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1. Introduction to Differential Equations
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1.5
Exercises

1.1 Introduction

The words differential and equations clearly indicate solving some kind of equation involving derivatives. Differential equations are interesting and important because they express relationships involving rates of change. Such relationships form the basis for developing ideas and studying phenomena in the sciences, economics, engineering, finance, medicine and in short without any exaggeration every aspect of human knowledge. We will see examples of applications to real world problems in Section 1.4 and subsequent chapters.

The study of differential equations originated in the investigation of laws that govern the physical world and were first solved by Sir Isaac Newton in seventeenth century (1642-1727) , who referred to them as 'fluxional equations. The term differential equation was introduced by Gottfried Leibnitz, who was contemporary of Newton. Both are credited with inventing the calculus. Many of the techniques for solving differential equations were known to mathematicians of this century, but a general theory for differential equations was developed by Augustin-Louis Cauchy (1789-1857). Applications to stock markets and problems related to finance and legal profession, studied towards the later part of twentieth century can be found in the work of Myron S. Scholes and Robert C. Merton who were awarded Nobel Prize of Economics in 1997. The three aspects of the study of differential equations - theory, methodology and application - are treated in this book with the emphasis on methodology and application. The purpose of this chapter is two-fold: to introduce the basic terminology of differential equations and to examine how differential equations arise in endeavour to describe or model physical phenomena or real world problems in mathematical terms.

1.2 
Definitions and Terminology

Definition 1.2.1 
Differential Equation

An equation containing the derivatives of one or more dependent variable, with respect to one or more independent variables, is said to be a differential equation (DE).

Definition 1.2.2 
Ordinary Differential Equation

A differential equation is said to be an ordinary differential equation (ODE) if it contains only ordinary derivatives of one or more dependent variables with respect to a single independent variable.

Definition 1.2.3 
Partial Differential Equation

An equation involving the partial derivatives of one or more dependent variables of two or more independent variables is called a partial differential equation (PDE).

Example 1.
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are examples of ordinary differential equation.

Example 2.
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are examples of partial differential equation. 

Definition 1.2.4 
Order of a Differential Equation

The order of a differential equation (ODE or PDE) is the order of the highest derivative in the equation.

Example 3. (i) Order of the differential equation
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(ii)  Order of the differential equation
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Definition 1.2.5
Degree of a Differential Equation

The degree of a differential equation is the degree of the highest order derivative in the equation.

Example 4. (i) The degree of ODE  
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(ii) The degree of ODE
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Remarks 1.2.1.  (i) Very often notation y', y'', y''' . . . y(n) are respectively used for    
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(ii) In symbols we can express an nth order ordinary differential equation in one dependent variable by the general form

F(x, y, y', y'' . . . . y(n) ) = o,



(1.1)

where F is a real-valued function of n+2 variables

x, y, y’, y” y”’ ... . . . y(n)  and where y(n) = 
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Definition 1.2.6  
Linear and Non-linear Differential Equations

An nth-order ordinary differential equation is said to be linear in y if it can be written in the form 

an(x)y(n)+an-1(x)y(n-1) + . . . . . + a1(x)y’+ao(x)y = f(x)

where ao, a1, a2 . . ., an and f are functions of x on some interval, and an(x) ( 0 on that interval.  The functions ak(x), k=0, 1, 2, . .. . , n are called the coefficient functions. A differential equation that is not linear is called non-linear.

Example 1.5

(i) y''=4y'+3y=x4 and

xy''+yex+6=0 are linear differential equations.


(ii)   
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y’‘-4y’+y=0 are linear differential equations.



(iii)
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are non-linear.

Remark. 1.2.2  An ordinary differential equation is linear if the following conditions are satisfied.

(i) The unknown function and its derivatives occur in the first degree only.

(ii) There are no products involving either the unknown function and its derivatives or two or more derivates.

(iii) There are no transcendental functions involving the unknown function or any of its derivatives.

Definition 1.2.7  
Solutions:
(i) A solution or a general solution of an nth-order differential equation of the form (1.1) on an interval  I = [a,b] = {x(R/a( x(b} is any function possessing all the necessary derivatives, which when substituted for y, y’, y’’ . . . ., y(n), reduces the differential equation to an identity. In other words an unknown function is a solution of a differential equation if it satisfies the equation.

(ii) A solution of a differential equation of order n will have n independent arbitrary constants. Any solution obtained by assigning particular numerical values to some or all of the arbitrary constants is called a particular solution.

(iii) A solution of a differential equation that is not obtainable from a general solution by assigning particular numerical values is called a singular solution.

(iv) A real function y = ((x) is called an explicit solution of the differential equation F(x,y, y’,  . . . , y(n)) = 0 on [a, b] if

F(x, ( (x), (’(x), . . . , ((n) (x) ) = 0 on [a,  b].

