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Introduction

mctional analytic methods were developed in the beginning of the 20th century
ith the pioneering work of Stefan Banach and David Hilbert. Since then, these
ethods have been applied in diverse fields of mathematical sciences and other
eas of science and technology. The 21st century is the era of information
chnology and therefore in this article we present the relevance of numerical
id analytic aspects of functional analysis in the image processing, an important
gredient of information technology. As Neunzert and Siddigi [53] write in
hapter 5 on Image Processing and Fourier-Wavelet Methods: “The image
‘ocessing and signal analysis whose ingredients are modelling, transforms,
noothing and sharpening, restoration, encoding (image data compression, image
ansmission, feature extraction), decoding, segmentation, representation, archiving
1d description, have played a vital role in understanding the intricacies of
iture, for providing comforts, luxuries and pleasure to all of us, and even
‘obing mission of a space-craft.” Image processing is used in telecommunications
elephone and television), photocopying machine, video camera, fax machine,
ansmission and analysis of satellite images, medical imaging (echography,
imography and nuclear magnetic resonance), warfare, artificial vision, climatology,
ieteorology and film industry for imagery scenes. In short, it is one of the meost
nportant disciplines for industrial development and unveils the secrets of nature.
ifferent kinds of techniques and tools like Fourier series, Fourier transform,
/alsh-Fourier transform, Haar-Fourier transform, Hotelling transform, Hadamard
ansform, entropy encoding and, more recently, wavelets, wavelet packets, and
-actal methodology have been used to tackle the problems of this field. It is
ifficult to say authoritatively which method is superior to the other in a particular
tuation. However, a combination of the wavelets and fractal methods promises
o a great future.

Towards the later part of 2000, two major academic activities were organized:
ne in the Abdus Salam International Centre of Theoretical Physics, Trieste,
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Italy, School on Mathematical Problems in Image Processing 14-22 September
2000, and other in U.S.A., Yosemite Multiscale and Multiresolution Symposium.
Multiscale and Multiresolution Methods, Yosemite National Park, October 29-
November 1, 2000, sponsored by NSF, NASA, IBM, SCI, and MIT. Deliberations
of these conferences clearly indicate that future developments in many areas of
science, social science and technology are closely related to advances in numerical
and functional analytic methods which are known by the name numerical and
applied functional analysis, comprising variational methods, finite element,
boundary elements, volume element and particle methods, algorithmic optimization,
parallel algorithms and modeling, classical and refined and generalized Fourier
analysis (Fourier analysis, Walsh dyadic harmonic analysis, wavelet analysis,
wavelet packet analysis, ridgelets and curvelets) and fractals.

In Section 2, a model of imaging process proposed by Stan Osher and Leonid
Rudin for a function of bounded variation is presented. Then the efficiency of
wavelet-based algorithms related to the remarkable properties of wavelet expansions
of functions with bounded variations (BV(R?)) is discussed. Proper understanding
of the behaviour of wavelet coefficients of functions of bounded variation is of
vital importance for analyzing various developments in image processing. A
brief introduction to fractal image compression is presented in Section 4 along
with a fairly general theorem on the inverse problem.

Section 5 is devoted to miscellaneous problems like classification of images,
watermarking of images and data analysis. It has been established that there is
a close relationship between image processing and partial differential equations.
An updated account of this aspect along with relevant details s lucidly presented
in Guichard [35]. Due to limitation of space, we are unable to include this
elegant aspect of image processing.

2. Modeling of Images

2.1 General Framework
An analogue image on a domain £ can be viewed as a function f (x|, x;) = f (x)
belonging to the Hilbert space L,(£2). The energy of such an image is defined as

[F(x)|* dx.

QIn order to sample this analogue image into a digital image, we need to fix a
grid defined as N™'Z x N™'Z for some large N. A fine grid is a grid where N = 2.
It is clear that if such grids are denoted by I';, then I'; C I'4;. A digital image f;
is a matrix indexed by points in I';. One can also define sampling by computing
the coefficients of images in some orthonormal basis Z. If D is the unit square
{0, 1] x [0, 1], this digital image f; € I(I') is now a huge matrix cx; = f; (x;, x2)
where x; = k27, x, = 127, k and [ ranging from O to 2/ — 1. These entries ¢ are
called pixels and each ¢;,; measures the gray level of the given image at
(k27, 127). This is the case for a white and black image, and a color image has
a similar definition with the difference that ¢, is now vector valued. A digital
image can be viewed as a vector inside a 4/-dimensional vector space. The gray
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jevels ¢, are finally quantized with a 8-bit precision which provides 256 gray
Jevels. This discrete representation of an image. needs to be compressed for
efficient storing or transmission.

All scientists working on image processing agree on the possibility of
compressing images but they have different viewpoints about the precise
mathematical description of the models for natural images on which the
compression algorithms crucially rely. In this article, we mainly confine ourselves
to wavelet and fractal methods.

2.2 u + v Models of Osher and Rudin

In u + v model, images are assumed to be a sum of two components u(x) and
v(x). The first component u(x) models the objects or features of an image while
the v(x) term represents the texture and noise in the same figure. If a given image
f(x) is written as f(x) = u(x) + v(x), then u(x) will prov1de a sketchy approximation
to the given image. The best method of image compression is that in which u(x)
provides the best approximation of f(x) retaining its important features, while-
v(x) is significantly small and could be neglected. u may be an element of a ball
of a Banach space; for example, Banach space of the functions with bounded
variation, BV or a Besov space, B, ,(£2).

Quantization is a crucial ingredient of a compression scheme. In a compression
scheme, the first step maps a given image into a string of coefficients. These
coefficients are real numbers which are replaced by some digital approximations
depending on the computer precision. Once the quantization is performed, the
image can be transmitted and the reconstructed image will be affected by the
quantization. The error which affects the reconstructed image heavily depends
on the orthonormal basis Z under consideration. We would like that this quantization
error be less harmful to the u(x) component of f(x) than the v(x) component. In
the ideal case, u(x) should be untouched while v(x) might disappear. The
quantization would de-noise the given image. An image is always distorted after
quantization and transmission and so one would like to use a basis which gives
the minimum distortion. ,

Thresholding is closely related to quantization and raises exciting mathematical
problems. It may be accepted as the working principle that the behaviour of an
image after quantization will be adjudged by its behavior after thresholding.

Let us define thresholding. A given signal or image f(x) is decomposed in

oo

some orthonormal basis Z of a Hilbert space H, that is, fix) = X c,l,(x), where
n=0

Z = {l,(x)} is an orthonormal basis in a Hilbert space H and ¢, = (£, [,(x)), n =
0,1,2,....All coefficients c, such that | ¢, | < € where € is a given threshold
are viewed as being insignificant and replaced by 0. In other words, we define
g:(x) = x if | x| > € and g.(x) = O otherwise. The thresholding operator &, is

defined by 84¢) = X ¢.(c,)l,(x). The resulting error in the H norm is
n=0 .

