
Attacking Tor through Unpopular Ports

Muhammad Aliyu Sulaiman
Information and Computer Science Department

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia
muhalisu@kfupm.edu.sa

Sami Zhioua
Information and Computer Science Department

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia
zhioua@kfupm.edu.sa

Abstract—Anonymity systems try to conceal the relationship
between the communicating entities in network communica-
tion. Popular systems, such as Tor and JAP, achieve anonymity
by forwarding the traffic through a sequence of relays. In
particular, Tor protocol constructs a circuit of typically 3 relays
such as no single relay knows both the source and destination
of the traffic. A known attack on Tor consists in injecting a set
of compromised relays and wait until a Tor client picks two of
them as entry (first) and exit (last) relays. With the currently
large number of relays, this attack is not scalable anymore.
In this paper, we take advantage of the presence of unpopular
ports in Tor network to significantly increase the scalability
of the attack: instead of injecting typical Tor relays (with the
default exit policy), we inject only relays allowing unpopular
ports. Since only a small fraction of Tor relays allow unpopular
ports, the compromised relays will outnumber the valid ones.
We show how Tor traffic can be redirected through unpopular
ports. The experimental analysis shows that by injecting a
relatively small number of compromised relays (30 pairs of
relays) allowing a certain unpopular port, more than 50% of
constructed circuits are compromised.

Keywords-Anonymity Systems; Tor Network; Privacy; Net-
work Security;

I. I NTRODUCTION

Anonymity systems, such as Tor [1] and Jap [2] are
designed primarily to provide privacy and anonymity to cen-
sored Internet users. These systems achieve anonymity by
embedding user data inside several layers of encryption and
by forwarding the traffic through a set of relay nodes/proxies.
This makes the job of an eavesdropping adversary much
more challenging since by just observing the traffic she
cannot deduce who is communicating with whom and what
is the type of traffic exchanged.

Tor [1], [3] represents the current state-of-the-art in low-
latency anonymity systems. The Tor network is currently
the largest deployed anonymity network ever, consisting of
almost 3000 relays and more than an estimated 300,000
users.

Tor provides anonymity to its users by forwarding the
traffic through a sequence of relays (Tor node and Tor relay
are used interchangeably in this paper). No one of these

The authors would like to acknowledge the support provided by the
Deanship of Scientific Research at King Fahd University of Petroleum and
Minerals (KFUPM) under research grant FT111003

relays is able to link the source and the destination of the
traffic: the first (entry) relay knows the source but not the
destination, the last (exit) relay knows the destination but
not the source and any intermediate relay knows neither
the source nor the destination. For an attacker to break
the anonymity of Tor, it is enough to observe the traffic
of the entry and exit relays. Indeed, if the entry and exit
relays traffic is observed, a simple traffic analysis can easily
confirm who is communicating with whom. Since relays
forwarding the Tor traffic are typical user machines run by
volunteers, a popular attack in the literature is to inject a
certain number of malicious relays in the Tor network and
then wait for the Tor client to pick two of them as entry
and exit relays. Several variants of this attack exist in the
literature. The main limitation of this attack is its scalability:
with a couple of hundreds of relays the attack is efficient
however, with the 3000 relays of the current Tor network,
the attack is not scalable anymore.

In this paper, we revisit this same attack but improving
significantly its scalability. The main idea is to take advan-
tage of unpopular ports in Tor to maximize the chances of
the success of the attack. Unpopular ports are port numbers
assigned to applications that are not recommended with
Tor. For instance, Tor blocks by default all peer-to-peer
applications related port numbers (BitTorrent, Kazaa, etc.)
because of their bandwidth greediness [4], [5], [6]. Hence,
Tor default exit policy rejects relay requests if they try
to use one of those unpopular ports. However, since Tor
is volunteer-based anonymity protocol in which individual
users donate bandwidth to relay traffic, it is completely the
responsibility of relay donors to decide how they contribute
to the Tor network; some relay donors decide to accept
such unpopular ports in their exit policies. This makes the
number of relays allowing unpopular ports relatively small
and exposes the anonymity of Tor system. In this paper we
propose an attack that takes advantage of the small number
of relays allowing unpopular ports to significantly increase
the scalability of the above attacks.