(v) A relation g(x,y) = 0 is called an implicit solution of the differential equation F(x, y, y’,  . . . , y(n) ) = 0 on [a, b] if g(x, y) = 0 defines at least one real function f on [a, b] such that y = f(x) is an explicit solution on this interval.

We now illustrate these concepts through the following examples:

Example 1.6  (i) y = c1 ex+c2 is a solution of the equation

y’’-y=0

This ODE is of order 2 and so its solution involves 2 arbitrary constants c1 and c2. It is clear that 

y’ = c1 ex+c2, y’’ = c1 ex+c2 and so c1 ex+c2 - c1 ex+c2 = 0. 

Hence y=c1 ex+c2 is a general solution or simply a solution.

(ii) y = ce2x is a solution of ODE y’-2y = 0, 
because y’ =2ce2x and y=ce2x satisfy the ODE. Since given ODE is of order 1, solution contains only one constant.

(iii) y=cx+
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 c2 is a solution of the equation
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 (y’)2 + xy’ – y = 0

To verify the validity, we note that y’=c, and therefore
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  (c)2+cx-(cx+
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 c2)=0

(iv) y=c1 e2x+c2e-x is a general solution of the differential equation y’’=y’-2y=0 of order 2.

To check the validity we compute y’ and y’’ and put values in these equation.

y’ = 2c1e2x - c2e-x, y’’=4c1 e2x+c2e-x
L.H.S. of the given ODE is = (4c1 e2x+c2e-x)-(2c1e2x-c2e-x)

-2(c1e2x+c2e-x)

= 0

Example 1.7 (i) Choosing c=1 we get a particular solution of differential equation considered in Example 1.6(iii).

(ii) For c1 = 1 we get a particular solution of differential equation in 
     Example 1.6(i) that is, y=ex+c2 is a particular solution of y''-y=0.

Example 1.8 (i) y = - 
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 x2 is a singular solution of differential equation in Example 
                      1.6(iii) .

 y = - 
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 x2  is not obtainable from the general solution y=cx+
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c2. However, it is a solution of the given differential equation, can be checked as follows:

y’ =-x. By putting values of y and y’ into the RHS of the equation we get
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 (-x)2+x(-x)-(- 
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 x2) = x2-x2 =0

(ii) y = 0 is a singular solution of y’ = xy1/2
Verification: The general solution of this equation is y = 
[image: image21.wmf]4

x

2

+c. For c=0, we do not get the solution y=0. Therefore, the solution y=0 of the equation is not obtainable from the general solution.

Hence y=0 is a singular solution. 

Example 1.9. (i) y = sin 4x is an explicit solution of y’’+16y=0 for all real x.

Verification: y’=-4 cos 4x, y’’=-16 sin 4x. Putting the value of y and y’’ in terms of x into the RHS of equation we get –16 sin 4x+16 sin 4x=0.

Hence equation is satisfied for y = sin 4x. 

Therefore y=sin4x is an explicit solution of the given equation.

(ii) y=c1 ex+c2e-x is an explicit solution of the equation y’’-y=0

Verification:
y’ = c1ex –c2e-x, y’’ = c1 ex+ c2e-x. Put values of y and y’’ in the RHS of the given equation to get (c1ex+c2e-x) - (c1ex+c2e-x)




=       0. 

Example 1.10 : (i) The relation x2+y2 = 4 is an implicit solution of the differential equation
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 on the interval (-2,2).

Verification: By implicit differentiation of the relation x2+y2=4 we get 
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Further, y1 = 
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It is clear that y’1 = 
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(ii) The relation y2+x-4 = 0 is an implicit solution of 2yy’+1=0 on the interval (-(,4)

Verification: Differentiating y2+x-4=0 with respect to x, we obtain 
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 or 2yy’+1=0, which is the given differential equation. Hence y2+x-4=0 is an implicit solution if it defines a real function on (-(,4). Solving the equation y2+x-4=0  for y, we get y= 
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Since both y1 = 
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 and y2 = - 
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 and their derivatives are functions defined for all x in the interval (-(,4). , we conclude that y2+x-4=0  is an implicit solution on this interval. 

Remark 1.2.3  It is very pertinent to note that a relation g(x,y) = 0 can reduce a differential to an identity without constituting an implicit solution of the differential equation. For example x2+y2+1 = 0 satisfies yy’+x=0, but it is not an implicit solution as it does not define a real-valued function. This is clear from the solution of the equation x2+y2+1 = 0 or y=((1-x2, imaginary number.

The relation x2+y2+1 = 0 is called a formal solution of yy’+x=0. That is it appears to be a solution. Very often we look for a formal solution rather than an implicit solution.

 Differential Equation of a Family of Curves

Let us consider an equation containing n arbitrary constants. Then by differentiating it successively n times we get n more equations containing n arbitrary constants and derivatives. Now by eliminating n arbitrary constants from the above (n+1) equations and obtaining an equation which involves derivatives upto the nth order, we get a differential equation of order n. The concept of obtaining differential equations from a family of curves is illustrated in following  examples.