R, = ” 6:(f) "fHH (2.1)
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If the coefficients (c,) are sorted out (rearranged) as a non-increasing sequence
cy, then

1/2
R, = (EN (c;")z) (2.2)

where N is defined as the lowest index n such that ¢, < & The error R, depends

on the threshold € and on the decay of c, . This decay depends on the signal or
image and also on the specific orthonormal basis. An interesting problem is to
compute the error R, in the case of a more general setting, namely, in the case of
a Banach space.

Let us assume that an orthonormal basis {/,(x)} can be found such that the
sorted coefficients of u(x) have a fast decay. Then thresholding the coefficients
¢, of f(x) in this basis, we will retain much of the energy of the u(x) component
and wipe out v(x). The expansion of u will be compressed with few terms in this
particular basis. It has been established that wavelet analysis performs much
better than Fourier analysis under the following two conditions:

(@) A u + v model based on specific Banach space X is adapted to the
problem.

(b) The wavelet coefficients of functions in X should plunge much faster
than the corresponding Fourier coefficients. For instance, the sorted wavelet
coefficients of a function with bounded variation decay as 1/n (Theorem
3.2) while the sorted Fourier coefficients of functions with bounded variation
may decay as badly as n™"2 if we ignore logarithmic factors. Theorem 3.2
explains the performances of wavelets in image compression for the
Osher-Rudin model for still images. Osher-Rudin model is reminiscent
of approximation theory and more precisely it mimics the theory of
interpolation. In this context, one wants to write a generic function fix) as
a sum of a “good function” u(x) which is more regular than f{x) plus a
“bad function” v(x) which is small in some sense. An example is the
celebrated Calderén-Zygmund decomposition of an L, function f{x) into
a sum of L, function u(x) plus an oscillating part v(x) carried by a set
with a small measure.

We explain now why the space BV(R?) is suited for u + v images model. As
we know in the case of image processing, we want to detect objects delimited by
contours. Then these objects can be modeled by some planar domains Q,
Qy, ..., Q, and the corresponding contours or edges will be modeled by their
boundaries 9Q,, 09, . . ., 9Q,. Functions u(x) in « + v model is assumed to be
smooth inside €,, Q,, . .., Q, and with jump discontinuities across the boundaries
09, 0Q,, . . ., 0Q,. The sum of the lengths of these edges 0Q;, 0Q,, . . . 0Q,
is approximately one of the two terms in the BV norm of u(x). Thus we have a
u + v model where u(x) belongs to BV(R?) and the energy norm of v(x); that is,

j‘ | v(x) | dx is sufficiently small.

For a vector € R?, we define the difference operator A, in the directon u by
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Ay(f x) =flx + W) - fF(x).

Let Q be any domain in R>. For functions f defined on Q, A, (f, x) is defined
whenever x € Q(u), where Q(u):= {x: [x, x + ] < Q} and [x, x + u] is the line
segment connecting x and x + u. Note that if € is bounded and p is large enough,
then Q(u) is empty. Let e;, j = 1, 2, be the two coordinate vectors in R%. We say
that a function f € L;(Q) is in BV(Q) (space of functions of bounded variation)
if and only if '

2 2
Vo(f)=suph™ Z | Ape; () Ly (@hejp = lim 2 Ape, (F) NLyc@che; »
! O<h =1 N h—0 ]=1
is finite.
The quantity Vo (f) s the variation of f over Q. It provides a semi-norm and
norm for BV(Q):

| flaviey = Vo) | f llsvey = | flavey + 1| F 1y (o) (2.3)

There are several variants of u + v model (see Meyer [47]); we discuss here
briefly some of these models. The first model which is discussed here is due to
Osher and Rudin [54]. Its mathematical formulation is that a given function f(x)
is the sum f(x) = u(x) + v(x) with explicit bounds on the BV norm of the
unknown function u(x) and on the L, norm of the unknown function v(x), we
want to recover these unknown functions u(x) and v(x). The explicit condition
on u(x) states || u ||y < C and the one on v(x) reads || v ||, < & There is no
uniqueness and some additional conditions are needed to find « and v. To prove
existence and uniqueness of this optimal decomposition, it suffices to consider
the closed subset K of Ly(R?) defined by || u ||zy < C and to define the optimal u

as the point in K which minimizes the L, distance to f (x). ‘
" The second and related problem consists in finding a fast algorithm that
“would yield a sub-optimal decomposition f(x) = g(x)} + h(x) where the corresponding
bounds for g and k& might be enlarged by a fixed multiplicative amount (see
Cohen et al. {22]).

A third approach to find « and v is as follows: Given a function F(x)in Ly(R?),
we want to solve the variation problem:

w@A =inf (J(w) =||ulgv+ A ||V ||,s f=u+v)} 2.4

The tuning given by the large factor A = £ implies that the L,-norm of v should
be of the order of magnitude of €. It is clear that solving this variational problem
yields a suboptimal decomposition of f(x). One may be interested in relating the
growth of w (1) as A tends to infinity to some properties of the L, function f(x).
For example, the space of all functions f(x) for which w(A) = o(A") and A tends
to infinity will be characterized by Theorem 3.3.

A fourth approach to the decomposition u + v was proposed by DeVore et al.,
(see DeVore et al., [26] and Chambolie et al., [16]) where BV norm is replaced
by a Besov norm in the definition of J.

A fifth approach was proposed by Mumford and Shah (for details see {51, 52]
and for further variants, see Meyer [47]).
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3. Fourier Analysis to Wavelets, Ridgelets and
Curvelets Analysis

It was quite clear from the very beginning of the study of signal processing that
the classical Fourier analysis is not appropriate for real-life signals (see, for
example, Meyer [45], Neunzert and Siddigi [53]). In late forties, stalwarts like
John von Neumann, Dennis Gabor, Leon Brillouix Eugene Wigner addressed the
shortcomings of Fourier analysis and advocacted for a windowed Fourier transform.
Gabor introduced the concept of short-time Fourier transform (called windowed
Fourier transform or Gabor transform; for details see Mallat [39]). The
computational hazard of this concept was realized soon by its inventor Gabor
and his coworkers von Neumann et al,. There were some attempts to define
optimal sampling but physicists Francis Low and Roger Balian proved that there
exist L, functions that cannot be decomposed into a convergent series related to
Gabor waves (g,, , = w(t — 5)e™, w(?) is a window function). Finally, Nobel Prize
winner of 1984, Kenneth Wilson, reshaped Gabor transform and produced
orthonormal time frequency atoms leading to fast algorithms for local Fourier
analysis. His key idea was to alternate the DCT (see, for example, Neunzert and
Siddiqi [53]) with the Discrete Sine Transform (DST) according to whether [ is
even or odd; [ denotes the position of the interval and the DST uses the orthonormal

basis of functions _«/I_E sin (—2]9-

Time-scale algorithms and wavelet analysis can be defined as an alternative
to the classical windowed Fourier analysis and to time-frequency analysis. In
wavelet analysis, one compares several magnifications of a signal with distinct
resolutions. These magnifications are often called zoomings. A mother wavelet

or simply wavelet is a function y(f) which has a compact support (or a rapid

t),k: 1,2,3,....

decay at infinity) and satisfies the basic condition J' yAt) dt = 0. This means

that yAr) is oscillating in some weak sense. Very often, y(¢) is assumed to be
smooth and having an admissibility condition:

J‘“’ 4016
14

0

dt < oo

Other wavelets are generated by the mother wavelet as

1 t—-b
Wa,b(t)=ww( = ),

where a > 0, — o0 < b < o0,

v, ,(t) are building blocks of wavelet analysis. The parameter a measures the
average width of the wavelet y, ,(¢) while the parameter b gives the position or
time. These dilations (by l/a) are precisely the magnifications we alluded to.
The wavelet coefficients of a function f(¢) of the real variabie ¢ are the scalar
products W(a, b) = (f, W,,). The original function f(z) can be recovered as a
linear combination of these wavelets y, ,(f) provided f(¢) satisfies the admissibility
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condition (for details, see, for example, Neunzert and Siddigi [53], Daubechies
[25) and Meyer [44, 45]). More precisely, let {x) € L,(R") and w(*) : R" — R be

a function satisfying I | w(zE) |*dt/t =1, where  denotes the Fourier
0

transform (€ € R"). Then wavelet coefficients of f are defined by F(x, t) =
(f, Yer)» Where

- X
Vae(y) =-t‘"’2u/(y7)'

Caldéron’s reproducing identity of Grossman-Morlet theorem states that f (x)
can be recovered and it is given by

f(x)=J. J. fO, DYy, (x)dy di/t™
0 R"

This identity gives us a recipe for (i) measuring the local fluctuation coefficients
of a given function f, around any point x, at any scale # and for (ii) reconstructing
f with all these fluctuation coefficients. In other words, at any given scale a > 0,
fis decomposed into the sum of a trend at the scale a and of a fluctuation around
this trend. The trend is given by the contribution of this scale ¢ > a in Caldérons’s
reproducing identity and the fluctuation is given by the scales t < a.

In one-dimensional case, orthonormal wavelet bases are defined as follows. A
mother wavelet satisfies the properties '

(a) w(r) is smooth function (with r — 1 continuous derivatives and a bounded
derivative of order r).

(b) w(r) together with its derivatives of order less than r has a rapid decay at
infinity. (

(c) The collection ¥, (#) defined by v, (1) = 2%y (2t k), j, k € Zis an
orthonormal basis for L,(R).

The first example of such a function y{(r) was invented by the Hungarian
mathematician Alfred Haar in 1909 which is defined as y(#) = 1.on [0, 1/2) and
W) =-1o0n[1/2, 1) and y(z) = O elsewhere. In this case r = 0. In 1988, the
young Belgian lady Ingrid Daubechies [25] proved that for each r > 1, one can
construct a function y(¢) of class C" with compact support and satisfying above
conditions. Multiresolution analysis is an important concept of wavelet analysis.
It is a family {V}},j € Z of closed subspaces V; of L,(R) having the following
properties:

= 2

(a) The intersection NV,jeZ is{0},... VycVoccVicV,CV; C
J

e Vic Vi
(b) The union ij Vi, j € Zis dense in Ly(R).

(c) f(#) € V;if and only if f (2) € V}y,.
(d) There exists a smooth and localized function ¢(¢) such that the collection

@(t — k), k € Zis an orthonormal basis for V. @(¢) is called the scaling
function.
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The relation between our wavelet basis and a multiresolution analysis is given
by the condition that Yt~ k), ke Z, is an orthonormal basis of the orthogonal
complement W, of Vo in V}. By an obvious rescaling, one obtains the fact that
2”21//(2ft ~k), ke Z is an orthonormal basis for the orthonormal complement
W; of V; into Vi It is clear that the full collection {W«} is an orthonormal
basis for Ly(R). In this construction the mother wavelet is built from the scaling
function (7). The converse problem whether any wavelet basis 2’“1;/(2’2 - k),
J € Z ke Zcan be associated with a multiresolution analysis has a partial
affirmative answer. That is, if yA7) satisfies some reasonable smoothness localization

of the orthonormal decomposition Vi = V,® W,

The pyramidal algorithms and multiresolution analysis of L,(R?) are closely
related in the folowing way: If I j»J € Z, are the sampling grids, then the sampling
operator P; : L,(R?%) — L(T)) is nothing else but the orthogonal projection from
Ly(R? onto V;. To clarify this correspondence, it suffices to associate each vector
of the 2-D orthonormal basis Yep(Vx - k), ke Z*of V;to the corresponding point
k27 of the grid I' 4 It will provide an isometric isomorphism between V; and
(I')). The coarse-to-fine al gorithm in the pyramidal al gorithm reflects the canonical
embedding of V; inside Vie while the fine-to-coarse algorithm corresponds to
the orthogonal projection from V41 onto V.

The two-dimensional wavelet is defined as

D) wi(xy, x) = O W (xy)
(1) wo(xy, xp) = V(x)@(xy)
(i1 wy(xy, xp) = Ox)Y(xy)

where w(x) is one-dimensional mother wavelet and @(x) is the corresponding
scaling function.

Theorem 3.1 For each positive exponent r, there exist three functions W,
m=1,2,3 with the following properties: each Winlx1, x5) s compactly supported
and belongs to the Holder space C" and

Y (Pxy ~ ky, 2xs-ky),je Z (ky, ky) € 72

m=1,2 3is an orthonormal basis for Lz(Rz).

In a recent paper Cohen, DeVore et al. [22] have explained nicely the role of
numerical and functional analytic methods in image processing. They provide
the solution of following problems:

Problem 3.1 Given a function (image) f defined on the unit square o = [0, 1)?
and parameter r > 0, find a function g BV(Q) which attains the infimum

V0= it 1S~ gl + (s, 3.1)
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where BV(Q) is the space of functions of bounded variation on Q and Volf) =
| flgv is the associated semi-norm, that is, the total variation of f.
Chambole et al. [16] have considered the related problem, namely,

Problem 3.2 Find g € BI1 (L;(@)) whih attains the infimum

Uf,ty= inf | f-glPon+1]gl 32
geBl (L1 (0)) oD B (L (Q)

where the Besov space B11 (L1{Q)) is taken in place of the (larger) space BV(Q).

Both BV(Q) and B]l (L1(Q)) are smoothness spaces of order one in L;(Q); that is,

the space BV(Q) is the same as Lip(1, L;(Q)). In contrast to BV, the Bl1 (L,) norm
has a simple equivalent expression as the I, of the coefficients in a wavelet basis
decomposition

f=2 fivi (3.3)

(where A denotes the set of indices for the wavelet basis). One may get an
equivalent discrete problem

n . o
U((f’l)’t)_(gl,ﬁgzl EA[lfa gal*+tlgalls (34

whose solution (obtained by minimizing separately on each index A) is exactly
given by a soft thresholding procedure at level #/2:

g1 =sgn (f) max {0, | f; | - #/2}. (3.5)

It may be observed that there is little distinction between Problems 3.1 and 3.2.
However, BV seems to be more adaptive for real-life images, since it allows
sharp edges (i.e., discontinuities on a line), which cannot occur in a bivariate
function that belongs to the smaller space B;(L;). One of the main tools for
finding a solution of Problem 3.1 is the following result:

Theorem 3.2 [22] Let y;, A € A be a two-dimensional orthonormal basis as
described in Theorem 3.1. Then for every fin BV (RZ), the wavelet coefficients
c;,={f, W), A € A belong to weak [,(A).

