Enhanced Entity-Relationship

and UML Modeling

The Er modeling concepts discussed in Chapter 3 are sufficient for representing many
database schemas for “traditional” database applications, which mainly include data-
processing applications in business and industry. Since the late 1970s, however, designers
of database applications have tried to design more accurate database schemas that reflect
the data properties and constraints more precisely. This was particularly important for
newer applications of database technology, such as databases for engineering design and
manufacturing (CAD/CAM!), telecommunications, complex software systems, and Geo-
graphic Information Systems (GIS), among many other applications. These types of data-
bases have more complex requirements than do the more traditional applications. This
led to the development of additional semantic data modeling concepts that were incorpo-
rated into conceptual data models such as the ER model. Various semantic data models
have been proposed in the literature. Many of these concepts were also developed inde-
pendently in related areas of computer science, such as the knowledge representation
area of artificial intelligence and the object modeling area in software engineering.

In this chapter, we describe features that have been proposed for semantic data
models, and show how the ER model can be enhanced to include these concepts, leading
to the enhanced ER, or EER, model.? We start in Section 4.1 by incorporating the

1. CAD/CAM stands for computer-aided design/computer-aided manufacturing.
2. EER has also been used to stand for Extended ER model.

435

436

Chapter 4 Enhanced Entity-Relationship and uML Modeling

concepts of class/subclass relationships and type inheritance into the ER model. Then, in
Section 4.2, we add the concepts of specialization and generalization. Section 4.3 discusses
the various types of constraints on specialization/generalization, and Section 4.4 shows
how the UNION construct can be modeled by including the concept of category in the EER
model. Section 4.5 gives an example unIVErsiTY database schema in the EER model and
summarizes the EER model concepts by giving formal definitions.

We then present the UML class diagram notation and concepts for representing
specialization and generalization in Section 4.6, and briefly compare these with EER
notation and concepts. This is a continuation of Section 3.8, which presented basic UML
class diagram notation.

Section 4.7 discusses some of the more complex issues involved in modeling of
ternary and higher-degree relationships. In Section 4.8, we discuss the fundamental
abstractions that are used as the basis of many semantic data models. Section 4.9
summarizes the chapter.

For a detailed introduction to conceptual modeling, Chapter 4 should be considered
a continuation of Chapter 3. However, if only a basic introduction to ER modeling is
desired, this chapter may be omitted. Alternatively, the reader may choose to skip some
or all of the later sections of this chapter (Sections 4.4 through 4.8).

4.1 SUBCLASSES, SUPERCLASSES,
AND INHERITANCE

The EER (Enhanced ER) model includes all the modeling concepts of the ER model that
were presented in Chapter 3. In addition, it includes the concepts of subclass and super-
class and the related concepts of specialization and generalization (see Sections 4.2 and
4.3). Another concept included in the EER model is that of a category or union type (see
Section 4.4), which is used to represent a collection of objects that is the union of objects
of different entity types. Associated with these concepts is the important mechanism of
attribute and relationship inheritance. Unfortunately, no standard terminology exists for
these concepts, so we use the most common terminology. Alternative terminology is
given in footnotes. We also describe a diagrammatic technique for displaying these con-
cepts when they arise in an EER schema. We call the resulting schema diagrams enhanced
ER or EER diagrams.

The first EER model concept we take up is that of a subclass of an entity type. As we
discussed in Chapter 3, an entity type is used to represent both a type of entity and the
entity set or collection of entities of that type that exist in the database. For example, the
entity type eMpLOYEE describes the type (that is, the attributes and relationships) of each
employee entity, and also refers to the current set of EMPLOYEE entities in the company
database. In many cases an entity type has numerous subgroupings of its entities that are
meaningful and need to be represented explicitly because of their significance to the
database application. For example, the entities that are members of the EmpLOYEE entity
type may be grouped further into SECRETARY, ENGINEER, MANAGER, TECHNICIAN, SALARIED_EMPLOYEE,
HOURLY_EMPLOYEE, and so on. The set of entities in each of the latter groupings is a subset of

4.1 Subclasses, Superclasses, and Inheritance | 437

the entities that belong to the empLOYEE entity set, meaning that every entity that is a
member of one of these subgroupings is also an employee. We call each of these
subgroupings a subclass of the empLOYEE entity type, and the EMPLOYEE entity type is called
the superclass for each of these subclasses. Figure 4.1 shows how to diagramatically
represent these concepts in EER diagrams.