Example 1.11 Find the differential equation of the family curves 

y = ce2x
Solution: Given y = ce2x 



(1.2)

Differentiating equation (1.2) we get

y’ = 2ce2x = 2 y 

or

y’ - 2y = 0


(1.3)

Thus, arbitrary constant c is eliminated and equation (1.3) is the required equation of the family of curves given by equation (1.2).

Example 1.12.
Find the differential equation of the family of curves


y = c1 cosx + c2 sin x

(1.4)

Solution: Differentiating (1.4) twice we get


y’ = -c1 sin x + c2 cos x

(1.5)

y’’ = -c1cos x - c2 sin x

(1.6)

c1 and c2 can be eliminated from (1.4) and (1.6) and we obtain the different equation

y’’ + y = 0

(1.7)

(1.7) is the differential equation of the family of curves given by (1.4).

1.3 Initial-Value and Boundary-Value Problems 

A general solution of an nth order ordinary differential equation contains n arbitrary constants. To obtain a particular solution, we are required to specify n conditions on solution function and its derivatives and thereby expect to find values of n arbitrary constants. There are two well known methods for specifying auxiliary conditions. One is called initial conditions and other is said to be boundary conditions.

It may be observed that an ordinary differential equation does not have solution or unique solution. However, by imposing initial and boundary conditions uniqueness can be ensured for certain classes of differential equations.

Definition 1.3.1. initial-Value Problem

If the auxiliary conditions for a given differential equation relate to a single x value, the conditions are called initial conditions. The differential equation with its initial conditions is called an initial-value problem.

Definition 1.3.2. If the auxiliary conditions for a given differential equation relate to two or more x values, the conditions are called boundary conditions or boundary values. The differential equation with its boundary conditions is called boundary-value problem.

Example 1.13  (i) y'+y=3, y(0) = 2 is a first-order initial value problem. Order of initial value problem is nothing but order of the given equation. y(0)=2 is an initial condition.

(ii) y’’+2y=0, y(1) = 2, y’(1) = -3 is a second-order initial value problem. Initial conditions are y(1)=2 and y’(1) =-3. Values of function y(x) and its derivative are specified for value x=1.

(iii)  y’’-y’+y = x3, y(0) = 4, y’(1) =-2 is a second-order boundary-value problem. Boundary conditions are specified at two points namely x = 0 and x = 1. One may specify boundary conditions for different values of x say x = 2 and x = 5. In this case the boundary-value problem is

y’’-y’+y = x3, y(2) = 4, y’(5) =-2.

The following questions are quite pertinent as boundary value and initial value problems represent important phenomena in nature:

Problem 1. When does a solution exist? That is, does an initial-value problem or a boundary value problem necessarily have a solution?

Problem 2. Is a known solution unique? That is, is there only one solution of an initial-value problem or a boundary-value problem?

The following theorem states that under the specified conditions, a first-order initial-value problem has a unique solution.

Theorem 1.3.1. Let f and fy (
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 ) be continuous functions of x and y in some rectangle R of the xy-plane, and let (xo, yo) be a point in that rectangle. Then on some interval centred at xo there is a unique solution y = ((x) of the initial value problem:
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Figure 1.1 Geometrical Illustration of Theorem 1.3.1.

Example 1.14. (i) y = 3 ex is a solution of the initial-value problem.

y’ = y, y(0) = 3

This means that the solution of the differential equation y’=y passes through the point (0,3).

Verification: Let y = cex, where c is an arbitrary constant. Then y’ = cex = y. Thus, y = cex is a general solution of the given equation y’=y. 

By applying initial condition we get 3=y(0) = c eo = c or c = 3. Therefore y=3ex is a solution of the given initial value problem.

(ii) Find a solution of the initial-value problem y’=y, y(1)=-2. That is, find a solution of differential equation y’=y which passes through the point (1, -2).

Solution: As seen in part (i) y = cex is a solution of the given equation. By imposing given initial condition we get 

-2=y(1) = c e1 or c = -2/e. Therefore
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Example 1.15   
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has at least two solutions, namely y=0 and y = x4/16.

Example 1.16 (i) Does a solution of the boundary value problem y’’+y=0, y(0)=0, y(() = 2 exist?

(ii) Show that the boundary value problem 

y’’+y=0, y(0) =0, y(() = 0 has

infinitely many solutions. 

Solution (i) y=c1 cos x+c2 sin x is a solution of the differential equation y’’+y=0.

Using given boundary conditions in y=c1 cos x+c2 sin x, we get

0=c1 coso+c2 sin 0

and 

2=c1 cos (+c2sin (
The first equation yields c1=0 and the second yields c1 =-2 which is absurd, hence no solution exists.

