CHAPTER 13

Calculus of Variations with applications 

13.1 Variational problems with fixed boundaries 

13.2 Applications to concrete Problems 

13.3 Variational Problems with moving boundaries 

13.4 Variational Problems involving derivatives of higher order and several independent variables 

13.4.1   Functionals involving several dependent variables. 


13.5 Sufficient conditions for an Extremum-Hamilton-Jacobi Equation 

13.6 Exercises 

Calculus of variations is a branch of mathematics dealing with finding minima and maxima of certain type of functions called functionals. In first course of calculus of variations, usually, functionals are taken as integrals of functions of independent variables and possibly their derivatives. Results of calculus of variations have found applications in different fields of science and engineering. The theme has a long history but a systematic study began by the work of Euler (1707-1783) and Lagrange (1736-1813). The aim of this chapter is to provide an introduction of those concepts which could be useful from applications point of view.  It may be observed here that it is a special class of optimization problems dealing with functionals (functions defined on a vector space say Rn or C[a,b], space of all continuous functions on [a,b]) represented by integrals. 

13.1 Variational Problems with Fixed Boundaries 


In an elementary course of calculus we study the concepts of maxima and minima and problems of their existence. Let us recall some of those results. A real valued function f defined on an interval (  = [a,b] of R is said to have a ​minimum at the interior point of (, say x=c if 

f(c) ( f(x)  








(13.1)

for all x in the neighbourhood of c, that is, in the open interval (c-(, c+(), (>0 arbitrary small.

f is said to have a maximum if reversed inequality


f(c) ( f(x)







(13.2)

holds in the neighbourhood of c.

A point x=c is called an extremum (extremal or critical) if either (13.1) or (13.2) holds. The value of f at an extremum is called stationary value. The following result provides a necessary condition for an extremum.

Theorem A
Let f(x) be defined on an interval (a,b). Then if f(x) has an extremum at x = c, c ( (a,b). Then f'(c) = 0.

The point c at which f'(c) = 0 is called a critical or stationary point and f(c) is a stationary value. This theorem does not tell us whether c is a maximum, or minimum, or a point of inflection  (saddle point). This problem is dealt by the following theorem.

Theorem B
Let f'(c) = 0. Then f (c) is a minimum if f"(c) > 0 and f(c) is a maximum if f"(c) < 0. ( if  f"(c) changes sign for points in the neighbourhood of x = c then c is a point of inflection.

In this section we extend these concepts of introductory calculus to the functionals of the following type

J(u) = 
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(13.3)

where u'(x) = 
[image: image2.wmf]dx

du


Minima and Maxima of functions of several variables and stationary point

Let X denote the Euclidean space Rn, n=1,2,3……or space of continuous or twice continuously differentiable functions; that is, X=Rn or C[a,b] or C2 [a,b] C2 [a,b] is the set of all functions f: [a,b] (R such that f" is continuous. Distance or metric between two points x and y is defined as d(x,y) = 
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 where x = (x1, x2, .. . . ,xn) and y = (y1, y2,. .. . .,yn).  The magnitude or length or norm of an element x ( R is defined as || x || = 
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. The distance or metric between two elements f,g of C[a,b] or 
C2 [a,b] is defined as d (f,g) = 
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 of d (f,g) = 
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Norm or magnitude of f ( C[a,b] or C2 [a,b] is defined as
 ||f|| = 
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 A mapping or transformation T : X( Y where Y is also either Rn or C[a,b] or R is called an operator. If X=Rn, n=1,2,3 ------- or C [a,b] or
 C2 [ a,b] and Y = R then T is called  functional and usually denoted by capital letters F, G et. al. Let x, t (X and
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for every t 
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 X, where (( 0 in R. DT(x) t 
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 Y is called the value of the Gateaux  derivative of T at x in the direction t, and T is said to be G
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teaux differentiable at x in the direction t. G
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teaux derivative of an operator T is an operator and it is denoted by DT(x). If T is a functional, that is Y = R and it is denoted by F then the mapping x ( DF (x) is called gradient of F and very often denoted by (F.

It is clear that if X = Rn, Y = R and e1 = (1,0,……0), e2 = (0,1,0,……,0),……

en = (0,0 ……1) then the G
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teaux derivative of F: Rn ( R in the direction ei is 
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teaux  derivative of F: Rn ( R  in the direction of arbitrary t =(t1,t2,....tn)( Rn is given by


DF(x) t= 
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 denotes the partial derivatives of F with respect to xk at x,x=(x1,x2, ......xn).