We call the relationship between a superclass and any one of its subclasses a
superclass/subclass or simply class/subclass relationship.’ In our previous example,
EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN are two class/subclass relationships. Notice that
a member entity of the subclass represents the same real-world entity as some member of
the superclass; for example, a SECRETARY entity ‘Joan Logano’ is also the EmpLOYEE ‘Joan
Logano’. Hence, the subclass member is the same as the entity in the superclass, but in a
distinct specific role. When we implement a superclass/subclass relationship in the

EDEETT T

EMPLOYEE

TypingSpeed ’

| SECRETARY | | TECHNICIAN | | ENGINEER MANAGER | | HoURLY EVPLOvEE |

| SALARIED_EMPLOYEE |

BELONGS_TO

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}

{MANAGER} PROJECT
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

FIGURE 4.1 EER diagram notation to represent subclasses and specialization

3. A class/subclass relationship is often called an IS-A (or IS-AN) relationship because of the way we
refer to the concept. We say “a SECRETARY is an EMPLOYEE,” “a TECHNICIAN is an EMPLOYEE,” and so on.

TRADE_UNION

438

Chapter 4 Enhanced Entity-Relationship and uML Modeling

database system, however, we may represent a member of the subclass as a distinct
database object—say, a distinct record that is related via the key attribute to its superclass
entity. In Section 7.2, we discuss various options for representing superclass/subclass
relationships in relational databases.

An entity cannot exist in the database merely by being a member of a subclass; it
must also be a member of the superclass. Such an entity can be included optionally as a
member of any number of subclasses. For example, a salaried employee who is also an
engineer belongs to the two subclasses ENGINEER and SALARIED_EMPLOYEE of the EMPLOYEE entity
type. However, it is not necessary that every entity in a superclass be a member of some
subclass.

An important concept associated with subclasses is that of type inheritance. Recall
that the type of an entity is defined by the attributes it possesses and the relationship types
in which it participates. Because an entity in the subclass represents the same real-world
entity from the superclass, it should possess values for its specific attributes as well as
values of its attributes as a member of the superclass. We say that an entity that is a
member of a subclass inherits all the attributes of the entity as a member of the superclass.
The entity also inherits all the relationships in which the superclass participates. Notice
that a subclass, with its own specific (or local) attributes and relationships together with
all the attributes and relationships it inherits from the superclass, can be considered an
entity type in its own right.*

4.2 SPECIALIZATION AND GENERALIZATION

4.2.1 Specialization

Specialization is the process of defining a set of subclasses of an entity type; this entity type
is called the superclass of the specialization. The set of subclasses that form a specializa-
tion is defined on the basis of some distinguishing characteristic of the entities in the
superclass. For example, the set of subclasses {SECRETARY, ENGINEER, TECHNICIAN} is a specializa-
tion of the superclass empLovee that distinguishes among employee entities based on the job
type of each employee entity. We may have several specializations of the same entity type
based on different distinguishing characteristics. For example, another specialization of
the EMPLOYEE entity type may yield the set of subclasses {SALARIED_EMPLOYEE, HOURLY_EMPLOYEE};
this specialization distinguishes among employees based on the method of pay.

Figure 4.1 shows how we represent a specialization diagrammatically in an EER
diagram. The subclasses that define a specialization are attached by lines to a circle that
represents the specialization, which is connected to the superclass. The subset symbol on
each line connecting a subclass to the circle indicates the direction of the superclass/
subclass relationship.” Attributes that apply only to entities of a particular subclass—such

4. In some object-oriented programming languages, a common restriction is that an entity (or
object) has only one type. This is generally too restrictive for conceptual database modeling.

5. There are many alternative notations for specialization; we present the UML notation in Section
4.6 and other proposed notations in Appendix A.

4.2 Specialization and Generalization

as TypingSpeed of secreTaARy—are attached to the rectangle representing that subclass.
These are called specific attributes (or local attributes) of the subclass. Similarly, a
subclass can participate in specific relationship types, such as the HOURLY_EmPLOYEE
subclass participating in the 8eLonNGs_To relationship in Figure 4.1. We will explain the d
symbol in the circles of Figure 4.1 and additional EER diagram notation shortly.

Figure 4.2 shows a few entity instances that belong to subclasses of the {SECRETARY, ENGINEER,
TECHNICIAN} specialization. Again, notice that an entity that belongs to a subclass represents the
same real-world entity as the entity connected to it in the empLOYEE superclass, even though the
same entity is shown twice; for example, e, is shown in both empLovee and secreTary in Figure
4.2. As this figure suggests, a superclass/subclass relationship such as EMPLOYEE/SECRETARY

SECRETARY

EMPLOYEE

ENGINEER

TECHNICIAN

FIGURE 4.2 Instances of a specialization

439

440

Chapter 4 Enhanced Entity-Relationship and uML Modeling

somewhat resembles a 1:1 relationship at the instance level (see Figure 3.12). The main
difference is that in a 1:1 relationship two distinct entities are related, whereas in a superclass/
subclass relationship the entity in the subclass is the same real-world entity as the entity in the
superclass but is playing a specialized role—for example, an empLovee specialized in the role of
SECRETARY, Or an EMPLOYEE specialized in the role of TECHNICIAN.