Theorem 3.2 tells us that if c; = (f, w;) and | ¢; |, A € A are sorted out by
decreasing size, we obtain a non-increasing sequence ¢ which satisfies ey <
C/nforl < n.

Theorem 3.3 [47] w(A) defined by the relation (2.4) satisfies (1) = o(A") as
A — oo if and only if the sorted wavelet coefficients of f(x) satisfy ¢ = o(n™%)

where x =1 — -;—

It may be observed that numerical techniques for solving (3.1) based on
partial differential equations have been developed and successfully applied to
image processing, see for example [1, 6, 7, 8, 14, 15, 17, 18, 19, 35, 48, 54, 56,
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83]. The advantage of these techniques is high performance and the disadvantage
is that they are numerically intensive, and require in practice the approximation

of the BV term in U(, ¢) by a quadratic term e.g., j (€ + | VFI*) | in order to

find a solution in reasonable computational time. For BV and Besov spaces, see
for example [57] or [15] or [35].

The concepts of ridgelets and curvelets are still in infancy stages (for example,
see references Cande’s and Donoho [10]). As we know in many important imaging
applications, images exhibit edges-discontinuities across curves. In traditional
photographic imaging, this occurs whenever one object occludes another causing
the luminance to undergo step discontinuities at boundaries. In biological imagery,
this occurs whenever two different organs or tissue structures meet. Cande’s [13]
showed in his thesis that ridgelets and curvelets are appropriate tools to study
these problems in higher dimensions. We briefly present these concepts and we
refer to [10-13, 27, 28] for more details.

A ridgelet is a function of the form

al% (u-x—b) (3.6)

a

where a and b are scalar parameters and u is a vector of unit length. In the sequel,

woP
< d
function whose profile displays an oscillatory behavior (like a wavelet).
Aridgelet has a scale a, an orientation «, and a location parameter b. Ridgelets
are concentrated around hyperplanes, roughly speaking the ridgelet (3.6) is
supported near the strip {x, |u - x~b|<a}.Like wavelets, one can represent any
function as a superposition of these ridgelets. Define the ridgelet coefficients

" we assume that y satisfies J. d€ = 1. Of course, a ridgelet is a ridge

Rta.nb)= [ fmay (2222 o
then, for any fe L; N Ry(RY), we have

Fx) = [ = " R (a,u, bya=2y [ L X22) b
o 7 f v My '4 a #(a,u, )

where du(a, u, b) = dala®™! dudb (du being the uniform measure on the sphere).
Furthermore, this formula is stable as one has a Parseval relation

1\
1713 =27| = | Rf(a,u, b) |*du(a, u, b)
2z
Discrete collection of ridgelets is defined as

{Wj.l,k (X) = 2"72 l//(ZJuj’, X — kbo),] Zj(), u‘,-,le %, ke Z}

The scale a and location parameter b are discretized dyadically, as in the theory
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of wavelets. However, unlike wavelets, ridgelets are directional variable u. This
variable is sampled at increasing resolution, so that at scale j the discretized set

T is a net of nearly equispaced points at a distance of order 27. In two dimensions,
J

for instance, a ridgelet is of the form
{272y (2(x; cos 6;; + x, sin 6 — 27k27))} (j > jo, L, k)

where the directional parameter 6;; is sampled with increasing angular resolution
at increasingly fine scales such as 6, = 227,

Curvelets provide a new multiresolution representation with several features
that set them apart from existing representations such as wavelets, multiwavelets,

etc. They are based on an anisotropic notion scaling. The natural scaling law that

applies (at the origin) is of the form

Jalx1, x3) = f (axy, axy)

which is known in Harmonic Analysis as a Parabolic Scaling. It is beyond the
scope of this paper to describe this object which is based on combining several
ideas: Ridgelets (described above), Multiscale Ridgelets (a pyramid of windowed
ridgelets, renormalized and transported to a wide range of scales and locations)
and Bandpass Filtering (a method of separating an object out into a series of
disjoint scales).

4. Image-Compression by Fractals

Image Compression Techniques and Methods are of vital importance in high
technology, especially in information technology. These techniques and methods
are related to communicating and storing images and data (information) in the
shortest possible time (in minimum space on hard disk or CD-ROM) and retrieval
with permissible distortion. Tools and techniques of the Fourier analysis like
Fourier transform, convolution, Shannon sampling theorems and Walsh-Fourier
methods have been successfully used for a long time. Matrix transform, optimization
and variational techniques were also employed to study image and data
compression. Wavelet theory. entered this area in the late eighties and started
replacing the role of DCT (JPEG) which was dominating the scene until that
time in view of its high compression ratio and the quality of information after
retrieval.

The concept of a fractal and the discipline of fractal geometry was introduced
by Bendit Mandelbrot in the early eighties to study irregular shapes like coastal
lines, mountains, clouds or rain fall. Fractals are complicated looking sets like
Cantor set, Sierpinski gasket, Sierpinski carpet, von-Koch curve, Julia set, but
they arise out of simple algorithms. By now it is a well-established discipline
and a comprehensive and updated bibliography can be found in Barnsley [2, 3]
Barnsley and Hurd [4], Lu [38] and references therein.

Barnsley {3] established a close connection between functional analysis, fractals.

and multimedia by demonstrating that fractals can be defined in terms of fixed
points of mappings defined on an appropriate metric space into itself and imagc
compression can be studied through this methodology achieving marvelous results.
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He has already commercialized his achievements in the form of the top-selling
multimedia encyclopedia Encarta, published by the Microsoft Corporation
including, on one CD-ROM, seven thousand color photographs which may be
viewed interactively on a computer screen.

There are diverse images like those of buildings, musical instruments, people’s
faces, baseball bats, ferns. This development is known as the IFS theory (Iterated
Function System theory) for image compression. It has been established that for
a fairly large class of images, the IFS theory provides a better compression ratio
and quality of images after retrieval (see, for example, Fisher, Lu and recent
papers on web resources) compared to the most popular method until now,
DCT(IPEG). It is also expected that a combination of fractal and wavelet techniques
may still yield better results. This is a fast-growing field in which, besides
mathematicians, computer and information scientists, physicists, chemists and
engineers are actively involved.