Unpopular ports in Tor have been used in a previous
work [7] to compromise the anonymity of Tor. The main
difference, however, is that in this paper we actively take
advantage of the presence of unpopular ports by pushing



a Tor client victim to open connections through unpopular
ports. Previous work consisted simply to passively assess the
impact of using unpopular applications on the anonymity of
Tor.

The rest of the paper is organized as follows; Section 2
surveys related work. Section 3 gives an overview of Tor
protocol. Section 4 describes in detail the proposed attack,
in particular, the attack steps, how to actively redirect con-
nections through unpopular ports, and an empirical analysis
on the efficiency of the attack with respect to the number of
injected relays. Finally, Section 5 concludes.

II. RELATED WORK

Murdoch and Watson [8] conducted an empirical analysis
that investigated the relationship between the path selection
algorithm and path compromise with respect to the attacks
cost for the adversary. They identified the fraction of ma-
licious Tor routers and the fraction of adversary-controlled
bandwidth as important factors for predicting the adversarys
ability to compromise paths. Browser based attacks on Tor
was presented by Abbott et al. [9], the main idea is that the
attacker can trick a users web browser into sending a peculiar
signal over the Tor network and subsequently detected using
traffic analysis. In the paper, they described how a malicious
node acting as exit node, when selected by a client can insert
a JavaScript code into unencrypted payload and transmit to
the client, which then run on client machine and can generate
identifiable signal pattern that can be detected by the server.
Evans et al presented an attack based on legitimate guard
node nd malicious exit node [10]. In their attack guard node
used by a legitimate client is kept busy through the long path
generation. This push client to use malicious exit router to
relays its traffic Bauer et al. [11] demonstrated how extend is
the routing selection optimization for performance exposed
Tor protocol to end-to-end traffic analysis attack from non-
global adversaries with minimum resources. Their approach
involves compromising guard and exit nodes, by injecting
few nodes with high bandwidth and high uptime claims,
in a similar work, Bauer et al exploit the role of ports in
compromising routing path based on the type of traffic being
propagated [7]. In this work we presented a new attack
scenario that focus on Tor unpopular ports and combined
inspiration from both Abbott et al. [9] and Bauer et al. [11].
Our work is similar to [11], in the sense that we both
investigated the relationship of application layer protocol
to the resources needed by adversary to compromise path,
but differ in the definition of attack scenario; their attack
scenario is passive one that involved injecting malicious
entry and exit routers with high bandwidth claimed, while
in our case is more of active attack to reveal the identity
of a Tor client connected to a compromised webserver; the
attacker takes advantage of unpopular ports to play on the
Tor path selection algorithm to select from few set of relays
in which the attacker controlled a significant fractions as

explained in section 4. Our attack differ from [9]; theirs isa
browser based attack, that trick a users web browser to send
a peculiar signals over Tor network, but our involve pushing
Tor client to open a new connection through Tor network.

III. U NPOPULARPORTSATTACK

A popular attack scenario on Tor is for an adversary to
inject as many malicious Tor nodes as possible then to wait
for a Tor client (victim) to pick one or several of these
to construct his circuits. This scenario was feasible when
the Tor network was composed of less than 500 relays.
However, currently the Tor network contains more than 3000
relays which makes those attacks not scalable anymore. Our
proposed attack is inspired by the same idea. The main
difference is that, instead of injecting typical Tor nodes
(allowing typical port numbers e.g. 80, 53, etc.), we inject
only Tor nodes allowing unpopular ports (e.g. 25, 119, etc.).
Since only a small fraction of Tor nodes allow unpopular
ports, the malicious injected Tor nodes will outnumber the
valid ones which significantly increases the probability to
compromise circuits created by Tor clients. Given the few
number of Tor nodes allowing unpopular ports, this attack is
still scalable with the current Tor network (January 2013).
The main requirement for this attack to work is a Tor client
that uses an unpopular application (port) through the Tor
network. Table I lists the unpopular ports in Tor. In the
sequel we show how it is possible to actively push a typical
Tor client (using typical ports) to open a connection through
Tor using one of the unpopular ports.