There are two main reasons for including class/subclass relationships and specializations
in a data model. The first is that certain attributes may apply to some but not all entities of
the superclass. A subclass is defined in order to group the entities to which these attributes
apply. The members of the subclass may still share the majority of their attributes with the
other members of the superclass. For example, in Figure 4.1 the secretary subclass has the
specific attribute TypingSpeed, whereas the enciNeer subclass has the specific attribute
EngType, but secreTarY and ENGINEER share their other inherited attributes from the empLovEE
entity type.

The second reason for using subclasses is that some relationship types may be
participated in only by entities that are members of the subclass. For example, if only
HOURLY_EMPLOYEEs can belong to a trade union, we can represent that fact by creating the
subclass HourLY_EmpLOYEE of empLoYEE and relating the subclass to an entity type TRADE_UNION
via the BELONGS_To relationship type, as illustrated in Figure 4.1.

In summary, the specialization process allows us to do the following:

e Define a set of subclasses of an entity type
e Establish additional specific attributes with each subclass

e Establish additional specific relationship types between each subclass and other
entity types or other subclasses

4.2.2 Generalization

We can think of a reverse process of abstraction in which we suppress the differences among
several entity types, identify their common features, and generalize them into a single super-
class of which the original entity types are special subclasses. For example, consider the entity
types cAR and TRuck shown in Figure 4.3a. Because they have several common attributes, they
can be generalized into the entity type VeHICLE, as shown in Figure 4.3b. Both caAr and TRuck are
now subclasses of the generalized superclass veHicLe. We use the term generalization to refer to
the process of defining a generalized entity type from the given entity types.

Notice that the generalization process can be viewed as being functionally the inverse
of the specialization process. Hence, in Figure 4.3 we can view {CAR, TRUCK} as a specialization
of VEHICLE, rather than viewing VEHICLE as a generalization of cAR and Truck. Similarly, in
Figure 4.1 we can view EMPLOYEE as a generalization of SECRETARY, TECHNICIAN, and ENGINEER. A
diagrammatic notation to distinguish between generalization and specialization is used in
some design methodologies. An arrow pointing to the generalized superclass represents a
generalization, whereas arrows pointing to the specialized subclasses represent a
specialization. We will not use this notation, because the decision as to which process is
more appropriate in a particular situation is often subjective. Appendix A gives some of the
suggested alternative diagrammatic notations for schema diagrams and class diagrams.

4.3 Constraints and Characteristics of Specialization and Generalization

@

NoOfPassengers
MaxSpeed

NoOfAxles

(b)

NoOfPassengers
MaxSpeed

FIGURE 4.3 Generalization. (a) Two entity types, car and Truck. (b) Generalizing car
and Truck into the superclass venicLe

NoOfAxles

So far we have introduced the concepts of subclasses and superclass/subclass relationships,
as well as the specialization and generalization processes. In general, a superclass or subclass
represents a collection of entities of the same type and hence also describes an entity type; that
is why superclasses and subclasses are shown in rectangles in EER diagrams, like entity types.
We next discuss in more detail the properties of specializations and generalizations.

4.3 CONSTRAINTS AND CHARACTERISTICS OF
SPECIALIZATION AND GENERALIZATION

We first discuss constraints that apply to a single specialization or a single generalization.
For brevity, our discussion refers only to specialization even though it applies to both spe-
cialization and generalization. We then discuss differences between specialization/gener-
alization lattices (multiple inheritance) and hierarchies (single inheritance), and elaborate on
the differences between the specialization and generalization processes during conceptual
database schema design.

441

442 | Chapter 4 Enhanced Entity-Relationship and uML Modeling

4.3.1 Constraints on Specialization and Generalization

In general, we may have several specializations defined on the same entity type (or super-
class), as shown in Figure 4.1. In such a case, entities may belong to subclasses in each of the
specializations. However, a specialization may also consist of a single subclass only, such as
the {MANAGER} specialization in Figure 4.1; in such a case, we do not use the circle notation.

In some specializations we can determine exactly the entities that will become
members of each subclass by placing a condition on the value of some attribute of the
superclass. Such subclasses are called predicate-defined (or condition-defined) subclasses.
For example, if the empLOYEE entity type has an attribute JobType, as shown in Figure 4.4, we
can specify the condition of membership in the secreTAry subclass by the condition
(JobType = ‘Secretary’), which we call the defining predicate of the subclass. This
condition is a constraint specifying that exactly those entities of the EMPLOYEE entity type
whose attribute value for JobType is ‘Secretary’ belong to the subclass. We display a
predicate-defined subclass by writing the predicate condition next to the line that
connects the subclass to the specialization circle.

If all subclasses in a specialization have their membership condition on the same
attribute of the superclass, the specialization itself is called an attribute-defined
specialization, and the attribute is called the defining attribute of the specialization.® We
display an attribute-defined specialization by placing the defining attribute name next to
the arc from the circle to the superclass, as shown in Figure 4.4.