IFS theory

Let (X, d) be a complete metric space and let T: X — X be a mapping of X into
itself. The iterates of T are mappings 7% : X — X, defined by T%(x) = x, T%'(x)
= T(T®) = Tx), T®%x) = TT%"®) or T? =T o T, ..., TOx) =
(T D(x)) or T = T 0T ). A mapping F on the set of real numbers R into
itself is called an affine transformation if it is of the form F(x) = ax + b for all
x € R, where a and b are constants. A mapping G on R? into itself is called an
affine transformation if it can be written as

Gx,y)=(ax+by+e,cx+dy+f)

where a, b, ¢, d, e and f are real numbers. G can also be written as
x a b\ (x e
G = + =AX+B,
y c dj\y f
a b

where A = (c d] is a 2 X 2 matrix and B is the column vector (;j

The mapping T is called a Lipschitz mapping if there exists a constant & > 0
such that d(T(x), T(y)) < ad(x, y) for all x, y € X. T is called a contraction
mapping if 0 < @ < 1. « is called the contractivity factor of T. A Lipschitz
continuous function T is called eventually contractive if there is a number n such
that T% is a contraction map. Let Y be a non-empty subset of a compact metric
space (X, d), then a mapping S on Y into X is called a local (partitioned) contraction
mapping on (X, d) if there is a number 5, 0 < s < 1, such that d(S(x), S(»)) <
sd(x, y) for all x, y € Y. A complete metric space (X, d) equipped with n
contraction mappings w; : X = X,i=1,2, ..., n, denoted by {X,d, w;,i=1,
2, ...} is called an iterated function system (IFS). A complete metric space
(X, d) equipped with n eventually contractive mappings w;: X > X, i=1,2, .. .,
n, denoted by {X, d, w;, i=1,2,...,n} is called an eventually iterated function
system. A local (partitioned) iterated function system (LIFS) is a compact metric
space (X, d) equipped with n local contractive mappings w; : ¥ = X, ¥ C X.
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A recurrent iterated function system (RIES) is a collection wy, wy, . . . w, of n
Lipschitz maps in a complete metric space X and n X n matrix (ay) satisfying

Z a; = 1 for all i. The iterated function system (IFS) theorem states that:
’ For an IFS {X, d, w;} with the contractivity factors ¢, i = 1, 2, . . . n, the
mapping W defined on H(X) = space of all compact subsets of X, into itself by
W(B) = U, w;(B) is a contraction mapping on the complete metric space
(H(X), h(., .)), where

h(A, B) := max {d(A, B), d(B, A)}

d(A, B) := max {d(x, B) | x € A}

d(x, B) := min {d(x, y) |y € B)

with the contractivity factor & = max ¢, that is,
1<i<n

h(W(B), (W(C)) < ah(B, C),

for all B, C € H(X).
Consequently, W has a unique fixed point, say, A € H(X) which satisfies the

relation A = W(A) = UL, w;(A), and is given by

A = lim W°"(B) forany B e H(X).

n—yoe

This fixed point A is called the attractor or deterministic fractal or fractal.
h(.,.) is known as the Hausdorff metric.
Let {R%, d, w;, i=1,2,...n} be an IFS where w;’s are given by

x a; b\ (x e;
w; = + ,i=1,2,..,n
e Y cidi)\y fi)
Then the following table is known as the IFS code:

IFS code

w a b c d € f p

W) a b, 9] d €y fi P1
w, a by ¢ d e fi p

wll a'l bl’l CH d” eil ﬁl p'l

|detd| _ laidi—bici
where pi=5 =N )
El | det A, El la;d; - bic|
fori=1,2,...n; the symbol = means “approximately equal to”. The numbers

p;’s can be interpreted as probabilities for finding the attractor of an IFS using
the Chaos Game Algorithm. An image can be treated as a closed bounded (compact)
subset of R%. The following result, known as the Collage Theorem, is very
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important for designing IFS whose attactors or fractals are close to a given
image. Let (X, d) be a complete metric space and S be a given image, that is,
S € H(X) and let € > 0 be also given. Choose an IFS {X,d,w;},i=1,2,...n,
with contractivity factors ¢, i = 1, 2, . . . n, such that

(S, VL, wi(S) <e¢

L hes, wis) < —£

<
Then h(S§,A) < T s

where W(S)= U, wi(S) and 5= max @
1<ign

and A is the attractor of the IFS. This theorem precisely tells us that if we can
find an IFS code so that the Hausdorff distance between S and W(S) is very
small, the attractor of W will be very close to the target image S. There are
algorithms for finding attractors of the given IFS like the Chaos Game Algorithm,
the Photocopy Machine Algorithm (see Barnsley and Hurd [4] and Lu [38]). The
basic technique of image compression through IFS is to find out appropriate
affine contraction mappings w;, w,, . . . w,, such that the condition of the Collage
Theorem is satisfied, namely, S is very close to W(S) and so, instead of
communicating/storing the image, we can communicate/store the fractal or attractor
of IFS, that is, coefficients in the IFS code.

Inverse problem for images

The problem of representing a given image (or a function) by the IFSs or their
variations is a typical inverse problem. This involves finding the IFS parameters
of an image that is exactly generated via an IFS. In recent years, the iterated
function system with probabilities (IFSP), iterated fuzzy set systems (IFZS) and
IFS with gray level maps (IFSM) have been introduced and the corresponding
inverse problems have been investigated. Such an inverse problem is related to
the problem of finding the image/function as the fixed point element of a given
iteration algorithm of the types IFS, IFSP and IFSM on function spaces like L,
H™? (the Sobolev space of order m), the weighted Sobolev space and the Besov
space. In purely abstract mathematical terms, it comprises the following steps:

() Finding a suitable metric space X in which to represent the image (function).
(ii) Finding an appropriate metric d(:, *) on X.
(iii) Finding an appropriate contraction map T on X into itself.

The fact that such problems have more than one solution motivated the search
for different kinds of optimality. This problem has been studied in recent years
by Forte and Vrscay (see, for example, Siddigi, Ahmad, and Mukheimer [62]
and Forte and Vrscay [31], Manchanda, Mukheimer and Siddiqi [40]).

Let contraction mappings wy, wy, . . . , w, be associated with probabilities p,,

n
P2, ..., p, with X p; = 1. Furthermore, let & (X) denote the o-algebra of Borel
i=l

subsets of X and _# (X) denote the set of all probability measures on F (X).
For a measure i on % (X) and for any integer p 2 1, let L,(X, w) denote the
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vector space of all real-valued functions u such that | u |P is integrable on (% (X),
Ww. L,(X, W) is a complete metric space with respect to the metric induced by the
L, norm; that is,

1/p
du,v)=|u-v “L,, = [I | u(x) ~ v(x) !”d,u(x)) s (Ly(X, W), w, @)
X

where @ = {¢y, ¢, . . . ¢,} with ¢ R — R, known as the gray level maps, is
called the iterated function system with gray level maps (IFSM).
An operator T can be defined on IFSM as

’

(Tu)(x) = T ¢ (u(w;" (x))).