Let x be a fixed point of X. An operator S: X ( Y is called the Frechet derivative of a given operator T : X ( Y at x if 
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The Frechet derivative is usually denoted by dT(x) or T'(x). It is clear from the definition of G
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teaux and Frechet derivatives that if the Frechet derivative exists then it is equal to the G
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teaux derivative. It is also evident that existence of the classical derivatives imply existence of the Frechet derivative. For r>0, Sr (x) = {x ( X :||x|| < r} is called an open sphere of X. Let A be a subset of X and F : A ( R be a functional. F is said to have a relative or local minimum (local maximum) at x0 ( A if there is an open sphere Sr (x0) of X such that F(x0) ( F(x) (F(x) ( F(x0)) holds for all x ( Sr (x0) ( A. If F has either a relative minimum or relative maximum at x0, then F is said to have a relative extremum  or an extremum of a set A (This set may be taken as interval [a,b] or (a,b). The set A on which an extremum problem (extremal or stationary) is defined is often called the admissible set.

Theorem 13.1  Let F: X (R be a Gateaux differentiable functional at x0 ( X and F have a local extremum at x0, then D F(x0) t=0 for all t(X.

Remark: 13.1   It may be observed that the conclusion of the theorem holds for the Frechet derivative and classical derivatives as well.

Proof of Theorem 13.1  For every t ( X, the function F (x0 + ( t) (of the real variable () has a local extremum at (=o. Since it is differentiable at 0, it follows from ordinary calculus that 
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This means that DF (x0) t = 0 for all t ( X, which proves the theorem. Problem of Calculus of Variations (P):
Find a function u(x) on the interval [a,b] satisfying the boundary conditions u(a)=( and u(b)=(, and extremizing (minimizing or maximizing) the functional (13.3) were u is a twice continuously differentiable function on [a,b]; that is  u( C2[a,b], F continuous in x,u and u', and has continuous partial derivatives with respect to u and u'. 
The solution of problem P is provided by the following theorem often called the Euler-Lagrange theorem. 

Theorem 13.2  A necessary condition for the functional J(u) given by (13.3), where F and u satisfy conditions mentioned in the Problem P, to have an extremum at u is that u must satisfy the following equation in  a ( x ( b with the boundary conditions u(a) = ( and u(b) = (.
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(13.4)

Equation (13.4) is called the Euler-Lagrange equation.  We use the following lemma in the proof.

Lemma (13.1) (Euler-Lagrange Lemma)   If h(x) is continuous in [a,b], and if

< f, h > = 
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(13.5)

for every continuous function f (x) such that f(a) = f(b) = 0, then h(x) = 0 for all x in [a,b]

Proof of Lemma 13.1  We prove the Lemma by contradiction. Let the conditions of the Lemma be satisfied but h(x) ( 0, say h (x) > 0 for some x in [a,b]. Then by continuity, h(x) > 0 in some interval [a1,b1] containing this point and contained in [a,b]. If we set

f(x) = 
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then f(x) satisfies the conditions of the lemma. However,
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since integrand is positive in (a1, b1). This contradicts (13.5) which proves the lemma

Proof of Theorem 13.2

We assume that J(u) has an extremum at some u ( C2 [a,b]. Then we consider the set of all variations u+tv, for an arbitrary fixed v ( C2 [a,b], such that v (a) = v (b) = 0. Then

J (u + tv) – J(u) = 
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(13.6)

Using the Taylor series expansion
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it follows from (13.6) that


J(u+tv) = J(u) + tdJ(u,v) + 
[image: image32.wmf]!
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where the first and the second Frechet differentials are given by


dJ(u,v) = 
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(13.8)


d2J (u,v) = 
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(13.9)

By Theorem 13.1 and Remark 13.1, the necessary condition for the functional J to have an extremum at u is that dJ (u,v) = 0 for all v ( C2 [a,b]  such that v (a) = v (b) =0, that is,


0 = dJ (u,v) = 
[image: image35.wmf]ò

÷

ø

ö

ç

è

æ

¶

¶

+

¶

¶

b

a

dx

'

u

F

'

v

u

F

v






(13.10)