(ii) The boundary values yield 

0=c1 cos 0+c2 sin 0

and 

0=c1 cos(  + c2 sin (
Both of these equations lead to the fact that c1=0. The constant c2 is not assigned a value and therefore takes arbitrary values. Thus there are infinitely many solutions represented by y=c2 sin x.

Example 1.17. Examine existence and uniqueness of a solution of the following initial-value problems:


(i) y'=y/x,y(2) = 1


(ii) y'=y/x,y(0) = 3


(i) y'= -x,y(0) = 2

Solution (ii) We examine whether conditions of theorem 1.3.1 are satisfied . To check, we observe that 
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Both functions are continuous except at x =0.

Hence f and 
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 satisfy the conditions of the theorem in any rectangle R that does not contain any part of the y -axis (x=0). Since the point (2,1) is not on the y-axis, there is a unique solution. One can check that y=
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 x is the only solution.

(ii) 
In this problem neither f nor 
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Hence we cannot conclude any thing from theorem 1.3.1. However it can be verified that y=cx is a general solution of y’=y/x but that a particular solution cannot be found whose graph passes through the point (0,3).


(iii)
It can be seen that conditions of theorem 1.3.1. are satisfied. Therefore the initial-value problem has a unique solution. 

1.4. Differential Equations as Mathematical Models 


Mathematics provides a precise language for describing physical laws and processes of real world. For example the fact that the product of the pressure P and the corresponding volume V of an ideal gas is constant is represented by the mathematical expression PV=k. This equation is called a mathematical model of the pressure/volume relationship. Construction of a mathematical model of a real world condition requires identification of the important variables and their relationship. 


Representation or description of natural laws, physical and real world situations in terms of mathematical concepts is known as mathematical model. In this section we are interested in mathematical models that involve derivatives, that is, formulation of real world problems in the form of ordinary differential equations. Modeling of real world problems through partial differential equations will be treated in chapter 10. We concentrate here on Growth and decay problems (Radioactive Decay and Carbon Dating, Logistic Model of Population Growth) Supply and Demand and compounding of interest, Newton’s Law of Cooling/Warming, Spread of disease, Chemical Reactions, Mixtures, Draining a Tank, Series Circuits, Falling Bodies, Artificial Kidney, and Aids. We derive models under appropriate assumptions and their solutions will be discussed in subsequent chapters.


The steps of the modeling process are described in Figure 1.2

Figure 1.2

A model is reasonable if its solution is consistent with either experimental data or known facts about the physical phenomena or situations. if the predictions produced by the solution are poor or vague or insufficient, appropriate modification of the model is carried out by either increasing the level of resolution of the model or by making alternative assumptions about the mechanisms for change  in the system. A mathematical model of a physical system or phenomenon will often involve the variable time t. A solution of the model then gives the state of the system; in other words, for appropriate value of t the values of the dependent variable (or variables) describe the system in the past, present, and future. 

1.4.1. Population Dynamics (Logistic Model of Population Growth)

One of the earliest attempts to model human population growth by means of mathematics was by the English economist Thomas Malthus in 1798. Essentially, the idea of the Malthusian model is the assumption that the rate at which a population of a country grows at a certain time is proportional to the total population of the country at that time. In mathematical terms, if N(t) denotes the total population at time t, then this assumption can be expressed as 
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where k is constant of proportionality


Solution of equation (1.8) will provide population at any future time t. This simple model which does not take many factors into account (immigration and emigration, for example) that can influence human populations to either grow or decline, nevertheless turned out to be fairly accurate in predicting the population of the United States during the years 1790-1860. Populations that grow at a rate described by (1.8) are rare, nevertheless, (1.8) is still used to model growth of small populations over short intervals of time, for example, bacteria growing in a petri dish. In 1837 the Dutch biologist Verhulst improved Malthusian model while looking at fish population in the Adriatic sea. He reasoned that the rate of change of population N(t) with respect to t should be influenced by growth factors such as population itself, and also factors tending to retard the population, such as limitations on food and space. He constructed a model by assuming that growth factors could be incorporated into a term a N(t), and retarding factors into a term –bN(t)2, with a and b positive constants whose values depend on the particular population. From this he obtained the logistic model of population growth:
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If we assume initial population (at a time designated as zero) N(0)=No. This is an initial condition), we will see in chapter .............that the solution of the initial-value problem 
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Formula (1.9a) can provide prediction of population after specified years of time.

1.4.2. Radioactive Decay and Carbon Dating


In most cases a mathematical model is only an approximation of the physical condition being studied. In the beginning of 20th century E. Ruther ford, based on experimental results, was able to formulate a model in terms of a simple differential equation to describe radio active decay relying on the assumption that rate at which atoms disintegrate is proportional to the number of atoms N present in the material. 