The prime () signifies that the sum operates on all those terms for which w, ! (x)
is defined. If w,-_1 (x)=0foralli=1,2,...,nthen (Tu)(x) = 0. For X c R",

let m™ € _# (X) denote the Lebesgue measure on & (X). The indicator function
of a subset A of X denoted by I(x) is defined by

1) l,xeA
xX) =
4 0, otherwise

LpR)={¢: R>R|| ¢t -t | <B|t; -1, |},

V 1, 1; € R and for some § € [0, o). It can be verified that for any u € L,(X, ),
l<p<o,andgpe Lip(R),1<i<n Tisa mapping on L,(X, u) into itself. In
fact, T becomes a contraction mapping under certain assumptions and hence has
a unique fixed point as L,(X, u) is a complete metric space. Affine IFSM on
Ly(X, 1) is that IFSM on L,(X, u) where ¢; are given by ¢,r) = ot + B.te R,
i=1,2,...nLet X=[0, 1] and u = m® with wix) = s,x + a;and &, = | 5, | < 1,
1 €i<n. If Tis contractive with fixed point i, then

X —a

i

n . n
u(x) = ?::1 05,‘17( l ) + Bily, (xy(x) = El loy (x) + Bixi (x)]
This means that # may be expressed as a linear combination of both piece-wise
constant functions y,(x) as well as functions y,(x) which are obtained by dilations
and translations of u#(x) and Iy(x) = 1, respectively. This reminds us of the role
of scaling functions in the wavelet theory.
The Collage Theorem mentioned earlier can be rephrased as follows:
Let (X, d) be a complete metric space, and for a given x € X there exists a

contraction map W: X — X with the contractivity factor o such that di, W(x)) <
€. Then

- £
d(x,X) < -~

where X is the fixed point of W(W(F) = ¥).
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In view of this result, the inverse problem for approximation of functions in

L,(X, 1) by IFSM may be stated as follows: Given a target functionv € L (X5 1)

and a 6 > 0, find an IFSM (L (X, W), w;, ¢;) with the associated operator T such
thatf| v - Tv ||, < 6.

For 4 € M(X), a family & of subsets A = {A;} of X is called u-dense in a
family .#” of subsets B of X if for every £ > 0 and any B € _# there exists a
collection A € & such that A C B and u(A\B) < & Let {w;} be an infinite
sequence of contraction maps on X into itself. We say that {w;} generates a “u-
dense and non-overlapping” (abbreviated as “u-d-n”") family o of subsets of X
if, for every € > 0 and every B C X, there exists a finite set of integers i, > 1, 1
<k £ n, such that

() A=Uf w, (X)CB,
(ii) W(B/A) < &, and
(i) w(w;, (X) Nowy, (X)) =0 if k=1

If {w;} satisfies the above conditions on (X, d), then ) én(f {a;} =0, where

;’s are the contractivity factors of w;’s, independent of u. If X = [0, 1] and u is
the Lebesgue measure, then the wavelet type functions

wi(x) =27 x+j-1), i=1,2,...,j=1,2,...,2

can form a “u-d-n" family.

For each i* > 1, the set of maps {wyx;, j=1,2,...,2"} provides a set of
27" contractions of [0, 1] which tile [0, 1]. In 1995, Forte and Vrscay obtained
the following result which provided the solution of the inverse problem:
Theorem A [Forte-Vrscay, 1995] Let v € Ly(X, i), 1< p<eo, then

o gl o
hnm_)lilf[]v T"v|[,=0

provided the sequence of contraction maps w; generates a “u-d-n” family = of
subsets of X and w;’s are also one-to-one, where

(T"o)x) = 2 4 (u(w]” (x))

This theorem has been studied for local IFSM and special cases like p = 2 and
¢;’s atfine maps. Forte and Vrscay have also carried out an approximation of the
target image “Lena”, a 512 X 512-pixel gray scale image, with each fixed pixel
having 256 possible values (8 bits, with values from 0 to 255, which are rescaled
to values in [0, 1]). This type of approximation has been studied by Siddigi et al.
[62] for singer and bride. The correspondence between fractal-wavelet transforms
and iterated function systems with gray-level maps has been systematically studied
by Mendivil and Vrscay. A wavelet-based solution to the inverse problem for
fractal interpolation functions has been investigated by Berkner (see, for example
reference [53]). Manchanda, Mukheimer and Siddiqi {40] have extended Theorem
A to the Besov space as follows:

B N I
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For any i € R* and Q, a bounded smooth domain of R?, we define
A%fix) = fix), £ Q—R
and A F) = AN F(x+h) - AR F(x), k=0,1,2,. ..

For r> 0, A} f(x) is defined for x € I, ={xe Q|x+rhe Q). The L, (L)
modulus of smoothness, 0 < p <  is defined as

W, (f.t),= Ishl’lp “
<r I

with the usual change to an essential supremum when p = oo. Given a > 0,
O<p<ooand 0 < g < e, choose r € Z with r > ¢ > r — 1. Then the Besov
space seminorm is defined as

1/p
[ ALf(x) [P dxj

Th

e dt 1/q
| Flag o = UO [t=%0, (f.1),1° 7}

again with a supremum when g = o,
The Besov space norm is

”.f”B{f]X(Lp(Q» = |fIB,‘7(L,,(Q)) + ”f“Lp(Q)

Thus the family of Besov spaces Bf (L,(Q)), 0< @<, 0<p<o,and0<gq
< oo denote the set of those functions f € L,(£2) such that

”'f”Bﬁ‘(L,,(Q)) < oo

Special cases yield familiar spaces, for example, p = g = 2, BY (L,(Q)) is
nothing but the Sobolev space H*(L,(Q)). When ar< 1, 1 < p S oo, and g = oo,
BJ (Q) is the Lipschitz space Lip (¢, L,(€2)). When p < 1 or g < 1, these spaces
are not Banach spaces, but rather complete quasinormed linear spaces, that is,
the triangle inequality may not hold, but for each space BJ (L,(Q)), there

exists a constant C such that for all f and gin B;‘ (L, (L)), we have

17+ 8 Wz 1,009 S CUS pg 1,0 *+ 18 Igg 1 0
ConX)={f: X>X|d(f(x),f() <edx,y), ce[0,1])
Con; (X) = { fe Con (X) | fis one-one}
Sim (X) = { f: X = X | d(f(x), f(y)) = cd(x. y), c€ [0, 1)}
LipM={@: Y>> Y, Y CR| o) -0 |<Sk|t;—1,| Y 11.15)

Let u be a finite measure on c-algebra M(X). A family .=of subsets of X is
called u-dense in a family % of subsets of X if for every €>0and any Be %,
there exists a collection A € & such that A ¢ B and M(B\A) < €.
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Let #= {w}, wy, ...}, w; € Con (X) be an infinite set of contraction maps on
X. We say that % generates a “y-dense and non-overlapping” (“u-d-n", for short)
family o of X if for every € > 0 and every B C X, there exists a finite set of
integers iy = 1, 1 < k < N, such that

] B
M A= U w, (X)CB,

(i) u(B\A) < €, and

(i) p(w, (X)nw, (X)=0ifk+e

As mentioned in [31], a useful set of affine maps satisfying such a condition on
X = [0, 1] with respect to Lebesgue measure is given by the following “wavelet
type” functions:

wi) =27x+j-1), i=1,2,...,j=1,2,3,...,2
It may be observed that in practice X is taken as a subset of R%
Now let #7= {wy, wq, w3, . .. }, w; € Cony (X) be an infinite set of one-to-one
contraction maps on X satisfying the p-d-n property. Also, let
WN={W1,W2,...,WN}, N=1,2,

denote N-map truncations of % For each N 2 1, let

oY = {01, 02 03, ..., o)

denote an associated N-vector of gray-level maps with the restriction that the
®; € Lip (R). Let TV denote the operator associated with the N-map IFSM
(w", ®"). We look for a solution of the inverse problem, namely. for a given
target function or image v € By ,(L,(Q)) and an € > 0, find an N-map IFSM
(w", ®") with the operator TV such that

