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ABSTRACT. It is shown that the solution of BRCKY hierarchy of kinctic equa-
tions can be obtained through the particle method solution of Vlasov equation.
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Suppoese we are given a system of monoatomic molecules. Suppose that the

molecules interact through a two-body potential ¢. In the framework of classical
slatistical physics, we lock for the solution of the hierarchy of BBGKY kinetic

equations [2]:

g1 € Aqe € A,.,.

. A
1) 50 = [ £+ 3 [ 3 16l — @) fualilds

1<i<n

where f, is the probability density of the gas ensemble of time ¢ € B at position
s@n € A with the velocities v; € RY,...,v, € R} of particles.

Therefore. f: Ry x F' — K. with the phase space £ = (A + R3 )™

Here,

2
=3 Tt 3 $a—a) Ti= g,

L=i<n 1<i<j<n
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m = 1 is the mass of a molecule, p the momentum of a molecule, n € N, N is the
number of molecules, V' is the volume of the system; N — oo,V — oo,v = v

const is volume per molecule [,] denctes the Poisson brackets.
Introducing the notation

(2) (Hf)n = [Hahol (PeFlaler,- o wa) = fana(z1, o Tno 1)
e = 3 3 0las— 0 Sl
i<i<n
f(t) = {f‘(tll—'l)a"':fﬂ(tsz'l:"":'rn):"'!}: n=1?2:"':

we can wrile Equation (1} in the form

) 250 =)+ [ ADs0)ds

DERIVATION OF HIERARCHY OF KINETIC EQUATIONS FOR CORRELATION
FungTions

Theorem 1. The hicrarchy of kinetic equations for the corvelation functions has
the form

a
(4) et =Hp) + %W(so(t),w(tm f AcDeiplt)dz + / Acp(t) * Doppl(t)dw,

where
6) S0 = T =T+p+ EE0 L COF
':‘Q(t) = {",G[(t,-'ﬂ]},---,$(t,£1,-”,.’rn),u<};

©) (ere)@) = 3 oMK \V) I+p=g

YoX
(T (xp)" = prpr-xign times

NI —

X = (z1,....,¢n)={zm): Y=(a.), nenn=12..;
{8} (u\r‘prl) = [ Z ¢(qi - Qj)! @n] )
1<i<jsn

(9) Wipg) = > UY;X\Y)e¥)p{X\Y).

YCOX

Proof. To cbtain (3), we substitute (4) in (2):
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We have

(11) DeTp(t) = Dyp(t)«Telt),

(12) ATolt) = Asolt) * Tolt)

(13)  ADTolt) = ADug(t) s Tlt) + Aup(t) * Dasalt) x T(t),

(14) TTo(t) = To(t) Tolt)

(15) UTG(t) = Uglt) « Tolt) + sWip(0), o(8) * To(t),

1) Sren = e «Tet).

Substituting (6)-(11) in (5), and multiplying both sides by T(—(¢)}, we obtain
(3). O

See [8--10] for relevant discussion.
To investigate our system on the basis of arguments similar tc those in [2], we
can choose as expansion parameter v, setting

(17) Plai — a5) = v0(g: - gs)
and making substitution similar to [1-4, 8], we get
(18) wnlt) = 0" yn(t).

On the basis of (12}, {13}, Eq. {3} for n takes the form

DenX) = | Town(t X)| + 0@ @)a(x)
1<i<n
(19) 2OV, $(X) + 07 [ (ADit)a( X

+v f (Ab() % Dep(t))a( X)dz

To solve Eq. {14}, we apply perturbation theory, we shall seek a soluticn in the
form of the series

(20) Gult, X) =D vhPh(t,X), n=1,238...,0=012....