Let m(t) be the mass of a radioactive substance at time t, then for some constant of proportionality k that depends on the substance, 
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(1.10)



The solution of (1.10) (We solve this equation in the next chapter) is the basis for an important technique used to estimate the ages of certain artefacts. Infact,  Libby fetched Nobel prize of chemistry is 1960 for his work related to this model. 


Around 1950 the chemist Willard Libby devised a method of using radioactive carbon as a means of determining the approximate ages of fossils. The theory of carbon dating is based on the fact that the isotope carbon-14 is produced in the atmosphere by the action of cosmic radiation on nitrogen. The ratio of the amount of C-14 to ordinary carbon in the atmosphere appears to be a constant, and as a consequence the proportionate amount of the isotope present in all living organisms is the same as that in the atmosphere. When an organism dies, the absorption of C-14, by either breathing or eating, ceases. Thus by comparing the proportionate amount of C-14 present, say, in a fossil with the constant ratio found in the atmosphere (ordinary carbon-C-12) it is possible to obtain a reasonable estimation of its age. The method is based on the knowledge that the half-life of the radio active C-14 is approximately 5600 years. Libby's method has been used to date furniture in Egyptian tombs, to decide Van Meegeren Art forgeries and to decide the dates of different civilization through archaeological excavation. 


The process of estimating the age of an artefact or fossil is called carbon dating. See Example 3 of Chapter 4 for procedure to determine age of an artefact. Radio active dating has also been used to estimate the age of the solar system and of earth as 45 billion years. It may be recalled that the half-life is a measure of the stability of a radio active substance. It is simply the time it takes for one half of the atoms in an initial amount m(o)=M to disintegrate, or transmute into the atoms of another element. 

1.4.3. Supply, Demand and Compounding of Interest



Suppose that a company is planning to launch a new product in the market and for this it desires to develop a model to describe the behaviour of the price of the product. A normal assumption could be that the rate of change of the price of the product with respect to time is directly proportional to the difference in the demand and the supply of the product. Basically it is assumed that if the demand exceeds the supply, the price will go up  and if the supply excess the demand, the price will go down. Let P denote the price of the product at any time t. Then if D is the demand for the product and S is the supply, the derived model is 
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(1.11)

Where k is the constant of proportionality. 

Let s(t) be the amount of money accumulated in a saving account after t years where r is the annual rate of interest compounded continuously. 

If h>o denotes an increment in time, then interest obtained in the time span (t+h)-t  is the difference in the amounts accumulated. 

s(t+h)-s(t)




(1.12)

Since interest is given by (rate) x (time ) x (principal), we can approximate the interest earned in this same time period by either 

rhs(t) or   rhs(t+h)



(1.13)

Intuitively, the quantities in (1.13) are seen to be lower and upper bounds, respectively for the actual interest given by (1.12), that is, 



rhs(t) ( s(t+h) - s(t)( rhs(t+h)
(1.14)

Or 
rs(t)( (s(t+h)-s(t))/h  ( rs(t+h)
(1.15)

Since we are interested in the case where h is very small, taking limit in (1.15) as h  
   o we get
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or 
ds/dt = rs


(1.16)

(1.16) is a mathematical model of compounding interest.  By solving (1.16) we get the amount s(t) of money accumulated after time t (years or months) if initial amount s(to) at time t=to is known. That is, we are required to solve 

ds/dt = rs

s(to)=so
1.4.4 Newton's law of Cooling/Warming 

As we know Newton's law of (empirical law of) cooling states that the rate at which a body cools is proportional to the difference between the temperature of the body and the temperature of the surrounding medium, the so called ambient temperature. Let T(t) be the temperature of a body and let Tm denote the constant temperature of the surrounding medium. Then the rate at which the body cools denoted by 
[image: image52.wmf]dt

)

t

(

dT

 is proportional to T-Tm according to Newton's law of cooling. 

This means that 


[image: image53.wmf])

Tm

T

(

dt

dT

-

a

=



(1.17)

where  ( is a constant of proportionality. Since we have assumed the body is cooling, we must have T>Tm and so ( must be negative, that is, (<o.

Remark 1.1  Equations (1.8) and (1.10) are exactly the same, the difference is only in the interpretation of the symbols and the constant of proportionality. For growth we as expect in (1.8), the constant of proportionality k in (1.8) must be positive, that is, k>o and in the case of (1.10) or (1.17) constant of proportionality k and ( must be negative, that is k<o.

1.4.5 Spread of a Disease 

To understand the spread of a contagious disease, say a flu virus it is appropriate to assume that the rate at which disease spreads is proportional not only to the number of persons P(t) who have contracted the disease, but also to the number of persons N(t) who have not been exposed. If the rate of spread is 
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(1.18)

where ( is the constant of proportionality. Let us assume that one infected person is introduced into a fixed population of M persons, then P and N are related as P+N=M+1 or N=M+1-P. 