A. Attack Steps

In this attack scenario we assume that a client uses Tor
network to connect to a compromised server as shown in
Figure 1. However the compromised server injects a program
into a requested page that will “invite” the client to open
another connection through one of the Tor unpopular ports,
this way the chances that the client will choose one of
the adversary injected malicious exit nodes with high self-
advertised bandwidth are significant. The attack proceeds as
follows:

1) The attacker controls a compromised web server.
2) The attacker injects a number of malicious exit routers

that accept a particular unpopular port with high
bandwidth claim.

3) The attacker injects a number of malicious entry
routers with high bandwidth claim.

4) A client connects to the compromised web server
anonymously using Tor network through a typical port
(e.g. 80, 53, etc.).

5) The server injects a hidden stored script into the
requested web page.

6) The Tor client machine executes the injected script
which forces the opening of a new connection through
Tor network to a remote server using unpopular port.



Port Description
25 Simple Mail Transfer Protocol (SMTP)
119 Network News Transfer Protocol (NNTP)
563 Network News Transfer Protocol over TLS/SSL (NNTPS)
1214 Kazaa Peer 2 Peer (P2P)
6346 Gnutella Peer 2 Peer (P2P)
6347 Gnutella Alternate (P2P)
4661 eDonkey Peer 2 Peer (P2P)
6881 BitTorrent Peer 2 Peer (P2P)
6969 BitTorrent tracker (P2P)

Table I
L IST OF UNPOPULARPORTS IN TOR PROTOCOL

Figure 1. Tor Attack Scenario

7) The attack is successful when the Tor client picks two
compromised Tor routers for his circuit entry and exit.

To carry out this attack successfully we need to address
some issues such as how could the attacker compromised
the webserver? If the attacker succeeded in compromising
the webserver and injected the script into the client machine
how can the script force the client to open a new connection
through Tor network to a remote server using unpopular
port?

B. Active Port Redirection

This section discusses how the attacker, using a compro-
mised Web server, can force a Tor client to open a new
connection that redirects traffic through one unpopular port.
Depending on the type of the attacker, we consider two
possible methods allowing to redirect traffic. An external
attacker can take advantage of a vulnerability in a web page
due to poor programming practices and stores a script into

the page. Later, when a Tor client visiting the site receives
response that contains a script that will force its browser
to open a new connection through an unpopular port. An
internal attacker with Webmaster access privilege to the web
page can simply include a script into the page.

To demonstrate the effectiveness of this active port redi-
rection, we create two instances of remote virtual ma-
chines using Amazon EC2 (Elastic Compute Cloud) cloud
services [12]. In the first instance we installed Apache
web server to host a simple article web page. In the
second instance we installedsocket.io with node.js.
Socket.io which supportsWebSocket [13] was the best
option for our technique since it has the ability to sense if the
users web browser is configured to use a proxy to connect
to a remote server and eventually setup a persistent tunnel.
Besides,Socket.io provides us with a simple way to
test redirection for all Tor unpopular ports by changing the
listening port of the server. In this regard, we implement a



simple article Web page on the first remote virtual machine.
The page consists of the body of the article and text area
for visitors to leave comment and a submit button to submit
the comments to the back-end database. Within the page we
store a JavaScript that push visitors web browser to open a
new tab and establish connections with a server-side script
based onsocket.io on node.js server which is on the
second remote virtual machine. Based on the above setup
we launch Tor as client and visit the article web page. Each
time we visit the page a new tab is opened and we observe
if there is connection to the server-side script onnode.js.