EMPLOYEE

Job Type

“Secretary” “Engineer”

“Technician”
| SECRETARY | | TECHNICIAN | | ENGINEER |

FIGURE 4.4 EER diagram notation for an attribute-defined specialization on JobType

6. Such an attribute is called a discriminator in UML terminology.

4.3 Constraints and Characteristics of Specialization and Generalization

When we do not have a condition for determining membership in a subclass, the
subclass is called user-defined. Membership in such a subclass is determined by the
database users when they apply the operation to add an entity to the subclass; hence,
membership is specified individually for each entity by the user, not by any condition that may
be evaluated automatically.

Two other constraints may apply to a specialization. The first is the disjointness
constraint, which specifies that the subclasses of the specialization must be disjoint. This
means that an entity can be a member of at most one of the subclasses of the specialization.
A specialization that is attribute-defined implies the disjointness constraint if the
attribute used to define the membership predicate is single-valued. Figure 4.4 illustrates
this case, where the d in the circle stands for disjoint. We also use the d notation to specify
the constraint that user-defined subclasses of a specialization must be disjoint, as
illustrated by the specialization {HOURLY_EmPLOYEE, sALARIED_EmpLOYEE} in Figure 4.1. If the
subclasses are not constrained to be disjoint, their sets of entities may overlap; that is, the
same (real-world) entity may be a member of more than one subclass of the specialization.
This case, which is the default, is displayed by placing an o in the circle, as shown in
Figure 4.5.

The second constraint on specialization is called the completeness constraint, which
may be total or partial. A total specialization constraint specifies that every entity in the
superclass must be a member of at least one subclass in the specialization. For example, if
every EMPLOYEE must be either an HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the
specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} of Figure 4.1 is a total specialization of
empLoYEE. This is shown in EER diagrams by using a double line to connect the superclass to
the circle. A single line is used to display a partial specialization, which allows an entity
not to belong to any of the subclasses. For example, if some empLoYEE entities do not

G o

PART

ManufactureDate
BatchNo

’ MANUFACTURED_PART ‘ ’ PURCHASED_PART ‘

SupplierName

FIGURE 4.5 EER diagram notation for an overlapping (nondisjoint) specialization

443

444

Chapter 4 Enhanced Entity-Relationship and uML Modeling

belong to any of the subclasses {SECRETARY, ENGINEER, TECHNICIAN} of Figures 4.1 and 4.4, then
that specialization is partial.

Notice that the disjointness and completeness constraints are independent. Hence, we
have the following four possible constraints on specialization:

e Disjoint, total

e Disjoint, partial

e Overlapping, total
e Overlapping, partial

Of course, the correct constraint is determined from the real-world meaning that applies
to each specialization. In general, a superclass that was identified through the generaliza-
tion process usually is total, because the superclass is derived from the subclasses and hence
contains only the entities that are in the subclasses.

Certain insertion and deletion rules apply to specialization (and generalization) as a
consequence of the constraints specified earlier. Some of these rules are as follows:

¢ Deleting an entity from a superclass implies that it is automatically deleted from all
the subclasses to which it belongs.

e Inserting an entity in a superclass implies that the entity is mandatorily inserted in all
predicate-defined (or attribute-defined) subclasses for which the entity satisfies the
defining predicate.

e Inserting an entity in a superclass of a total specialization implies that the entity is
mandatorily inserted in at least one of the subclasses of the specialization.

The reader is encouraged to make a complete list of rules for insertions and deletions
for the various types of specializations.

4.3.2 Specialization and Generalization
Hierarchies and Lattices

A subclass itself may have further subclasses specified on it, forming a hierarchy or a lat-
tice of specializations. For example, in Figure 4.6 ENGINEER is a subclass of empLOYEE and is
also a superclass of ENGINEERING_MANAGER; this represents the real-world constraint that
every engineering manager is required to be an engineer. A specialization hierarchy has
the constraint that every subclass participates as a subclass in only one class/subclass rela-
tionship; that is, each subclass has only one parent, which results in a tree structure. In
contrast, for a specialization lattice, a subclass can be a subclass in more than one class/sub-
class relationship. Hence, Figure 4.6 is a lattice.

Figure 4.7 shows another specialization lattice of more than one level. This may be
part of a conceptual schema for a uNIversITY database. Notice that this arrangement would

7. The notation of using single or double lines is similar to that for partial or total participation of
an entity type in a relationship type, as described in Chapter 3.

4.3 Constraints and Characteristics of Specialization and Generalization

EMPLOYEE

SECRETARY | | TECHNICIAN | | ENGINEER | | MANAGER |

445

| HOURLY_EMPLOYEE

J | SALARIED_EMPLOYEE |

7

| ENGINEERING_MANAGER |

—

FIGURE 4.6 A specialization lattice with shared subclass ENGINEERING_MANAGER

have been a hierarchy except for the STUDENT_assiSTANT subclass, which is a subclass in two
distinct class/subclass relationships. In Figure 4.7, all person entities represented in the
database are members of the PersoN entity type, which is specialized into the subclasses
{empLOYEE, ALUMNUS, sTUDENT}. This specialization is overlapping; for example, an alumnus
may also be an employee and may also be a student pursuing an advanced degree. The
subclass sTUDENT is the superclass for the specialization {GRADUATE_STUDENT, UNDERGRADUATE_
sTupenT}, while empLovee is the superclass for the specialization {STUDENT_ASSISTANT, FACULTY,
sTAFF}. Notice that STUDENT_ASSISTANT is also a subclass of sTupent. Finally, STUDENT_ASSISTANT
is the superclass for the specialization into {RESEARCH_ASSISTANT, TEACHING_ASSISTANT}.

