessary and sufficient condition that M(x,y)dx + N(x,y)dy be an exact differential is
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For proof of Remark 2.2.1(a) see solution of Exercise 22 of this chapter.

Procedure of Solution 2.2:

Step 1:
Check whether differential equation written in the form (2.2) satisfies (2.3) or not.

Step 2: 
If for given equation (2.3) is satisfied then there exists a function f for 

which
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Integrating (2.4) with respect to x, while holding y constant, we get
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where the arbitrary function g(y) is constant of integration.

Step 3:
Differentiate (2.5) with respect to y and assume 
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Step 4: 
Integrate (2.6) with respect to y and substitute this value in (2.5) to obtain f(x,y)=c, the solution of the given equation.

Remark 2.2.2: (a) Right hand side of (2.6) is independent of variable x, because
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(b)
We could just start the above mentioned procedure with the assumption that
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By integrating N(x,y) with respect to y and differentiating the resultant expression, we would find the analogues of (2.5) and (2.6) to be, respectively,
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Example 2.4: Check whether x2y3dx + x3y2dy = 0 is exact or not?
Solution:
In view of Remark 2.2.1(b) we must check whether 

    , where M(x,y)= x2y3, N(x,y)=x3y2
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Hence the given equation is exact.

Example 2.5: Determine whether the following differential equations are exact. If they are exact solve them by the procedure given in this section.

(a) (2x-1)dx + (3y+7)dy=0

(b) (2x+y)dx - (x+6y)dy=0

(c) (3x2y+ey)dx + (x3+xey-2y)dy=0

Solution of (a)
M(x,y) = 2x-1, N(x,y)=3y+7
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 and so the given equation is exact.

Apply procedure of solution 2.2 for finding the solution.

Put 
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 Integrating and choosing h(y) as the constant of integration we get
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 and by integrating with respect to y we obtain
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The solution is 
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Solution of (b): It is not exact as
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Solution of (c):
M(x,y) = 3x2y + ey




N(x,y) = x3 + xey – 2y
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the equation is exact.

Apply procedure of solution 2.2



Let
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Integrating with respect to x, we obtain
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where g(y) is a constant of integration


Differentiating with respect to y we obtain 
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This gives
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or
g’(y) = –2y



or
g(y) = –y2

Substituting this value of g(y) we get



f(x,y) = x3y + xey – y2 = c. Thus



x3y + xey – y2  = c is the solution of the given differential equation.

2.2.1 Equations Reducible to Exact Form

There are non-exact differential equations of first-order which can be made into exact differential equations by multiplication with an expression called an integrating factor. Finding an integrating factor for a non-exact equation is equivalent to solving it since we can find the solution by the method described in Section 2.2. There is no general rule for finding integrating factors for non-exact equations. We mention here two important cases for finding integrating factors. It may be seen from examples given below that integrating factors are not unique in general.

Computation of Integrating Factor

Let M(x.y)dx+N(x,y)dy=0

be a non-exact equation.

Then 

(i)
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is an integrating factor, where My, Nx are partial derivatives of M and N with respect to y and x and 
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(ii)
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is an integrating factor, where My and Nx are as in the case (i) and 
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Example 2.6: (a) Let us consider non-exact differential equation.


(x2/y) dy+2xdx=0
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(b) ex is an integrating factor of the equation
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Example 2.7: 
Solve the differential equation of the first-order:




xydx+(2x2+3y2-20)dy=0

Solution:
M(x,y)=xy,       N(x,y)=2x2+3y2-20


My=x and Nx=4x. This shows that the differential equation is not exact.
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leads us nowhere, as 
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 is a function of y only. Hence
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 is an integrating factor.


After multiplying the given differential equation by y3 we obtain


xy4dx+(2x2y3+3y5-20y3)dy=0


This is an exact differentiation equation. Applying the method of the previous section we get
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Example 2.8: Solve the following differential equation:


(2y2+3x)dx+2xydy=0

Solution: The given differential equation is not exact, that is
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, where


M(x,y)=2y2+3x


N(x,y)=2xy


(My-Nx)/N = 1/x is a function of x only.


Hence 
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 is an integrating factor.


By multiplying the given equation by x we get (2y2x+3x2)dx+2x2ydy=0


This is an exact equation as
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Applying the method for solving exact differential equation, we get f=x2y2+x3+h(y), h’(y)=0, and h(y)=c if we put fx=2xy2+3x2. The solution of the differential equation is x2y2+x3=c.

2.3 Linear Equations

Definition 2.3.1: A first order differential equation of the form
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is called a linear equation.
if a1(x) ( 0, we can write this differential equation in the form
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(2.7),


where 
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(2.7) is called the standard form of a linear differential equation of the first order 

Definition 2.3.2: 
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 is called the integrating factor of the standard form of a linear differential equation (2.7).

Remark 2.3.1: (a) A linear differential equation of first order can be made exact by multiplying with the integrating factor. Finding the integrating factor is equivalent to solving the equation.

(b) Variation of parameters method is a procedure for finding a particular solution of 2.7. For details of variation of parameters method see the solution of Exercise 39 of this chapter.

Procedure of Solution 2.3:
Step 1:
Put the equation in the standard form (2.7) if it is not given in this form.

Step 2:
Identify P(x) and compute the integrating factor ((x) = 
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Step 3:
Multiply the standard form by ((x).