The experiment was carried out for each one of the
unpopular ports. Indeed, for each port, we setup the server-
side script to listen to that port and required the injected
client-side script to initiate a connection with the remote
server. The attack was successful with all Tor unpopular
ports except ports 25, 119, and 563. The reason is that these
ports are not commonly used for web browsing1 therefore
the Tor enabled web browser intercepted and cancelled the
connections.

C. Tor Path Selection Simulation

In order to investigate the relationship of Tor path se-
lection algorithm and the amount of resources needed to
make this attack successful, we developed a simulation
that adhered to default Tor path selection specification, as
provided by the Tor Project. There are two parts of Tor
path selection algorithm as elaborated in [14]. The Entrance
Router Selection Algorithm which was incorporated into
path selection algorithm with the introduction of Entry
Guard, in which a client automatically chooses a set of
onion routers flagged as fast and stable by the directory
servers. The second part of Tor path selection algorithm
is the Non-Entrance Router Selection Algorithm, used for
selecting subsequent routers in the circuit. In this work we
simulate the Non-entrance Path Selection Algorithm since it
is optimized to favor router selection with high bandwidth
and high uptime.

Non-Entrance Router Selection Algorithm: For network
performance reasons, this algorithm is optimized to favor
routers with high bandwidth. The algorithm gets as input the
routers list and produces a randomly chosen router weighted
towards the router advertising the highest bandwidth. At the
beginning, the algorithm computes total bandwidth (B) for
all the available routers from the router list, subsequently
it chooses a pseudo random number C between 1 and B.
Each onion router from the list is processed by adding its
bandwidth added to a variable T. If the variable T is greater
than C, the onion router is selected for inclusion into the
path, provided the Tor path selection constraints are met.
Otherwise (T is less than C) more onion routers are added

1Port 25 is assigned to SMTP protocol, port 119 is assigned to NNTP
(Network News Transfer Protocol), and port 563 is assigned to NNTPS
protocol which is NNTP over TLS/SSL.

to T until T becomes greater than C. From this we can infer
that the more bandwidth an onion router self-advertises, the
greater the probability that the router is to be chosen. Indeed,
the algorithm assigns weights to onion routers based on the
probability distribution which is tilted towards the magnitude
of the routers self-advertised bandwidth.

The full details of path selection algorithms can be found
in [14]. However, router selection algorithm chooses router
with the following constraints:

1) All routers in a path must be unique; no router is
selected twice for the same path.

2) All routers in a path are chosen from different family,
no any router is of the same family with another router
in the same path.

3) By default, only one router is chosen from a given /16
subnet.

4) All routers chosen for a path must be running and
valid.

5) The first router on the circuit must be flagged as entry
guard by a directory server.

6) The exit router selected must support connection to
the clients chosen destination host and port.

In all cases, the choice for entry and exit routers are based
on considerably large bandwidth; too much bandwidth above
one-third of the total bandwidth of all routers in the network
may lead to rejection of an onion router, while router with
too low bandwidth may not be favored by router selection
policy.

D. Injecting Malicious Relays and the Impact on Circuit
Construction

Unpopular ports are ports assigned to “not recommended”
applications which are typically rejected by Tor relays.
These applications are rejected because some of them leak
information as they pass through the Tor network due to
their unencrypting nature or when doing DNS lookup, and
most importantly because some applications require a lot of
bandwidth (P2P) and may carry malwares thereby exposing
Tor relays to infection. However, since Tor is volunteer-
based where individual users donate bandwidth to relay
traffic, it is completely the responsibility of relay donorsto
decide how they intend to make contribution to Tor network.
Some relay donors may decide to accept such unpopular
ports in their exit policies.