In such a specialization lattice or hierarchy, a subclass inherits the attributes not only
of its direct superclass but also of all its predecessor superclasses all the way to the root of the
hierarchy or lattice. For example, an entity in GRADUATE_STUDENT inherits all the attributes
of that entity as a STUDENT and as a PErsoN. Notice that an entity may exist in several leaf
nodes of the hierarchy, where a leaf node is a class that has no subclasses of its own. For
example, a member of GRADUATE_STUDENT may also be a member of RESEARCH_ASSISTANT.

A subclass with more than one superclass is called a shared subclass, such as ENGINEERING_
MANAGER in Figure 4.6. This leads to the concept known as multiple inheritance, where the
shared subclass ENGINEERING_MANAGER directly inherits attributes and relationships from
multiple classes. Notice that the existence of at least one shared subclass leads to a lattice
(and hence to multiple inheritance); if no shared subclasses existed, we would have a
hierarchy rather than a lattice. An important rule related to multiple inheritance can be
illustrated by the example of the shared subclass sTuDENT AssisTANT in Figure 4.7, which

446 | Chapter 4 Enhanced Entity-Relationship and uML Modeling

EMPLOYEE

| starF | | FAcuLTY |

PERSON

ALUMNUS

STUDENT_
ASSISTANT

MajorDept

STUDENT

STUDENT

GRADUATE_

UNDERGRADUATE _
STUDENT

RESEARCH_ASSISTANT |

| TEACHING_ASSISTANT

FIGURE 4.7 A specialization lattice with multiple inheritance for a universiTy database

4.3 Constraints and Characteristics of Specialization and Generalization

inherits attributes from both empLovee and stupbent. Here, both empLovee and sTupenT inherit
the same attributes from persoN. The rule states that if an attribute (or relationship)
originating in the same superclass (person) is inherited more than once via different paths
(empLovee and sTupenT) in the lattice, then it should be included only once in the shared
subclass (STUDENT_assisTANT). Hence, the attributes of Person are inherited only once in the
STUDENT_AsSISTANT subclass of Figure 4.7.

[t is important to note here that some models and languages do not allow multiple
inheritance (shared subclasses). In such a model, it is necessary to create additional
subclasses to cover all possible combinations of classes that may have some entity belong
to all these classes simultaneously. Hence, any overlapping specialization would require
multiple additional subclasses. For example, in the overlapping specialization of PERsON
into {empLOYEE, ALUMNUS, STUDENT} (or {E, A, s} for short), it would be necessary to create
seven subclasses of PERSON in order to cover all possible types of entities: E, A, s, E_A, E_S, A_S,
and e_A_s. Obviously, this can lead to extra complexity.

[t is also important to note that some inheritance mechanisms that allow multiple
inheritance do not allow an entity to have multiple types, and hence an entity can be a
member of only one class.® In such a model, it is also necessary to create additional shared
subclasses as leaf nodes to cover all possible combinations of classes that may have some
entity belong to all these classes simultaneously. Hence, we would require the same seven
subclasses of PERSON.

Although we have used specialization to illustrate our discussion, similar concepts
apply equally to generalization, as we mentioned at the beginning of this section. Hence,
we can also speak of generalization hierarchies and generalization lattices.

4.3.3 Utilizing Specialization and Generalization
in Refining Conceptual Schemas

We now elaborate on the differences between the specialization and generalization pro-
cesses, and how they are used to refine conceptual schemas during conceptual database
design. In the specialization process, we typically start with an entity type and then define
subclasses of the entity type by successive specialization; that is, we repeatedly define more
specific groupings of the entity type. For example, when designing the specialization lattice
in Figure 4.7, we may first specify an entity type PERSON for a university database. Then we
discover that three types of persons will be represented in the database: university employ-
ees, alumni, and students. We create the specialization {empLoYEE, ALuMNUS, STUDENT} for this
purpose and choose the overlapping constraint because a person may belong to more than
one of the subclasses. We then specialize empLoYEe further into {STAFF, FACULTY, STUDENT_
AssISTANT}, and specialize STUDENT into {GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}. Finally, we
specialize STUDENT_ASSISTANT into {RESEARCH_ASSISTANT, TEACHING_AsSISTANT}. This successive spe-
cialization corresponds to a top-down conceptual refinement process during conceptual

8. In some models, the class is further restricted to be a leaf node in the hierarchy or lattice.

447

448

Chapter 4 Enhanced Entity-Relationship and uML Modeling

schema design. So far, we have a hierarchy; we then realize that STUDENT_ASSISTANT is a
shared subclass, since it is also a subclass of sTupenT, leading to the lattice.