Putting this value of N is (1.18) we get 
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(1.19)


A solution of the following initial value problem provides the number of infected persons at any time t:
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P(0) = 1





(1.20)
1.4.6 Chemical Reactions

Let two chemical substances combine in the ratio m: n to form a third substance. Let S(t) denote the amount of the third substance at time t, then a proportion 
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 of it consists of the second substance. The rate of the formation of the third substance is proportional to the product of the amount of the two component substances which have not yet combined together. If M and N are the initial amounts of the two substances, then we get 
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(1.21)

This is the nonlinear differential equation for a second order reaction (reaction between two substances).

1.4.7 Chemical Mixtures

Let us suppose that a large mixing tank holds m gallons of water in which salt has been dissolved. Assume that another brine solution is pumped into the large tank at the rate of n gallons per minute, and then after proper mixing of these ingredients it is pumped out at the same rate. Let us assume that the concentration of the solution entering is p kilogram per gallon. 

Let P(t) be the amount of salt (measured in kilograms) in the tank at any time. Then the rate at which P(t) changes is a net rate:
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(1.22)

The rate R1 at which the salt enters the tank in kg/min is given by

R1 = (n gal/min).(p kg) = n.p

The rate R2 at which salt is leaving is given by

R2 = (n gal/min).(P/m kg/gal)
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Then equation (1.22) becomes
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The solution of (1.23) will provide the amount of salt at any time t.

1.4.8 Draining a Tank.

Figure 1.3
Let the cylindrical container shown in Figure 1.3 have a constant cross-section area A. The orifice at the base of the container has a constant cross-sectional area B. If the container is filled with water to a height h, water will flow out through the orifice. 

Let h be the height of the water at time t, and let h+(h be the height at time t+(t. Then volume of water lost when the level drops by an amount 

(h = volume of water that escapes through the orifice.

The volume of water lost in time (t is given by -A(h, where the negative sign indicates that the volume is a loss. The volume of water flowing through the orifice in time (t is the volume contained in a cylinder of cross section B and length (s. Thus we have 

-A(h=B(s

Dividing by (t and taking the limit as (t(o, we get
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where ds/st is the velocity of the water through the orifice. The velocity of the water issuing from the orifice decreases as the level of the water decreases and is given by famous Torricelli’s law of hydrodynamics to be 
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(1.25)

By (1.24)  and (1.25) we get
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(1.26) 

Differential equation (1.2.6) is the model of the rate at which the water level is dropping. 

1.4.9 Series Circuit

Figure 1.4

Let L = inductance, C = Capacitance, R = resistance be constant.

Consider the single-loop series circuit containing an inductor, resistor, and capacitor shown in Figure 1.4. Let I(t) denote the amount of current after switch is closed, let the charge on a capacitor at time is denoted by Q(t). Let E(t) denote impressed voltage on a closed loop. According to Kirchhoffs' second law, the impressed voltage E(t) on a closed loop must equal the sum of the voltage drops in the loop. Current I(t) is related to Q(t) on the capacitor by  
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By adding the three voltage drops

      Inductor                 Resistor               Capacitor
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and equating the sum to the impressed voltage, we obtain a second order differential equation 
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1.4.10 Falling Body

According to Newton's first law of motion, a body will either remain at rest or will continue to move with a constant velocity unless acted upon by an external force. This implies that if the net force (resultant force) acting on a body is zero then acceleration of the body is zero. According to Newton's second law of motion, the net force on a body is proportional to its acceleration, provided the net force acting on the body is not zero. That is if F(0 is net force, m is the mass of the body and A is the acceleration then F=mA. 

Let a rock be tossed upward from the roof of a building. Let s(t) denote the position of the rock relative to ground at time t. Then ds/dt and d2s/dt2 are respectively velocity and acceleration of the rock. By Newton's second law 


[image: image72.wmf])

28

.

1

(

...

g

2

dt

s

2

d

or

mg

2

dt

s

2

d

m

-

=

-

=


The minus sign in (1.28) is used because the weight of the rock is a force directed downwards which is opposite to the positive direction. 

The position s(t) of the rock is the solution of the following initial-value problem: 
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(1.29)
where so denotes the height of the roof of the given building and (o denote the initial velocity of the rock. We will discuss solutions of the problem of the type (1.29)

 in the subsequent chapters.

1.4.11 Artificial Kidney

Persons having severe kidney disease frequently need toxic waste products removed from their body by dialysis using an artificial kidney. Essentially, an artificial kidney comprises two chambers separated by a permeable membrane. The blood to be purified is passed through one chamber while a cleaning fluid, called a dialysate,  flows in the opposite direction through the other. The pores in the membrane are small enough to prevent the passage of blood cells but large enough to allow passage of the waste molecules. This is shown schematically in figure 1.5 below

Figure 1.5
German physiologist Adolph Fick (1821-1901) showed that the net flow of a substance separated by a membrane is from high concentration to low concentration and that the amount of a substance that will pass through a membrane in a unit time in proportional to the difference in the concentration levels of the substance on each side of the membrane. This   fact is often called Fick's law. 