To assess the risk of using unpopular ports in the creation
of circuits, we carried out several experiments on all listed
unpopular ports as follows. We obtained a snapshot of the
active onion routers from Tors directory servers as of January
5th, 2013. We preprocessed the data to obtain information
such as each routers name, status, version, self-advertised
bandwidth and exit policy and use this data in our simula-
tion. Then using our path selection simulator (Section III-C),
we generated for each experiment 1500 circuits and tracked
the number of circuits which are compromised.



0
100
200
300
400
500
600
700
800
900

0 5 10 15 20 25 30

N
um

be
r 

of
 c

irc
ui

ts

Number of injected Entry/Exit relay pairs

Port 25

0
50

100
150
200
250
300
350
400
450

0 5 10 15 20 25 30

N
um

be
r 

of
 c

irc
ui

ts

Number of injected Entry/Exit relay pairs

Port 119

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

N
um

be
r 

of
 c

irc
ui

ts

Number of injected Entry/Exit relay pairs

Port 563

0

100

200

300

400

500

600

0 5 10 15 20 25 30

N
um

be
r 

of
 c

irc
ui

ts

Number of injected Entry/Exit relay pairs

Port 1214

0

100

200

300

400

500

600

0 5 10 15 20 25 30

N
um

be
r 

of
 c

irc
ui

ts

Number of injected Entry/Exit relay pairs

Port 4661

0

100

200

300

400

500

600

0 5 10 15 20 25 30

N
um

be
r 

of
 c

irc
ui

ts

Number of injected Entry/Exit relay pairs

Port 6346

0
50

100
150
200
250
300
350
400
450
500

0 5 10 15 20 25 30

N
um

be
r 

of
 c

irc
ui

ts

Number of injected Entry/Exit relay pairs

Port 6347

Circuits with entry relay compromised
Circuits with exit relay compromised

Circuits with both entry and exit relays compromised
Circuits compromised (entry or exit or both)

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30

N
um

be
r 

of
 c

irc
ui

ts

Number of injected Entry/Exit relay pairs

Port 6881

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30
N

um
be

r 
of

 c
irc

ui
ts

Number of injected Entry/Exit relay pairs

Port 6969

Figure 2. The number of compromised circuits trend while increasing the number of injected relays

In each experiment, we inject a number of malicious
routers ranging from 1 pair (entry/exit routers) to 30 pairs.
Each malicious router self-advertises 10MB of bandwidth,
which is the maximum allowed bandwidth and advertises an
exit policy that allows some unpopular ports. Figure 2 shows
the result of the experiments where each single experiment
is repeated 10 times and the average is plotted. For every
experiment (corresponding to a given unpopular port), four
values are tracked:

• The number of circuits with entry relay compromised
• The number of circuits with exit relay compromised
• The number of circuits with both entry and exit relays

compromised

• The number of circuits compromised (entry relay, exit
relay, or both relays compromised.

The port number where our attack has the highest chances
of succeeding is 25 (SMTP) since by injecting 30 pairs
of compromised routers, 52% of constructed circuits are
compromised. The port number with the lowest chances of
success of our attack is 563 (NNTPS) where only 9% of
the 1500 constructed circuits are compromised. This low
success rate can be explained by the fact that several exit
relays allow port 563. Hence, injecting malicious relays does
not outnumber regular relays allowing to exit on that port.

It can be observed from Figure 2 a certain fluctuation
in the path compromise rate as the number of injected
malicious routers increases. This is due to random nature



of router selection algorithm which sometimes may not
favor routers with higher bandwidth. However overall result
shows that path compromise rate increases as the number of
injected malicious routers increases in all unpopular ports.

