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In this paper, we introduce a more general form of variational inequalitics and prove
its existence in the setting of topological vector spaces with or without convexity
assumptions.
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1. INTRODUCTION

The vector variational inequality is a generalized form of variational ineguality, which
was introduced by Giannessi! in the finite dimensional Euclidean space with further
applications. From that time on, in a general setting Chen and Cheng?, Chen and
Yang?, Chen®, Siddiqi et al’ and Yang®’ have studied vector variational inequalities
and proved the existence of their solutions. They have also derived its equivalence
with the vector extremum problem and the vector complementarity problem. Parida
et al® and Yang and Chen® studied the existence of sclution of variational-like
inequalities in R" and showed a relationship between variational-like inequality prob-
lem and convex programming as well as with complementarity problem. Further, the
existence of the solution of variational-like inequalities have been studied in reflexive
Banach spaces and topological vector spaces with or without convexity assumptions
by Siddigi et al.'® Inspired and motivated by the applications of the vector variational
inequalities and variational-like inequalities, in this paper, we introduce the vector
variational-like inequalities and prove the existence of their solutions in the setting
of topological vector spaces with or without convexity assumptions.

Let X be a topological vector space and Y be an ordered topological vector
space. Let X be a nonempty convex subset of X, and T : K - L(X,Y) and
77: KxK— X be continuous mappings, where L(X, Y) is the space of all linear
continuous operators from X into Y. Let (C{#) : u € K} be a family of closed pointed
convex cones in ¥ with int C(u)= ¢ for every u e K, where int C(u) is the interior
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of the set C(u).

We consider the problem of finding up e X such that

{ Fug), n(u, ug) )y & —int Clug), for all ue K. . (0D

We shall call it the vector variational-like inequality problem, where { T{u), v ) denotes
the evaluation of the linear operator T(u) at v. Hence (T(u},v) € Y.

Special Cases

(i)

(i1)

(1ii)

If 77(u, up) =u—g(ug), where g : K — K, then the problem (1.1) is
equivalent to find uy € K such that

{ T(ug), u — glug) )y & —int Clug), for all ue K, . (1.2)

which is known as general vector variational inequality problem, studied
by Siddiqi ez al?
If 7(u, ug) = u — ug, then the problem (1.1) becomes the problem of finding
ug € K such that

{ T(ug), u—ug )& —int C(ug), for all ue K. . (1.3)

Such type of problem is known as vector variational inequality problem,
considered and studied by Chen* and Yang''.

If Y=R, LX, ) =X, Cu) = R, for all ue K, then the problem (1.1)
reduces to the problem of finding ug e K such that

{ T(ug), n(u, )} 20, for all ue K, .. (1.4)

is called variational-like inequality problem™ ¥ 10,

Lemma 1.1 (Chen*) — Let (Y, P) be an ordered topological vector space
equipped with a closed, pointed and convex cone P such that int P# ¢ Then for
all v,ze ¥, we have

)
(ii)
(i)
(iv)

v—zeintP and ve intP = z¢ int P;
v—ze Pand ve intP = z¢ imt P,

v—ze —~intP and veg —int P = z¢ —int P;
v-ze-Pand ve¢ —int P = z& ~int P.

2. EXISTENCE THEOREMS IN TOPOLOGICAL VECTOR SPACES

We will use the following concept and results :
Definition 2.1 (Fan''y — A mapping F: X — 2% is called a KKM - map, if for

every finite subset {u, up, ..., u,} of X, conv({u, u,, ....u,}) < \J F(u), where

i=1

conv({uy, Uy, ..., 4,}) is a convex hull of the finite set {u;, uy, ..., u,}, and 2¥ is a set
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of sll nonempty subsets of X.