N
lv-T v”Bﬁ‘,,,(L,,(Q)) < E

More precisely, we prove the following theorem:

Theorem 4.1 For appropriate small values of ¢cand v € By, (L »(£2)) we can
find an IFS with infinite set of maps #= {w,, w,, . . .}, w; € Con; (X) < R"
generating a u-d-n family A of subsets of X such that

. . N _
dim inf v =T llga (1 () =0

N
where T"v = kgo P (W (x))

1
@ R—> R, ¢ € Lip(Y), 0,<, a< l/p, 6lp = n-max {O,;— 1),

i€ La(R)
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In the proof, we require the following lemmas (for complete proof, see Manchanda,
Mukheimer and Siddiqi [40]).
It may be observed that the range of « is related to the smoothness of ¢. A

fairly large number of relevant results concerning decomposition operators on

Besov spaces Bj , for different classes of functions and different ranges of ¢ are

discussed in [57].

In the subsequent discussion, A; = A, will denote continuous embedding,
that is, there exists a constant ¢ such that || a |4, < ¢ | a |4, We say that By,
is supercritical if B, < L. and subcritical if By, # L.. For a continuous

G: R — R and Lebesgue measurable function f the operator Tg: f— G(f) is called
a composition operator.

Lemma 1 Let T be a composition operator, G(0) = 0, and ¢,< a <1, then T;
maps B, ,(Q), where Q is a non-trivial bounded smooth domain, into itself if
and only if either G’e LK (R) if BY, is supercritical or G’€ L..(R) if By,
is subcritical.

This is a consequence of Theorem I(ii) on page 335 and Remark 3 on page
267 in [57].

Lemma 2 [57, p. 355] LetlSpSw,O<qS°°andO<s<l+%and

Sc(f)=|f] Then S; maps By, into itself.

Lemma 3 [57, p. 200] Let Q < R". Suppose that & > 0. Then the characteristic

function of Q - yo belongs to By, if and only if either o < L or o= % and

q = oo,

Lemma 4 Let ¢t) = &, where & € R, 1 <i < N. Then for any p € [1, =) and
u € M(X), the associated operator TV is contractive on Bj , with contractive

factor ¢ = 0 provided o < 1/p or &= 1/p and g = o. Furthermore, the fixed point
7 of TV is given by

N
u(x) = E Eixwix)(X), x€X,
where X, (x) 18 the characteristic function of w; (X).

Lemma 5 Let X < R, ne {1,2,3...} and u be the Lebesgue measure m™.

Let (% @), #= {w1, wa, . . ., wy}, @= {1, @2, . . ., @y} on N-map IFSM such
that

(i) w, € Sim, (X) = Sim (X) N Con, (X),
(i) @ € Lip (R), 1 k<N, and
(iii) @} € Lo (R).
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Thenforape {1.e0), g, <, a<l/por o= l/p and ¢ = =

[T~ T e <A u-vl],y

where A4 is a positive constant.

We note that A may be less than 1 for an appropriate choice of constants in
Lip (R). Sim, (X} and while applying Minkowski's inequality up to a constant,
In this case 7 has a umque fixed point by the Banach contraction principle and

N
this fixed point is given by &, = 21 & Xw;cxy(x) if we choose A =0, Lemma 4.

This is precisely the case when @1 = & for all 1.
In view of Lemma 2, Lemma 3 is valid without condition (iii) if Ol =
| ] ¥ &

5. Miscellaneous {Image Classification, Watermarking and
Data Analysis)

5.1 Image Classification

The choice of a compression technique for a given image is a difficult task. To
facilitate it, Siddiqi and Ahmad {69] have studied the concept of sharp operator
and have defined information function which measures oscillatory behaviour of
images. Based on information function images are classified to adapt a specific
compression technique. A comparative study of compression technique for different
class of images has been carried out in their paper. The classification based on
information function helps us in choosing a proper compression technique for a
certain class of images. Wavelet image compression {WIC), fractal image
compression (FIC) and JPEG techniques have been used in this study.

A few relevant concepts are mentioned here.

Definition 5.1 Let R” be the n-dimensional Euclidean space and fix) a real-
valued measurable function on R”. For such a function #on R”, its Hardy-
Littlewood maximal function is defined by the formula

1 :
Mf(x) = — Y dy: 0 c R, : 5.1
f(x) s {A(Q} L [f)ldvoc XEQT GRY

where the supremum ranges over all finite cubes Q inR" and A(Q) is the Lebesgue
measure of (.
The function Mflx) has the following properties:
(i} O < Mf(x) < oo,
(1) M(f+ g)x) < MF(x) + Mg (x)
(i Maf)x) = | af Mf(x),

where f, g are measurable functions on R” and « is some scalar quantity.
Tt is easy to find a function whose maximal function is unbounded.

B E P
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Theorem 5.1 For each function f€ L{R"), we have

A{x: MR >t <6 | Fll,. 1> 0.
Definition 5.2 A measurable function f on R” has bounded p-mean oscillation,
1 £p < oo, if

; Iip

#J. | f(x) - £, f"’dx\ < oo, (5.2)
D ), ol x|

£ W saro, = sup

where the supremum ranges over all finite cubes @ in R® and

1
Al

fo= ) j f{x)dx is the mean value of the function fon the cube Q.
¢

The set of all functions of bounded p-mean oscillation is denoted by BMOL(R").
Lf I sm0, is “almost™ a norm since it has the following properties:

0[S+ g llamo, <N F lamo, + I & lamo,
() || af lzmo, = L |- |F “BMOP

iy | f | 80, =0 if and only if f = constant almost everywhere,

where f, g are measurable functions on R" and ¢ is some scalar quantity.
If we define

ip
L - pdw
”lép[i(g) L"f“) el Y

we get a norm of fand BMO, becomes a Banach space. On the other hand, we

can say, || f|lamo, becomes a norm if we identify functions which differ by a
constant. With this identification BMO,(R") becomes a normed space, and
ultimately a Banach space.

Fefferman and Stein introduced “sharp function”™ f* that mediates between
BMO, and L, spaces. ]t is defined as follows:

I f Naro; = ‘ LE” Flx)dx

Definition 5.3 Let / be a locally integrable function on R”. The sharp function
Ffix) is represented by the formula

s ~ 1 p

Of course, fe BMOP is identica) with f# € L.. Itis also observed that there
are unbounded functions in BMO,(R).

The function f (x}=In | x | on R is in BMO,(R).

After calculation it comes out to be | In| x| f|ppo, < 2. So, the unbounded
function In | x | is in BMO,(R).

It is important to note that it does not matter in which L, norm we measure the
oscillation. It is clear from the following corollary.
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3

Corollary 5.1 For each p, 1 £ p < oo, there exists a constant C,, such that for each
fe BMO,,(R”), we have

If sm0, S 11 f lsmo, < Cpll f llamo,

In view of the above corollary, the spaces BMO,(R") are equivalent for all p,
1<p <o

Information Function

It is clear from the definition of the sharp function that for a pixel z in an almost
uniform gray level region in an image, *(z) will be very small. However, for the
contrast region we get large £*(z) values. We count the number of pixels that lie
in a small interval of £#(z) range. The histogram of intervals of f7(z) range versus
number of pixels are plotted. We name this histogram of an image fas information
function of the image, defined by In (f).