Integrating the second term in the integrand in (13.10) by parts, we obtain
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(13.11)

Since v(a)=v(b)= 0, the boundary terms vanish and the necessary condition becomes
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for all functions v ( C2[a,b] vanishing at a and b. By Lemma 13.1 we have 
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(13.13)

Remark 13.2


After we have determined the solution of (13.13) which makes J(u) stationary, the question arises on whether J(u) has a minimum, a maximum, or a saddle point there. To answer this question, we look at the second derivative involved in (13.7). If terms of o(t2) can be neglected in (13.7), or if they vanish for the case of quadratic F, it follows that a necessary condition for the functional J(u) to have a minimum at u0 is that d2J(u,v) ( 0 for all v. Similarly, a necessary condition for the functional J (u) to have a maximum at u0 is that d2J (u,v) ( 0 for all v. These results enable us to determine the upper and lower bounds for the stationary value J(u0) of the functional.

13.2 Applications to concrete Problems
Example 13.1 (Minimum Arc Length).
Determine the form of the curve in a plane which will make the distance between two points in the plane minimum.

Suppose the plane curve y = y(x) passes through the points (x1,y1) and (x2,y2). The length of such a curve is given by the functional


J( y) = 
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(13.14)

Thus, the problem is to determine the curve for which the functional J(y) is minimum. Since F = 
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 depends on y' only, the Euler-Lagrange equation becomes
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y" = 0.






(13.15)

This means that the curve extremizing J(y) is a straight line:
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Example 13.2  Determine the meridian curve joining two points in a plane which, when revolved about the x-axis, gives the surface of revolution with minimum area. 


This is a problem of minimum surface of revolution generated by the rotation of the curve y = y(x) about the x-axis. In this case, the area is given by 


S = 2( 
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so that the functional to be minimized is 


J (y) =
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subject to the conditions 


y1 = y(x1)  and y2 = y(x2).





(13.16)

This corresponds to 


F (x,y,y') = y 
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which  does not depend on x explicitly. The Euler-Lagrange equation is 


yy" - (y')2 - 1 =0.






(13.17)

Writing p for y', we have y" = dp/dx = p dp/dy, and (13.17) becomes 


py 
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 = p2 + 1.

Separating the variables and integrating, we obtain 


y = a 
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and hence, 
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Integrating again, we find 


y = a cosh  
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(13.18)

where a and b are constants of integration, which can be determined from conditions (13.16). The curve defined by (13.18) is called the catenary, and the resulting surface is called a catenoid of revolution. 

Example 13.3  Consider the functional 


J (u) = 
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(13.19)

where p,q, and f are given functions and u belongs to an admissible set ( of J. Clearly,  the Euler-Lagrange equation associated with the functional J(u) is 



[image: image52.wmf],

0

'

u

F

dx

d

-

u

F

=

÷

ø

ö

ç

è

æ

¶

¶

¶

¶








(13.20)

where 


F (x,u,u') = 
[image: image53.wmf]2
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Consequently, (13.20) becomes 


(pu')'  +  qu = f.

This is a non-homogeneous ordinary differential equation of the Sturm-Liouville type. 

Example 13.4 (Hamilton's Principle).   According to Hamilton's principle, a particle moves on a path which makes the time integral


J = 
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(13.21)

stationary, where the Lagrangian L = T - V is the difference between the kinetic energy T and the potential energy V. In coordinate space, there are numerous possible paths joining any two positions. From all these paths which start at a point A at time t1 and end at another point B at time t2, nature selects the path qi = qi (t) for which dJ = 0. Consequently, the Euler-Lagrange equation assumes the form 
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(13.22)

In classical mechanics, these are simply called the Lagrange equations of motion. 


The Hamilton's function (or Hamiltonian) H is defined in terms of the generalized coordinates qi, generalized momentum pi = (L/(qi', and L as 


H = 
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(13.23)

It follows that 
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Hence, the Hamiltonian H is the constant of motion. 