It is possible to arrive at the same hierarchy or lattice from the other direction. In such
a case, the process involves generalization rather than specialization and corresponds to a
bottom-up conceptual synthesis. In this case, designers may first discover entity types such
as STAFF, FACULTY, ALUMNUS, GRADUATE_STUDENT, UNDERGRADUATE_STUDENT, RESEARCH_ASSISTANT,
TEACHING_ASSISTANT, and so on; then they generalize {GRADUATE_STUDENT, UNDERGRADUATE_
STUDENT} into STUDENT; then they generalize {RESEARCH_ASSISTANT, TEACHING_ASSISTANT} into
STUDENT_ASSISTANT; then they generalize {STAFF, FACULTY, STUDENT_ASSISTANT} into EMPLOYEE; and
finally they generalize {EMPLOYEE, ALUMNUS, STUDENT} into PERSON.

In structural terms, hierarchies or lattices resulting from either process may be
identical; the only difference relates to the manner or order in which the schema
superclasses and subclasses were specified. In practice, it is likely that neither the
generalization process nor the specialization process is followed strictly, but that a
combination of the two processes is employed. In this case, new classes are continually
incorporated into a hierarchy or lattice as they become apparent to users and designers.
Notice that the notion of representing data and knowledge by using superclass/subclass
hierarchies and lattices is quite common in knowledge-based systems and expert system:s,
which combine database technology with artificial intelligence techniques. For example,
frame-based knowledge representation schemes closely resemble class hierarchies.
Specialization is also common in software engineering design methodologies that are
based on the object-oriented paradigm.

4.4 MODELING OF UNION TYPES
USING CATEGORIES

All of the superclass/subclass relationships we have seen thus far have a single superclass.
A shared subclass such as ENGINEERING_MANAGER in the lattice of Figure 4.6 is the subclass in
three distinct superclass/subclass relationships, where each of the three relationships has a
single superclass. It is not uncommon, however, that the need arises for modeling a single
superclass/subclass relationship with more than one superclass, where the superclasses rep-
resent different entity types. In this case, the subclass will represent a collection of objects
that is a subset of the UNION of distinct entity types; we call such a subclass a union type
or a (:ategory.9

For example, suppose that we have three entity types: PERSON, BANK, and company. In a
database for vehicle registration, an owner of a vehicle can be a person, a bank (holding a
lien on a vehicle), or a company. We need to create a class (collection of entities) that
includes entities of all three types to play the role of vehicle owner. A category owNer that
is a subclass of the UNION of the three entity sets of coMPANY, BANK, and PERSON is created for
this purpose. We display categories in an EER diagram as shown in Figure 4.8. The

9. Our use of the term category is based on the ECR (Entity-Category-Relationship) model (Elmasri
et al. 1985).

4.4 Modeling of UNION Types Using Categories

superclasses COMPANY, BANK, and PERSON are connected to the circle with the U symbol,
which stands for the set union operation. An arc with the subset symbol connects the circle
to the (subclass) owNer category. If a defining predicate is needed, it is displayed next to

BAddress

COMPANY

DriverLicenseNo

LienOrRegular

FIGURE 4.8 Two categories (union types): owNer and REGISTERED_VEHICLE

449

450

Chapter 4 Enhanced Entity-Relationship and uML Modeling

the line from the superclass to which the predicate applies. In Figure 4.8 we have two
categories: OWNER, which is a subclass of the union of PersoN, BANK, and compaNy; and
REGISTERED_VEHICLE, which is a subclass of the union of car and TrRuck.

A category has two or more superclasses that may represent distinct entity types,
whereas other superclass/subclass relationships always have a single superclass. We can
compare a category, such as owner in Figure 4.8, with the ENGINEERING_MANAGER shared
subclass of Figure 4.6. The latter is a subclass of each of the three superclasses ENGINEER,
MANAGER, and SALARIED_EMPLOYEE, so an entity that is a member of ENGINEERING_MANAGER must
exist in all three. This represents the constraint that an engineering manager must be an
ENGINEER, 2 MANAGER, and a SALARIED_EMPLOYEE; that is, ENGINEERING_MANAGER is a subset of the
intersection of the three subclasses (sets of entities). On the other hand, a category is a
subset of the union of its superclasses. Hence, an entity that is a member of ownErR must
exist in only one of the superclasses. This represents the constraint that an owner may be a
COMPANY, a BANK, or a PERSON in Figure 4.8.

Attribute inheritance works more selectively in the case of categories. For example,
in Figure 4.8 each owner entity inherits the attributes of a company, a PERSON, or a BANK,
depending on the superclass to which the entity belongs. On the other hand, a shared
subclass such as EeNGINEERING_MANAGER (Figure 4.6) inherits all the attributes of its
superclasses SALARIED_EMPLOYEE, ENGINEER, and MANAGER.