Lemma 2.1 (Fan!') — Let A be an arbitrary nonempty set in a topological vector
space X and F:A —52X be a KKM-map. If F(u) is closed for all u€ A and is
compact for at least one u e A then

M Fu)#¢.

ve A

Theorem 2.1 (Fan'') — Let E be a nonempty compact convex set in a topolo-
gical vector space X and A be a subset of EX E with the following properties :

(1) For each ue E, (u,u)e A.

(2) For any fixed ue E, the set A, = {ve E:{(u,vye A} is closed in E.
(3) For each fixed ve E, the set A, = {ue E:(u,v)& A} is convex.
Then there exists a point voe E such that Ex fvy} C A,

Let K be a nonempty compact convex subset of X. The bilinear form ( -, - } is
supposed to be continuous.

Theorem 2.2 — Let T: K> (X, Y) and 17: KX K -3 X be two continuous maps
and let Ku)r— (T(V), 7{u, v) ) be affine, for each fixed v e K. Let the multivalued
mapping Wu) = Y \ ([~ int C(u)} is upper semicontinuous on K and
(T(u), Du, )y & —int C{u), for every ue K. Then there exists ugc K such that

{ T(ug), 7(u, ug) Y € — int Clug), for all ue K.
PROOF : Let
A= {{u, v) e KXK:(T(v), gu,v}) e — int C¥)).

Our theorem will be proved if we show that the assumptions (1), (2) and (3) of
Theorem 2.1 are satisfied.

For every ue K, (u,uye A, if and only if { T(u), 77(, u) ) & — int C(u), by the
assumption and definition of A. Now, let A, = {ve K:(u,v) e A), for each fixed
ue K, then we show that A, is closed.

Let {v,} be a net in A, such that v, ~>v. Then ve K, because K is compact.
Since v, € A,, we have

( T(V,,). ﬂ("v vn) ) € — int C(V,,).

Hence, {T(v,), Mu,v,})e W(v}=Y\{- int C(v,)}. Since 7,7 and {. ) are con-
tinuous, we have

(TR, 71, va) ) = (T, 78, v) ).
The upper semicontinuity of multivalued map W implies that
(TO), 7, v) ) € W)
ie. (T(v), M(u, v} & — Wt C(v). 1hus ve A, and hence A, is closed.
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To finish the proof we show that for each fixed ve K, A, = {ue K :
(u,v) € A} is convex. Indeed, if u;,u;€ A, and @, fe R, such that o+ 4 = 1, and
since C(v) is a cone, we have

a{T(V), M(u, v) ) e —imt C(v) w (2.1)
and

AT, n(uy, v) ) € —int C(). w (2.2)
Adding (2.1) and (2.2), and by using the affiness of £-), we have

(T(v), 7(ou; + iy, v) Y e - int C(v)

and hence ou, +fu, € A,, showing that A, is convex.
Now, from Theorem 2.1, there exists uy€ K such that K x {i,} <A, which implies
that
uge K: { T(ug), mu, ug) Y ¢ — int Clug), for all ue K.
Remark 2.1 : () If m{u, ug)=u—g(ug), where g:K— K, then Theorem 2.2
reduces to Theorem 2.15.

(i) HY=R LX, Y)=X and Cw) = R,, for all k€ K then Theorem 2.2
becomes Theorem 3.21°,

(i) If Y=R LX, ¥) =X, Cuy = R, and 7u, ug) = u ~ g(ug), where
g:K—K, for all ue K, then Theorem 2.2 reduces to the Proposition 2!2.

In the case where K is not necessarily compact, we have the following result :
Theorem 2.3 — Assume that

(1) K is a nonempty closed convex subset of X,
(2) the mappings T: K 5 L(X,Y) and n: Kx K = X are continuous;

(3) C: K—>2¥is a multivalued map such that for every u € K, C(u) is a closed,
pointed convex cone with int C{u) #¢;

(4) W . K—2Yis an upper semicontinuous multivalued map defined as
W) =¥\ (- int C(w)}, for all ue K;
(5) there exists a function h: KX K — Y such that
(i) h(u, v) — {T(v), 7u.v) ) e — int C(v), for every (u,v) e KxK;
(i) the set {ue K:h(u,v)e — int C(v)} is convex, for every ve K|
(i)  h(u, u} & — int Clu), for all ue K;

(iv) there exists a nonempty compact convex subset D of K such that for every
ve K\ D, there exists ue D with

{ T(), 17w, v) Y € ~ int C(v).