In the artificial kidney,  the concentration of waste in the blood is high and that in dialysate is low, thus the waste molecules flow from the blood to the dialysate. Let cb=cb(t) be the waste concentration in the blood and let cd=cd(t) be the waste concentration in the dialysate. It is clear that cb(t)>cd(t).

Let us assume that the waste removal rate depends on the flow rate of substance on each side of the membrane and that the following equation is valid for the waste in the blood.

[Mass flow in] = [Mass lost through membrane]+[Mass flow out]

Lt Rb denote the blood flow rate then the mass flow rate of waste into the machine is Rb.cb(t).

The amount of waste passing through the membrane in time (t is k[cb(t)-cd(t)](t by Ficks law and the mass flow of waste in the blood after (t time is Rb.cb(t+(t). Thus we have 

Rb.cb(t) = k[cb(t)-cd(t)](t+Rb.cb(t+(t).

This equation can be arranged into the form 
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By taking the limit as (t(o, we get 
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Equation (1.30) is a model of an artificial kidney whose solution will give us concentration of waste in the blood at any time t. 

1.4.12 Survivability with AIDS( Acquired immunodeficiency )

Problem of survivability with AIDS (Acquired immunodeficiency syndrome) after being infected with the human immunodeficiency virus (HIV) is a challenging problem of the present time. Let t denote the elapsed time after members of a group of HIV-infected people develop clinical AIDS. Let S(t) denote the fraction of the group that remains alive at time t. One possible survival model asserts that AIDS is not a fatal condition for a fraction of this group, denoted by Si, to be called the immortal fraction here. 'For the remaining part of the group, the probability of dying per unit time at time t will assumed to be constant k. Thus the survival fraction S(t) for this model is a solution of the first order differential equation. 
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where k must be positive.

The solution of (1.31) will be discussed in Chapter 4.
Example 1.18 Under the assumption of (1.8), find a differential equation governing population N(t) of a country when individuals are allowed to migrate from the country at a constant rate r. 

Solution: The desired differential equation is
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Example 1.19  At time t=o a technological innovation is introduced into a locality of Delhi with fixed population of n people. Determine a mathematical model in the form of a differential equation of the first order providing the number of people x(t) who have adopted the innovation any time. 

Solution.  Let x(t) and y(t) denote respectively the number of people who have adopted the innovation and those who have not adopted it. If one person who has adopted the innovation is introduced into the population then x+y = n+1 and 
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We get this model following the argument of Section 1.5.

Example 1.20 The velocity of a particle in a magnetic field is found to be directly proportional to the square root of its displacement. Determine a model in terms of a differential equation of first-order of this situation. 

Solution:  Let x(t) be the displacement at time t.

Then speed =  
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 where
k is the constant of proportionality. 

Example 1.21 If the time-rate of change of the demand D for a product is directly proportional to elapsed time and inversely proportional to the square root of the demand, then determine a differential equation describing this situation. 

Solution:  It is clear that the rate of change of D with respect to time t is proportional to 
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Example 1.22. In the theory of learning, the rate at which a subject is memorized is assumed to be proportional to the amount that is left to be memorized. Suppose M denotes the total amount of a subject to be memorized and A(t) is the amount memorized in time t. Write a differential equation for the amount A(t).

Solution:  The rate of change 
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, of the amount to be memorized is proportional to M-A, that is  
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Exercises 

1. Classify the given differential equation by order, and tell whether it is linear or non linear.  

(a)   
y’+2xy = x2 


(b)
y’ (y+x) = 5

(c)  
y sin y = y’’


(d)
y cos y = y’’’
(e)
cos y dy = sin x dx

(f)
y’’ = ey
2. State whether the given differential equation is linear or non linear. Write the order of each equation.

(a)
(1-x)y’’-6xy’+9y = sin x

(b)
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(c)
yy’ + 2y = 2 + x2

(d)
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(e)
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(f)
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3. Verify that, in problems 3 to 8 the indicated function is a solution of the given differential equation. In some cases assume an appropriate interval 

3.
2y’+y = 0; y = e-x/2
4.
y’=25+y2; y= 5 tan 5x

5.
x2dy+2xy dx=0; y = -1/x2

6.
y’’’-3y’’+3y’-y=0; y=x2ex

7.
y’=y+1; y=ex-1

8.
y’’+9y=8 sin x; y=sin x +c1 cos 3x+c2 sin 3x

In problems 9-14 determine a region of the xy plane for which the given differential equation would have a unique solution through a point (xo,yo) in the region 

9.
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13.
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15. Derive a population growth model where death is taken into account.

16. A drug is infused into a patient's blood stream at a constant rate of r g/s. Simultaneously the drug is removed at a rate proportional to the amount x(t) of the drug present at any time t. Determine a differential equation governing the amount x(t).