IV. CONCLUSION

A popular attack on Tor is to inject a certain number of
malicious Tor nodes then to wait for a Tor client (victim)
to pick one or several of these to construct his circuits.
Currently the Tor network contains more than 3000 relays
which makes those attacks not scalable anymore. In this
paper we described a technique that allows to increase
significantly the scalability of this type of attacks. The main
idea is: instead of injecting typical Tor nodes (allowing
typical port numbers e.g. 80, 53, etc.), we inject only Tor
nodes allowing unpopular ports (e.g. 25, 119, etc.). Since
only a small fraction of Tor nodes allow unpopular ports, the
malicious injected Tor nodes will outnumber the valid ones
which significantly increases the probability to compromise
circuits created by Tor clients. The proposed attack is active
in the sense that the attacker tries to push a typical Tor
client to open new connections through unpopular ports.
Empirical analysis based on data obtained from the real
Tor network showed that by injecting 30 pairs of entry/exit
relays and redirecting the traffic through unpopular ports,
the anonymity of Tor clients is reduced by more than 50%.
Given the few number of Tor nodes allowing unpopular
ports, this attack is still scalable with the current Tor network
(January 2013). The main requirement for this attack to
work is a Tor client that uses an unpopular application (port)
through the Tor network. Table I lists the unpopular ports in
Tor. In the sequel we show how it is possible to actively push
a typical Tor client (using typical ports) to open a connection
through Tor using one of the unpopular ports.

Our plan for future work is to implement more efficient
hacking techniques to actively redirect the Tor traffic through
unpopular ports. One promising approach would be to carry
out specially crafted cross-site scripting attacks to remotely
execute malicious scripts.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor : the
second-generation onion router,” inProceedings of the 13th
Usenix Security Symposium, August 2004.

[2] O. Berthold, H. Federrath, and S. Köpsell, “Web MIXes: A
system for anonymous and unobservable Internet access,” in
Proceedings of Designing Privacy Enhancing Technologies.
Springer-Verlag, LNCS 2009, July 2000, pp. 115–129.

[3] The Tor Project, Inc, “Tor project,”
”http://www.torproject.org”.

[4] A. Chaabane, P. Manils, and M. Kaafar, “Digging into
anonymous traffic: A deep analysis of the tor anonymizing
network,” in Proceedings of the 2010 Fourth International
Conference on Network and System Security, ser. NSS ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp.
167–174.

[5] K. Loesing, S. Murdoch, and R. Dingledine, “A case study
on measuring statistical data in the tor anonymity network,”
in Proceedings of the 14th international conference on Fi-
nancial cryptograpy and data security, ser. FC’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 203–215.

[6] D. Mccoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker,
“Shining light in dark places: Understanding the tor network,”
in Proceedings of the 8th international symposium on Privacy
Enhancing Technologies, ser. PETS ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 63–76.

[7] K. Bauer, D. Grunwald, and D. Sicker, “Predicting tor path
compromise by exit port,” inProceedings of the 2nd IEEE
International Workshop on Information and Data Assurance
(WIDA), Phoenix, USA, December 2009.

[8] S. J. Murdoch and R. N. Watson, “Metrics for security
and performance in low-latency anonymity systems,” inPro-
ceedings of the 8th international symposium on Privacy
Enhancing Technologies, ser. PETS ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 115–132.

[9] T. G. Abbott, K. J. Lai, M. R. Lieberman, and E. C. Price,
“Browser-based attacks on tor,” inProceedings of the 7th
international conference on Privacy enhancing technologies,
ser. PET’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
184–199.

[10] N. Evans, R. Dingledine, and C. Grothoff, “A practical
congestion attack on tor using long paths,” inProceedings
of the 18th USENIX Security Symposium, August 2009.

[11] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker,
“Low-resource routing attacks against Tor,” inProceedings
of the Workshop on Privacy in the Electronic Society (WPES
2007), Washington, DC, USA, October 2007.

[12] Amazon Web Services, “Ec2: Elastic compute cloud,”
”aws.amazon.com/ec2”.

[13] I. Fette and A. Melnikov, “The websocket protocol (rfc
6455),” IETF Internet Draft, December 2011.

[14] R. Dingledine and N. Mathewson, “Tor path specification,”
”http://tor.eff.org/cvs/doc/path-spec.txt”.