Then there exists uge D K such that

i
|
|
{
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PROOF : For each element u € K, we define j
|
Du) = {ve D : (TW), 7{u, v} )& — int C())

and from assumptions (2) and (4), we have that D(x) is closed in D. Since every
element uye (™Y  D(w) is a solution of vector variational-like inequality problem
ue K
(1.1), we have to prove that (™ D(u)#¢. Since D is compact it is sufficient to
we K
show that the family {D(w)},.x has finite intersection property. Indeed, let
uy, Uy, .., 4, € K be given, We put A = Conv (D U {u,, Uy, ..., u,)) and we have
that A is a compact convex subset of K.
We consider the following multivalued maps :
Fyw) = {ve A:(T(V), n(u,v) ) € —int C(v)}
and

Faluy = {ve A:h{u,v) & — int C(v)}

for every u e K. Since the bilinear form (-, -) is continuous and from assumptions
(2) and (4), we have that F, is closed subset of a compact convex set A. Hence,
F\(u) is compact.

From assumptions (5{) and (5iif), we have
h(u, uy —{ T(u), 7(u, ) Y e — int Clu)
and
h(u, u) g — int C(u).
Then by Lemma 1.1(€iii), we have
( TCw), 7(u, u) ) & — int C(u).
Hence, F(u) is nonempty.
Now we prove that F; is a KKM-map. Indeed, if we suppose that there exist
XX, ... X, €A and 20, i = 1, 2, ..., n, with Z:_I:l a; = 1, such that

n n

Y axie \J Fax)

i=t i=1
then we have

h xi,Za,;xi € —intC Za'.;xi
i=1

i=1
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By assumption (5if), we have

n n n
h 2 awx; , E ax; € —ian(z ox;
i=1 i=1 ki-_-l
which is a contradiction to assumption (5iii). Therefore, F, is a KKM-map.
From assumption (5{) and Lemma 1.1(iii), we have F,(u}c F,(4), for every
1€ K. Then we obtain that F; is also a KKM-map. Applying Lemma 2.1 to F, we
get (\HE . Fi(u) # ¢, that is, there exists vy e A such that

( T{vg), mu, vg) ) & — int Clvy), for all ue A.

By assumption (5iv), we have that v,e D and moreover vye D(y), for every

1<i<m. Hence {D(u)},.x has the finite intersection property and the proof is
finished.

Remark 2.1 : If Y = R, L(X, ) = X, Clu) = R, for all ue K and

1y, ug) = u — g(uy), where g: K — K, then Theorem 2.3 reduces to Theorem 8 of
Isac!?,

3. AN EXISTENCE THEOREM WITHOUT CONVEXITY

In this section, we prove an existence theorem for a special case of vector varia-
tional-like inequality problem 1.1 replacing convexity assumptions with merely

topological properties. We use the technique of Chen* to prove the main result of
this section.

The following definitions can be found in Bardaro and Ceppitelli'?,

Definition 3.1 — Let X be a topological space and {/,} a given family of
nonempty contractible subsets .of X, indexed by finite subsets of X,

A pair (X, {7,}) is said to be a H-space, if Ac B implies /4, < /5.

A subset D c X is called H-convex, if for every finite subset A of D, it follows
that I, < D.

A subset Dc X is called weakly H-convex, if 7 M D is nonempty and
contractible for every finite subset A ¢ D. This is equivalent to saying that the pair
(D, {Iry MD)}) is a H-space.