Definition 5.4 The information function of an image fis a piecewise constant
function defined as follows:

In (f)x)=Alze Riff@ e [m, ¢+ D) ifxe [m, ¢+ D) (5.4)

fort=0,1,...,n¢e Z] (the set of positive integers with zero). Here, 1 is a
fixed, positive number and A is the Lebesgue measure.
In other words, if R is the range of f#, divide R equidistantly into n subintervals,

ie, R= uo I, =, (+ + 1)n), n a fixed, positive number, then
1=

In (f)(x) = A(f* (L) forx e,

1 .
f*7 denotes the pre-image.

The choice of 7 is very important. In our study on various types of images we
found that, e.g., f *(z) € [0, 70}, so we partitioned this interval into 250 subintervals
and fixed n = 70/250 (length of the subintervals). 77 cannot be an arbitrary small
number, then there would not be any pixel in some subintervals and the very
purpose of information function will become irrelevant. See [53 and 69] for
more details.

5.2 Watermarking Technology for Multimedia

Multimedia watermarking technology has evolved very quickly during the last
few years. A digital watermark is information that is imperceptibly and robustly
embedded in the host data in a way that cannot be removed. A watermark
typically contains information about the specifications of the data. This 1s essential
for copyright protection, authenticity of the data, data monitoring and tracking.
In a series of papers, the basic concepts of watermarking systems are investigated
and watermarking methods for images, video, audio, text documents, and other
media are proposed. Discrete Cosine Transform, Discrete Water Transform and
Fractals are mathematical tools in these studies. This is an emerging area of

| BBl
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information technology, a comprehensive account of which can be found in
references [77, 78]

5.3 Data Analysis

The analysis of experimental data that have been observed at different points of
time Jeads to new and unique problems in modeling and inference. The systematic
approach by which one resolves mathematical and statistical questions involved
in the analysis is commonly known as time series analysis. The impact by time
series analysis has been realized in diverse fields like economics, where we are
continually exposed to daily stock market quotations; social sciences, where we
encounter birth rates and school enrollments; medical sciences, where one may
be interested in the number of influenza cases observed over some time period,
blood pressure measurements traced over time or ECG recorded time series or
functional magnetic resonance imaging of brain-wave time series. More
sophisticated applications of time series analysis have been found in the physical
and environmental sciences such as in warming trend in global temperature
measurements, influence of level of pollution in mortality rate in a city, and
geophysical time series which are produced by yearly depositions of various
kinds having long range proxies for temperature, rainfall and wind speed. There
are two, separate but not necessarily exclusive, approaches for time series analysis,
known as the time domain approach and the frequency domain approach; for an
updated literature see Robert H. Shumway and David S. Stoffer [59].

As discussed above, wavelet analysis, invented formally in eighties, is a
rapidly developing area of mathematical and engineering sciences. The properties
which establish its superiority over Fourier analysis are time-frequency localization,
multirate filtering, scale-space analysis and high compression ratio. In view of
this, wavelet analysis is being applied in geophysical process like atmospheric
turbulence, space-time rainfall, ocean wind waves, seafloor bathmyetry, geological
layered structures, climate change. For a comprehensive and updated references,
we refer to Efi Foufoula-Georgiou and Praveen Kumar [29] and Percival and
Walden [55].

In a series of papers, Siddigi, Manchanda, Aslan, Tokgozlu, Khan and Rehman
have analyzed different sets of data by wavelet methods {41, 67,71, 74, 81, 82].
It may be observed that a forthcoming book by Gencay and Seluk [32] is devoted
to wavelets in Finance and Economics.

6. Concluding Remarks

Meyer [47] has emphasized the importance of properties of wavelet coefficients
of functions of bounded variation in R? (functions belonging to BV(R% [22] in
the context of image processing. Meyer [45], Coifman, Meyer and Wickerhauser
[23], Wickerhauser [88, 89], Mallat [39] and Siddiqi [70] have introduced and
studied the concept of wavelet packet (superposition of wavelets). Walsh function
is the first example of wavelet packet as Haar is that of wavelet. Many results
which are known now for wavelets were first proved for Haar wavelet. There
exists a vast literature on Walsh functions, see for example Siddiqi [60], Maqusi
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[43], Schipp. Wade and Simon [58], Golubov, Effimov and Skvortsov [34],
Wade [85, 86] and references therein. Wade [85] has explained in a nice way the
motivation for studying Walsh-Fourier Analysis. He also provides updated literature.
We {65, 68] are at present examining how far the results of Cohen, DeVore,
Petrushev and Xu [22] can be extended for Walsh function, in particular and
wavelet packet, in general, for the space of functions with p-generalized bounded
fluctuation and BMO (see Wade for references) and Schipp, Wade and Simon
[58].

It has been observed {16] that problems in image processing are closely
related to approximation in Besov spaces. Besov spaces in the context of the
dyadic group have been investigated by Tateoka {79] and Tateoka and Wade
[80]. It is worthwhile to examine to what extent the results of [16] can be put in
the framework of dyadic Besov spaces.

Daubechies [25] discussed characterization of function spaces L, 1 < p < oo,
H’(R) (Sobolev space), C*(R) (The Holder spaces) and Z (Zygmund’s class); See
also Meyer [44] and Siddiqi [70]. Meyer {47] has explained that the space BV
cannot be characterized by size properties on wavelet coefficients. Siddigi, J.A.
[75, 76] and Siddiqi, A.H. [72] have proved, respectively, characterization of a
function in BV in terms of the (C, 1) summability for Fourier coefficients and
Walsh-Fourier coefficients. It is pertinent to examine whether such results hold
for certain wavelet or wavelet packet coefficients.

A famous result of Hardy concerning Fourier coefficients states that if {a,} is
a sequence of Fourier coefficients of a function belonging to L,, 1 < p < ce, then
(C, 1) mean of {a,} is also Fourier coefficient of a function belonging to L,. The
converse of this problem was investigated by Siddiqi {73] and Izumi, S. and
Masaka, M. {36]. Richard Bellman and Gunther Goes, and many others have
worked on this problem. Such results for Walsh-Fourier coefficients were studied
by Siddiqi [61]. One may investigate such properties for wavelet series.

As discussed by Donoho {27, 28], Candes {13] and Donoho and Candes {10
12] have introduced the concepts of ridgelets and curvelets to represent edges in
images. As pointed out by them, wavelets can deal with points-like phenomena
very effectively but are ineffective in dealing with line-like phenomena in dimension
2, and plane-like phenomena in dimension 3. Recently, Siddiqi [66] has studied
ridgelet packets and has obtained certain results concerning the size of the ridgelet
packet coefficients of functions belonging to BV(R?) and Besov spaces.

In this article, we have presented a glimpse of the theme which may attract
the attention of researchers in different disciplines during the 21st century.
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