N

Substituting the series of (15) in Eq. (14) and egquating the coefficients of equal
powers of v, we obtain

(%+£,)w?(ﬂ =0, (gf + L +£2) W) =89, ... ( +Z£)w {t) = 84,,

where we have introduced the notation

L0 = npmulte) - [ PEZD I g g,
Lagh(t) = vz()—a:wﬂ(t,z\’)—v f (Axwa]) (zi)(DIw“)ﬂ_l(t,X\z{)d:r,
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SE o= ), (045 Y (MR O.6), ()

&4 8r=u

@) 4 [ (A:Dop# (D)), (X)dz + v f T (A (D () X)dz.
d1+by=pn
Thus, the solution of Eq. (14) reduces to the solution of the homogeneous
(16) and inhomogeneous (17), {18) Vlasov's [12] equations for ¢{(t) and @&(t),
accordingly.

Theorem 2. The series (15), ¥,(t. X) = Zv“w,‘:(t,){), where ¥ is defined in

&
accordance with solution of Vilgsov's equation and the remnaining ¥# on the basis of
the formula

t
(22) WE(, X) :fdx;---fdx;/ d'SE(t,xy, ..., 2h) ﬂ Gt —tz;,7)),
- 1<i<n
is o solution of Eq. {14), if G salisfies equation:
: ) ablg,—
(% + Uga%)G(t —thay,xl) - a—(%i—xl f ng‘_—"’]G(t AT AL

J' as(g;:’Q) BG(tBLIIIQZ:)ﬁ}(t’ .E)d.'.'? =0
with the initial condition

G034, ) = 8w — 2.

Proof. We consider Egs. (16) and (17) where (16) is the Vlasov equation. This
systemn of coupled equations for the single-molecule and two-molecule perturbations
can serve to determine the successive approximations ¢£{t}. ¥{(¢, X) is the solution
of Vlasov’s equation.

Substituting (3, 8]

(23) P (t, @, 72) =fd:v’1fd:r5 /t ' S9(t's oy, )
Git —t'yx,7))G(t — ;img, xh)
in (17}, we see that (21) is a solution of (17) if
530w, m2) = [Blar — g2) vl (6 21 )UL(E, 22)]
S LR AT CE
142

and if & satisfles equation

E 8 o+ I3 ' 81;’“: Il) a0(q — q)
(24} (& + 0 8ql) Gt -t o, 7)) ~ o, da,
_ . f, ,
Gt — t's 2, 2, )dx — / 90a = 9) G~ i 7)1y v — 0
dqy v

with the initial condition
(25} G(0; zy.&)) = d(zy — 7).

The recursive system of Eq. (18) can, with allowance for the established struc-
ture of the solutions, serve to determine the successive approximations (¢} and,
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therefore, formula (15), Indeed substituting again (20} directly in (18), we can see
that (20} is a solution of (18) if 8¢ is defined in accordance with (19) and if G
satisfies Eq. (22) with the initial condition {23).

Existence and uniqueness of the solution of the following Vlasov equation is
studied in [5-7] by the particle method:

al(tia) = -viVapl(tm) + ;—:w’“—‘vmwﬁ(tl,ml),
{26) T = fF£71(Tw)
. 1
(27) —A 0% = ES;L e ffdS T =T,
where Tp, = ET, k=1,....n,n &N of size %T, U solution of (23) with f%(C, P) =

FO(P); #(|gi—g;|) is Coulomb potential; [/-potential by E = — Al satisfies Poisson’s
equation. In [5, 11}, it is shown that ¥9(2, 21, 1) = (@®y}(z1, v1) is solution of
the Vlasov equation. Here, we assume that F is Lipschitz continuous, @; . @ £ —
F is a measure-preserving group homomorphism [6] and 4 is continucus initial
conditions.

A numerical scheme for the Vlasov equation is as follows [11]: For every time
step tx = kALK =10,1,...

v (te-1) = vl () + AtE (g (t))
e (te-1) = @ (te)} + Aol (g
al(te) = al{t).

Solution {20) of two equations (16), {17} of hierarchy are in good agreement with
results of [3] for plasma physics and this method is opening possibilities to calculate
the solutions of the complex kinetie equations of BBGKY hierarchy.
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