Example 13.5 (Fermat's Principle in Optics).  This principle states that, in an optically homogeneous isotropic medium, light travels from one point (x1,y1) to another point (x2,y2) along a path y=y(x) for which the travel time is minimum. Since the velocity v is constant in such a medium, the time is minimum along the shortest path. In other words, the path y = y(x) minimizes the integral 

J = 
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(13.24)

with y(x1) = y1 and y(x2) = y2. The Euler-Lagrange equation is given by 
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Hence, 


F – y' 
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In order to give a physical interpretation, we rewrite (13.25) in terms of the angle ( between the tangent to the minimum path and the vertical y-axis, so that 



Sin ( = 
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Hence, 
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for all points on the  minimum path. For a ray of light, 1/v must be proportional to the refractive index n of the medium through which light is travelling. Equation (13.26) is known as the Snell law of refraction of light. This law is often stated as 




n  sin  ( = constant.




(13.27)

Example 13.6 (Abel's Problem of Tautochronous Motion). The problem is to determine the plane curve y = y(x) for which the time of descent of a particle sliding freely along the curve which passes through the origin and the point (x1,y1) is minimum.


The velocity of the particle at the intermediate point (x,y) is found from the energy equation 
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which gives the time required for the particle to descend from the origin to the point (x1,y1) on a frictionless curved path in a plane as 



T (y) = 
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The problem is to minimize this functional subject to the conditions y(0) = 0, y(x1) = y1. 

This case corresponds to 



F(x,y,y') = F(y,y') = 
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Thus, the Euler-Lagrange equation
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can be written as 



0 = y' 
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where c is a constant. More explicitly, 
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or 



y' =  
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where a-1 = 2gc2. This can be integrated to obtain 
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so that the first integral can be evaluated at once, and the second one can be evaluated by making the substitution (a/2) – y =(a/2) cos (. The final result is 



x = - 
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This is the equation of the curve of minimum time of descent, where the constant a is to be determined so that the curve passes through the point (x1, y1).  It is convenient to write the equation in a parametric form by letting 
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They represent a cycloid. 

Remark 13.3 (The Brachistochrone Problem) 

The problem is to find the curve joining  two given points A and B, which is traversed by a particle moving under gravity from A to B in the shortest possible time. 
Isoperimetric problem
The determination of the extremum of the functional 


J(u) = 
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subject to the isoperimetric constraints (conditions) 
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is called an isoperimetric problem.

The Euler's equation for this problem is 
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where f = F+ ( G and the constant ( is the undetermined multiplier, to be determined from the boundary conditions. u(x1) = u1,  u(x2) = u2.


The isoperimetric problem may be generalized as follows:


Determine the extremum of the functional
J(u1,u2,...un) = 
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subject to the conditions, ui (x1) =ai,ui (x2) = bi (i=1,2 .....n)


and 
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j= 1,2,......m, (j being constants. Here m may be greater than, equal to or less than n. 

The Euler's equations are given by 
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Example 13.7 The problem is to find the curve y = y (x) of the shortest length between two points (x1,y1) and (x2,y2) such that the area under the curve is A.


The length of the curve is given by the functional 


J (y) = 
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(13.28)

and the area under the curve is 
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This is a constrained optimization problem which reduces to that of finding the extremum of 


J1 (y) = 
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(13.30)

The associated Euler-Lagrange equation is 
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or 
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(13.31)

This differential equation can be integrated twice to obtain the equation for y:
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(13.32)

Thus, the curve of shortest length is an arc of a circle, where the constants of integration (  and ( together with the constant  ( can be determined from the condition that the curve passes through the points (x1,y1) and (x2, y2) and the given constrained condition (13.29).

13.3 Variational Problems with Moving Boundaries 

 Case (a) Suppose in Problem P, u(a) and u(b) are not specified. In this case the necessary condition that the functional J(.) given by (13.3) has extremum at u is that the following condition is satisfied besides(13.4)
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Example 13.8


Let J(u) = 
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Then find u extremizing J(.) for

(i) fixed end points  u(0) = 0, u(2) = 2

(ii) free end points, u(0) and u(2) not prescribed.

Solution (i)
Euler-Lagrange equation (13.4)



[image: image100.wmf]u

F

¶

¶

 - 
[image: image101.wmf]dx

d

 
[image: image102.wmf]÷

ø

ö

ç

è

æ

¶

¶

'

u

F

 = 0 takes the form


F =(u')2, 
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The general solution of u'' = 0 is


u = (x + (, (,( constants.


u(0) =0= 0+ (, implying (=0


u(2) = ( 2+( = 2 or ( = 1

Hence J(.) is extremized at u = x and its extremized value is 2.