A subset K< X is called H-compact, if there exists a compact and weakly
H-convex set D c X, such that X\ A c D for every finite subset A of X.

Let (X, {74}) be an H-space. A multivalued map F: X — 2¥ is called H-KKM,
if 7Iyc\J F(x), for every finite subset AcX.
x€ A

Theorem 3.1 (Bardaro and Ceppitelli'®) — Let (X, {I}) be an H-space and
F:X —2X be an H-KKM multivalued map such that :
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() for each xe X, F(x) is compactly closed, that is, B (™ F(x) is closed in
B for every compact set BC X,

(ii) there exists a compact set L < X and an H-compact set K c X such that,
for each weakly H-convex set D with KcDcX, we have

N _FoNDdcL

xX€E

Then My F(x)# ¢. We now consider a special case of (1.1), but in a more
re X

general context.
(VVLIPY : Find u5€ X such that

{ T(ug), m(u, ug) )& —int P, for all ue X, L 13D

where (X, {F,}) is an H-space, (¥, P) is an ordered topological vector space with
a closed pointed convex cone P such that int £ #¢ and T:X—>LX, 1),
n:XxX— X are given maps.

Theorem 3.2 — Ler (X, {I,}) be an H-space, and let (Y, P) be an ordered
topological vector space with a closed pointed convex cone P such that int P # ¢,
Let T:X > I(X,Y) and 171: Xx X — X be two continuous maps. Assume that

(1) {T(v), 7(v,v})€& — int P for all ve X,

(2) for each ve X, B, = {ue X : {T(v), {u.v}}e - int P} is H-convex or

empty,

(3) there exists a compact set L < X and an H-compact set K < X such that for

every weakly H-compact set D with KcDcX, {ve D : {T(v), j(u,v) Y g
—int P} =L, ¥V ue D.

Then the (VVLIPY is solvable,
PROOF : Let

Flu) = {ve X : (T}, (u,v) )& - int £}, for all ue X.

If we prove that ™y F{u) # ¢, then our theorem is proved, since every element

ue X

Uy € (MY F(u) is a solution of (VVLIPY. It can be followed from Theorem 3.1, if

we X
we prove that F is an H-KKM map and the conditions (i} and (ii) of Theorem 3.1
hold.
Suppose that F is not an H-KKM map. Then there exists a finite subset

AcX such that 7,z ) F(u). Thus there exists z e 74 such that
ue A

z& Flu), for all ue 4,

ie. {T(z),nwu.z)ye - int P, for all ue A. By assumption (2) and since B, is
H-convex, we have F,cB, for AcB. Therefore, ze B, and hence
(T@@). 7z, 2)ye — int P, which is a contradiction to assumption (1). Thus

1
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E'CU...A F(u), for every finite subset A <X, so that F is an H-KKM mapping.

Next, we prove that for every ue X, F(u) is closed. Indeed, suppose that {v,}
be a net in F(u) such that v,—v. As T, # and (-, -} are continuous, we have

(T, 17, vo) ) = (TO), 7, v) ) -

Since (T(v,), plu,v,) Y& — int P, for all a, that is {T(v,), 7(u, v,))e W =
Y\ {-int P}. But W = Y\ {- int P} is closed, we have { T{(v), 7(u. v) } € W that
is,

(T, 7(u, v) Y & — int P.

Hence, v e F(u) and therefore F(u) is closed for every u € X, that is, the condition
(i) of the Theorem 3.1 l_wlds. It is easy to see that the assumption (3) of this theorem
is a condition (ii) of Theorem 3.1. Thus by Theorem 3.1,

M Flu) = ¢,

ue X

that is, there exist u,e X such that
{ T(ug), 77(u, ugy Y& — int P, for all ue X.

Remark 3.1 : If 1(u, ug) = u — g(ug), where g: X - X, then Theorem 3.2 reduces
to Theorem 3.1 of Siddigi et al’
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