[t is interesting to note the difference between the category REGISTERED_VEHICLE
(Figure 4.8) and the generalized superclass veHicie (Figure 4.3b). In Figure 4.3b, every
car and every truck is a veHicLg; but in Figure 4.8, the ReGISTERED_VEHICLE category includes
some cars and some trucks but not necessarily all of them (for example, some cars or
trucks may not be registered). In general, a specialization or generalization such as that
in Figure 4.3b, if it were partial, would not preclude veHicLE from containing other types
of entities, such as motorcycles. However, a category such as REGISTERED_VEHICLE in Figure
4.8 implies that only cars and trucks, but not other types of entities, can be members of
REGISTERED_VEHICLE.

A category can be total or partial. A total category holds the union of all entities in
its superclasses, whereas a partial category can hold a subset of the union. A total category
is represented by a double line connecting the category and the circle, whereas partial
categories are indicated by a single line.

The superclasses of a category may have different key attributes, as demonstrated by
the owNer category of Figure 4.8, or they may have the same key attribute, as demonstrated
by the ReGISTERED_VEHICLE category. Notice that if a category is total (not partial), it may be
represented alternatively as a total specialization (or a total generalization). In this case
the choice of which representation to use is subjective. If the two classes represent the
same type of entities and share numerous attributes, including the same key attributes,
specialization/generalization is preferred; otherwise, categorization (union type) is more
appropriate.

4.5 An Example UNIVERSITY EER Schema and Formal Definitions for the EER Model

4.5 AN EXAMPLE UNIVERSITY EER SCHEMA AND
FORMAL DEFINITIONS FOR THE EER MODEL

In this section, we first give an example of a database schema in the EER model to illus-
trate the use of the various concepts discussed here and in Chapter 3. Then, we summa-
rize the EER model concepts and define them formally in the same manner in which we
formally defined the concepts of the basic ER model in Chapter 3.

4.5.1 The UNIVERSITY Database Example

For our example database application, consider a universiTY database that keeps track of
students and their majors, transcripts, and registration as well as of the university’s course
offerings. The database also keeps track of the sponsored research projects of faculty and
graduate students. This schema is shown in Figure 4.9. A discussion of the requirements
that led to this schema follows.

For each person, the database maintains information on the person’s Name [Name],
social security number [Ssn], address [Address], sex [Sex], and birth date [BDate]. Two
subclasses of the persoN entity type were identified: FacuLTY and sTUDENT. Specific attributes
of FacuLTY are rank [Rank] (assistant, associate, adjunct, research, visiting, etc.), office
[FOffice], office phone [FPhone], and salary [Salary]. All faculty members are related to
the academic department(s) with which they are affiliated [BeLonGs] (a faculty member
can be associated with several departments, so the relationship is M:N). A specific
attribute of sTUDENT is [Class] (freshman = 1, sophomore = 2, . . ., graduate student = 5).
Each student is also related to his or her major and minor departments, if known ([MajoRr]
and [mINOR]), to the course sections he or she is currently attending [rReGisTERED], and to the
courses completed [TrRanscripT]. Each transcript instance includes the grade the student
received [Grade] in the course section.

GRAD_STUDENT is a subclass of sTupenT, with the defining predicate Class = 5. For each
graduate student, we keep a list of previous degrees in a composite, multivalued attribute
[Degrees]. We also relate the graduate student to a faculty advisor [Abvisor] and to a thesis
committee [comMmITTEE], if one exists.

An academic department has the attributes name [DName], telephone [DPhone],
and office number [Office] and is related to the faculty member who is its chairperson
[cHaIrs] and to the college to which it belongs [cp]. Each college has attributes college
name [CName], office number [COffice], and the name of its dean [Dean].

A course has attributes course number [C#], course name [Cname], and course
description [CDesc]. Several sections of each course are offered, with each section having
the attributes section number [Sec#] and the year and quarter in which the section was
offered ([Year] and [Qtr]).!° Section numbers uniquely identify each section. The sections
being offered during the current quarter are in a subclass CURRENT_SECTION of SECTION, with

10. We assume that the quarter system rather than the semester system is used in this university.

451

452 | Chapter 4 Enhanced Entity-Relationship and uML Modeling

o (o > () @ () (IEDEDEEED

(Name) PERSON

Address

@ FACULTY

STUDENT
Class=5

GRAD_STUDENT |

1

1

:
CHAIRS N a

CURRENT_SECTION

M
TRANSCRIPT
| N

DEPARTMENT |

CEICECD

FIGURE 4.9 An EER conceptual schema for a universiTy database

Qtr:C:;rdent Qtr (W

Year=Current Year

()
SECTION @
<D

DC N COURSE

4.5 An Example UNIVERSITY EER Schema and Formal Definitions for the EER Model

the defining predicate Qtr = CurrentQtr and Year = CurrentYear. Each section is related
to the instructor who taught or is teaching it ([TeacH]), if that instructor is in the database.