(ii)
In this case u must satisfy two conditions
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Since u = (x + ( from the Euler-Lagrange equation u' = ( = 0 and so J(.) is extremized at u = ( and extremized value of J(u) is zero.

Case (b)
End Points variable in x and y Directions


Let u(a) = ua, u(b) = ub, that is end points are variable points and u is defined over (a+( a, b+( b). Then the functional of problem P is extremized at u satisfying the following conditions, the Euler-Lagrange equation, namely
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where p = 
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We shall see more general situation in section 13.5. 

13.4 Variational Problems Involving several independent variables and higher derivatives

In this section we consider the extremum of the following functionals

J(u) = 
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where u = f(x,y)


J(u) = 
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u' = 
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If the edges of the surface u = f(x,y) are fixed then the necessary condition for the extremum of the functional given in equation (13.37) is
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(13.39)


where p = 
[image: image120.wmf].
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(13.39) is called  Ostrogradsky equation named after Russian mathematician M.V. Ostrogradsky .


Here our variational problem is to find the surface with fixed edges u = f(x,y) on which (13.37) has extremum. The above results can be carried out for n variables:  
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If the integrand F depends on higher derivatives, then the Ostrogradisky equation  is 
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where r = 
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The necessary condition for the functional given in (13.38) to have extremum at u is 
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This results holds in the following general  form. The functional


J(u) = 
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(13.41)

(13.41) is called the Euler-Poisson equation 





Proofs of these results are straight forward extensions of the proof of Theorem 13.2.  

13.4.1. Functionals involving several dependent variables


The functional given by 


 J = 
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has extremum if it satisfies the equations 
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(13.43) are known as Euler-Lagrange equations.



Example 13.9  Find Ostrogradsky equation for the functional 


J(u) = 
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Solution:  Here F = 
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This is the two dimension Laplace equation which is solved in Section 12.4.

Example 13.10.  Find u for which   


J (u) = 
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satisfying the following boundary conditions 


u(0) =0,  u'(0) =1, u(1) = 1, u'(1) = 0.

Is extremized (J has minimum or maximum value) 

Solution:  The Euler-Poisson Equation (13.40) takes the following form  for

 F = 1+u"2
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Integrating 4 times we get

u = c1 x3 + c2 x2+ c3 x+c4.

Using boundary conditions we get

c1 = 0, c2 = 0, c3 = 1, c4 = 0.

Therefore the given functional is extremized along the straight line u =x.

Example 13.11 Find the extremal of 
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 u (0) = 1,   u(1) = 
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Solution: 

F = u'2 + v'2 +2u


Euler's equation gives 


u"=1, v" = 0 


which gives  u = 
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v = c3x +c4 
 u(0) = 1 = c2 and u(1) = 
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v(0) = 0 gives c4 = 0 and v(1) = 1 gives c3=1


Therefore extremals are u=
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13.5 Sufficient conditions for an Extremum – Hamilton Jacobi Equation

Figure 13.1

Let  J(u) = 
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(13.44)

and let for any two end points A(a,ua) and B(b, ub) there is only one curve C which extremizes J. Take A fixed and consider two right hand end points.

B1(b,ub) and B2(b+(b, ub+(ub).

The corresponding curves at which J(.) given by (13.44) is extremized are C1 and C2 as shown in Figure 13.1. The integral (13.44) evaluated along any curve which extremizes it is just a function of the end pints A and B, and since A is fixed, one can consider (13.44) as a function of B alone. Thus
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is a function S of B1 which we can write as  ub.


S = S (b,ub).







(13.46)

Similarly


S+(S = S (b+(b,  ub+(ub)





(13.47)

Is the corresponding value for the extremum curve C2 joining A and B2. From these we have


(S = H (ub - H(b)






(13.48)

Therefore
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where H = pu'- F 


Now B1 (b,ub) may be any end point, and so we can replace it by the point B(x,u) by changing b to x, ub to u. Then (13.49) becomes 
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where p = p(x,y) = 
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and 


H = H (x,u,p)  = pu' – F





(13.52)

In (13.51) u' denotes the derivative
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 calculated at the point B for the extremizing curve C going from A to B. 


From (13.50) we have
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(13.53)

The partial differential equation given by equation (13.53) equation is called the Hamilton-Jacobi equation.
Theorem 13.3 (Hamilton-Jacobi Theorem). Let S = S(x,u,() be a solution of the Hamilton-Jacobi equation given by equation (13.53) depending on a parameter ( (constant of integration). Then
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along each extremizing curve.