Step 4:
The solution is 
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Example 2.9: Find the general solution of the following differential equations:
(a)
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Solution: (a)
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P(x)= – 8 


Integrating function = 
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Integrating factor = 
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Solution is given by
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Standard form is 
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Integrating factor = 
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2.4
Solutions by Substitutions

A first-order differential equation can be changed into a separable differential equation (Definition 2.1) or into a linear differential equation of standard form (Equation (2.7)) by appropriate substitution. We discuss here two classes of differential equations, one class comprises homogeneous equations and the other class consists of Bernoulli’s equation.

2.4.1 Homogenous Equations

A function f(.,.) of two variables is called homogeneous function of degree ( if 
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A first order differential equation, M(x,y)dx + N(x,y)dy = 0 is called homogenous if both coefficients M(x,y) and N(x,y) are homogenous functions of the same degree.

Method of Solution for Homogenous Equations: A homogeneous differential equation can be solved by either substituting y=ux or x=vy, where u and v are new dependent variables. This substitution will reduce the equation to a separable first-order differential equation.

Example 2.10: Solve the following homogenous equations:

(a) (x-y)dx + xdy = 0

(b) (y2+yx)dx + x2dy = 0

Solution: (a)  Let y=ux, then the given equation takes the form




(x-ux)dx + x(udx + xdu) = 0



or
dx + xdu = 0



or
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(b)
Let y=ux, then the given equation takes the form 



(u2x2 + ux2)dx + x2 (udx + xdu) = 0 


or
(u2 + 2u)dx + xdu = 0


or

[image: image110.wmf]0

)

2

u

(

u

du

x

dx

=

+

+


Solving this separable differential equation, we get
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or
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2.4.2
Bernoulli’s Equation


An equation of the form
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(2.8)

is called a Bernoulli’s differential equation. If n(0 or 1, then the Bernoulli’s equation (2.8) can be reduced to a linear equation of first-order by the substitution.
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The linear equation can be solved by the method described in the previous section.

Example 2.11: Solve the following differential equations:

(a)
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(b)
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Solution: (a)
 Let 
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(n=3)
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Substituting these values into the given differential equation, we get
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This equation is of the standard form, (2.7) and so the method of Section 2.3 is applicable.


Integrating factor  (
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where 
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 Therefore ( (x) =x-2


Solution is given by



v.x-2 = ( -6x-2 dx +c

or

v.x-2 =6x-1 +c

or

v = 6x + cx2 

Since

v = y-2 we get

y-2 =6x +cx2
or 
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(b)
Let w = y-1, then the equation
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takes the form 
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integrating factor ((x) = = e(P(x)dx      , where  P(x) = 1

or ((x) = e(P(x)dx =ex 

Solution is given by


ex.w = - ( e2xdx + c
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2.5 Exercises

Separable Differential Equations
Solve the following differential equations.

1.
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2. x2 dy + y2dx = 0

3. (1+cos () dr = r sin ( d (
4. 
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5. dx-x2dy = 0

6. xy’ = 4y

7. 
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Solve the following differential equations subject to the indicated initial conditions

12. (e-y+1) sin xdx - (1+cos x )dy = 0,
 y(0)=0
13. 
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Exact Equations

Check whether the differential equations given here are exact or not, if exact solve them.

15. (2xe2y-x cos xy+2y)dy-(ycos xy-e2y) dx = 0

16. (2xy+3y) dx+(4y3+x2+3x+4)dy=0

17. (x2+y2)dy+2xydx = o

18. (cos x cos y – cot x) dx = sin x sin ydy

19. x2y3dx=x3y2dy

20. 
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21. (x+ sin y) dx + (y2+ x cos y) dy = 0

22. Prove necessary and sufficient condition for a differential equation of first order to be exact.

Solve the differential equations 23-25 subject to the indicated initial 
condition.

23. 2xydx+(y2+x2)dy=0, y(2) = 2

24. (4y+2x-5)dx+(6y+4x-1)dy=0,  y(-1)=2

25. sin y dx +[2y+x cos y]dy=0,  y(0)= (

26.
y(4x+y)dx-2(x2-y)dy=0

27.
(10-6y+e-3x)dx - 2dy=0

28. 
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Linear Equations
Solve the differential equations given below

29. 
[image: image141.wmf]x

e

y

dx

dy

8

2

=

-


30. 
[image: image142.wmf]x

y

x

dx

dy

x

cos

2

3

3

=

+


31. 
[image: image143.wmf]x

e

y

dx

dy

14

=

+


32. 
[image: image144.wmf]x

y

dx

dy

x

1

=

+


33. 
[image: image145.wmf]3

1

2

3

x

y

x

dx

dy

-

=


34. 
[image: image146.wmf]x

y

dx

dy

sinh

+

=


35. 
[image: image147.wmf]θ

θ

cos

sec

=

+

r

d

dr

θ


36. 
[image: image148.wmf]0

)

cos

tan

(

=

-

+

x

x

y

dx

dy


Solve the following initial value problem

37. 
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39. Describe the variation of parameter method for finding a solution of a linear differential equation of first-order.

Solutions by substitutions (Homogeneous  and Bernoulli’s Equation) 

Solve the following differential equations without and with initial conditions

40. ydx –2(x+y)dy=0

41. (y+x)dy+(x-y)dx=0

42. (x2+y2)dx = (xy-x2)dy

43. 
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45. 
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46. 3(1+x2)dy+2xy(1-y3)dx=0

47. 
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.   Thus
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