17.
Find the relation between doubling and tripling times for a population. 

18.
In an archaeological wooden specimen, only 25% of original radio carbon 12 is present. Write a mathematical model, the solution of which will give time of its manufacturing. 

19. Write a mathematical model the solution of which will provide the rate of interest compounded continuously if a bank's rate of interest is 10% per annum?

20. The number of field mice in a certain pasture is given by the function 200-10t, where t is measured in years. Determine a differential equation governing a population of owls that feed on the mice if the rate at which the owl population grows is proportional to the difference between the number of owls at time t and the number of field mice at time t. 

21. Let a dog start running pursuing a rabbit at time to when the dog sights the rabbit. Determine a differential equation (mathematical model) the solution of which will give the path of pursuit assuming that the rabbit runs in a straight line at a constant speed away from the dog and the dog runs at a constant speed so that its line of sight is always directed at the rabbit. 

22.
To save money the manager of a manufacturing firm decides to eliminate the advertising budget. In the absence of advertising, the sales manager finds that sales, in rupees, decline at a rate that is directly proportional to the volume of sales. Write a differential equation that describes the rate of declining sales. 

23.
Suppose you deposited 10,000 Indian rupees in a bank account at an interest rate of 5% compounded continuously. Write a mathematical model in terms of differential equation, the solution of which will give the amount of money in your account after a year and half. 

24. 
Bacteria grown in a culture increase at a rate proportional to the number present. If the number of bacteria doubles every 2 hours, then write a mathematical equation describing this situation by which you can find the population of bacteria (number of bacteria) after a given time say 10 hours, 10 days etc. 

25. 
The schematic diagram in Figure 1.6 represents an electric circuit in which a voltage of V volts in applied to a resistance of R Ohms and an inductance of L henrys connected in series. When the switch is closed, a current of I amperes will flow in the circuit. Because of the inductance in the circuit the current will vary with time, and it can be shown that a mathematical model for this circuit is the first order differential equation
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Figure 1.6

Verify that the current in the circuit is given by 
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26.
When an object at room temperature is placed in an oven whose temperature is 400C0, the temperature of the object will increase with time, approaching the temperature of the oven. It is known that the temperature Q of the object is related to time through the differential equation 
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Verify that the temperature of the object is given by Q=400+cc(t, where c and (  are constants. 

27. 
Suppose that a large mixing tank initially holds 300 gallons of water in which 50 pounds of salt has been dissolved. Pure water is pumped into the tank at a rate of 3 gal/min, and then when solution is well stirred it is pumped out at the same rate. Write a differential equation for the amount A(t) of salt in the tank at any time t. 

28. A spherical rain drop evaporates at a rate proportional to its surface area. Write a differential equation which gives formula for its volume V as a function of time. 

29. A chemical A in a solution breaks down to form chemical B at a rate proportional to the concentration of unconverted A. Half of A is converted in 20 minutes. Write down a differential equation describing this physical situation. 

30. A fussy coffee brewer wants his water at 185oF but he often forgets and lets it boil. Having broken his thermometer, he asks you to calculate how long he should wait for it to cool from 212o to 185o . Can you solve his problem? If you answer "Yes" do so. If no, then give explanation.

31. A car leaves at 11.30 am and arrives at Escort Heart Research Centre Delhi at 3 pm. He started from rest and steadily increased his speed, as indicated on his speedometer, to the extent that when he reached the destination he was driving at the speed 60km per hour. Write a mathematical model in terms of differential equation which may help to determine the location from where the car started.

32. The growth rate of a population of bacteria is directly proportional to the population. If the number of bacteria in a culture grow from 100 to 400 in 24 hours, write down the initial value problem which helps to determine the population after 12 hours. 

33. A man eats a diet of 2500 cal/day, 1200 of them go to basal metabolism, that is get used up automatically. He spends approximately 16 cal/kg/day times his body weight (in kilograms) in weight-proportional exercise Assume that storage of calories as fat is 100% efficient and that 1Kg fat contains 10,000 cal. Write down a mathematical model in terms of differential equation giving variation of weight with time t.

34.
Human skeletal fragments showing ancient Neanderthal characteristics are found in a excavation and brought to laboratory for carbon dating. Describe the model whose solution will provide the period during which this person lived under the assumption that the proportion of C-14 to C-12 is only 6.24%.

35.
Write down a mathematical model, solution of which will provide time t during that the water flow out of an opening 0.5 cm2 at the bottom of a conic funnel 10cm high, with the vector angle (=60o.

36.
Write an essay on the Van Meegeren Art Forgeries indicating role of mathematical methods. 

37.
Charcoal from the occupation level of the famous Lascaux Cave in France gave an average count in 1950 of .97 dis/min/g. Living wood gave 6.68 disintegrations. Write down a mathematical model, solution of that will give probable date of the paintings found in the Lascaux Cave. 
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