Proof
Let S = S (x, u, (), u = u(x) extremizing curve be a solution of (13.53),  depending on parameter (. Then we consider
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By differentiating (13.53) with respect to ( we have
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(We get this keeping in mind that ( occurs only in the third variable of H, which was originally denoted by p. 

Putting the value of 
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Now, since 



[image: image184.wmf]dx

du

 = 
[image: image185.wmf]p

H

¶

¶

 (canonical equation)

along each extremizing curve, it follows that
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This proves the theorem,

Example 13.12
Illustrate Theorem 13.3 with the help of


J(u) = 
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Solution
F(x,u,u') = u'2, p = 
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 = 2u'.


Thus the Hamiltonian is given by


H (x,u,p) = pu' – F = 
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The Hamilton – Jacobi equation, (13.53), takes the form
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(13.58)


This is a first order non-linear partial differential equation. Let 

S = S(x,u) = v(x) + w(u)





(13.59)


which gives
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It follows from (13.60) that 
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which gives
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S = -(x2 + 2( u + (






(13.61)


By Theorem 13.3, the extemizing curves are given by 
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(13.62). 

The extemizing curves in (13.62) are straight lines. This is in agreement with Example 13.8.
13.6
Exercises
1.
Find functions u(x) which extremize the functional

 J (u(x)) = 
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2.
Find functions which extremize the functional

      J(u(x)) = 
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 subject to boundary conditions u(0) = 0, u(1) = 1.

3.
Find u such that

      J(u) = 
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 is extremized along u.

4.
Solve the calculus of variational problem :

     J(u(x)) = 
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(

 u(0) = 0, u(1) = 1.

5.
Solve the calculus of variational problem :

      J(u(x)) = 
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 u(2) = u0, u(6) = u1.

6.
Find u for which the functional

     J(u) = 
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  is extremized.

7.
Find the extremals of the functional


J(u(x),v(x)) = 
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u(0) = 0, u(
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) = 1, v(0) = 0, v 
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 = -1

8.
Find the extremals of the functional


J(u(x),v(x)) = 
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9.
Find the extremals of the functional


J(u(x)) = 
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satisfying the boundary conditions 

u(0)  =1, u' (0) =0, u(
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 =0, u'(
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/2) = -1.

10.
Find the extremals of the functional 

      J (u(x) = 
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      satisfying the boundary conditions

      u(-l) =0, u'(-l) = 0, u(l) =0, u'(l) = 0

11.
Find the Ostrogradski equation for the functional 


J (u(x,y)) = 
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      where on the boundary of the rectangle of sides b-a and d-c the values of all the functions u are given in advance and fixed. 

12.
Write down the Ostrogradski equation for the functional 
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13. Examine whether the problem of calculus of variations for the following functional subject to the given boundary conditions has a solution or not?

J(u)= 
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      u(0) =1, u(1) =2.

14. Find the curve which gives extremum value of the function J(.) given by 

J(u) = 
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15. Examine whether the functional J(u) = 
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 has an extremum or not?

16. Find the function which extremize the functional 
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subject to the boundary conditions 

u(0) =0, u(
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 = 1.

17. Discuss the problem of finding the shortest distance between two points in the plane. Write down the problem and solve it.

18. Find the extremal of the functional 


      J (u,v) = 
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where u and v are functions of x

 

19.
       Find extremals of the functional
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u (1) =1, u(2) =2,
or  v(1) = 0, v(2) =1

20 
A uniform elastic beam of length l is fixed at each end. The beam of line density (, cross sectional moment of inertia ( and modulus of elasticity E performs small transverse oscillations in the horizontal xy plane. Derive the equation of motion of the beam.

21.
      Find Ostrogradsky equation for the functional 
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22.
A geodesic is a curve of minimum length between two points on a smooth surface S(x,y,z) = 0 when the whole curve is confined to the surface. Find the geodesic on a sphere. 

23.
Derive the equation of motion of free vibration of an elastic string of length l and line density ( using the method of calculus of variations. 

24.
Solve the isoperimetric problem, that is, to maximize the area under a curve 
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subject to the fixed point arc length 
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25.
Show that the geodesic on a cylinder is a spiral curve.
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