The category INSTRUCTOR_RESEARCHER is a subset of the union of FacuLTY and GRAD_
sTUDeNT and includes all faculty, as well as graduate students who are supported by
teaching or research. Finally, the entity type GRANT keeps track of research grants and
contracts awarded to the university. Each grant has attributes grant title [Title], grant
number [No], the awarding agency [Agency], and the starting date [StDate]. A grant is
related to one principal investigator [pi] and to all researchers it supports [supporT]. Each
instance of support has as attributes the starting date of support [Start], the ending date of
the support (if known) [End], and the percentage of time being spent on the project
[Time] by the researcher being supported.

4.5.2 Formal Definitions for the EER Model Concepts

We now summarize the EER model concepts and give formal definitions. A class'! is a set
or collection of entities; this includes any of the EER schema constructs that group enti-
ties, such as entity types, subclasses, superclasses, and categories. A subclass S is a class
whose entities must always be a subset of the entities in another class, called the super-
class C of the superclass/subclass (or 1S-A) relationship. We denote such a relationship
by C/S. For such a superclass/subclass relationship, we must always have

SccC

A specialization Z = {S, S,, . . ., S, } is a set of subclasses that have the same superclass
G; that is, GfS; is a superclass/subclass relationship for i = 1, 2, . . ., n. G is called a
generalized entity type (or the superclass of the specialization, or a generalization of the
subclasses {S;, S,, . . ., S,}). Z is said to be total if we always (at any point in time) have

»En

Otherwise, Z is said to be partial. Z is said to be disjoint if we always have
SN Sj = (J (empty set) fori # j

Otherwise, Z is said to be overlapping.

A subclass S of C is said to be predicate-defined if a predicate p on the attributes of C
is used to specify which entities in C are members of S; that is, S = C[p], where C[p] is the
set of entities in C that satisfy p. A subclass that is not defined by a predicate is called
user-defined.

11. The use of the word class here differs from its more common use in object-oriented programming
languages such as C++. In C++, a class is a structured type definition along with its applicable func-
tions (operations).

453

454

Chapter 4 Enhanced Entity-Relationship and uML Modeling

A specialization Z (or generalization G) is said to be attribute-defined if a predicate
(A =¢,), where A is an attribute of G and ¢; is a constant value from the domain of A, is
used to specify membership in each subclass S; in Z. Notice that if ¢; # ¢; for i # j, and A is
a single-valued attribute, then the specialization will be disjoint.

A category T is a class that is a subset of the union of n defining superclasses Dy, D,, . . .,
D,,n> 1, and is formally specified as follows:

TC(D,UD,..UD,)

A predicate p; on the attributes of D; can be used to specify the members of each D,
that are members of T. If a predicate is specified on every D,, we get

T = (Dq[py] U Dy[py] ... UD,[p.])

We should now extend the definition of relationship type given in Chapter 3 by
allowing any class—not only any entity type—to participate in a relationship. Hence, we
should replace the words entity type with class in that definition. The graphical notation of
EER is consistent with ER because all classes are represented by rectangles.

4.6 REPRESENTING SPECIALIZATION/
GENERALIZATION AND INHERITANCE
IN UML CLASS DIAGRAMS

We now discuss the UML notation for generalization/specialization and inheritance. We
already presented basic UML class diagram notation and terminology in Section 3.8. Fig-
ure 4.10 illustrates a possible UML class diagram corresponding to the EER diagram in Fig-
ure 4.7. The basic notation for generalization is to connect the subclasses by vertical lines
to a horizontal line, which has a triangle connecting the horizontal line through another
vertical line to the superclass (see Figure 4.10). A blank triangle indicates a specializa-
tion/generalization with the disjoint constraint, and a filled triangle indicates an overlap-
ping constraint. The root superclass is called the base class, and leaf nodes are called leaf
classes. Both single and multiple inheritance are permitted.

The above discussion and example give a brief overview of UML class diagrams and
terminology. There are many details that we have not discussed because they are outside
the scope of this book and are mainly relevant to software engineering. For example,
classes can be of various types:

e Abstract classes define attributes and operations but do not have objects correspond-
ing to those classes. These are mainly used to specify a set of attributes and operations
that can be inherited.

e Concrete classes can have objects (entities) instantiated to belong to the class.

e Template classes specify a template that can be further used to define other classes.

4.7 Relationship Types of Degree Higher Than Two | 455

PERSON

Name
Ssn
BirthDate
Sex
Address

age

| = |

EMPLOYEE ALUMNUS DEGREE STUDENT
Salary Year MajorDept

- 1 *| Degree -
hire_emp new_alumnus K>—— Major change_major

B =

l |

STAFF FACULTY || STUDENT_ASSISTANT| [GRADUATE_STUDENT| [UNDERGRADUATE_STUDENT
Position Rank PercentTime DegreeProgram Class

hire_staff | | promote hire_student change_degree_program | | change_classification
RESEARCH__ASSISTANT] TEACHING_ASSISTANT

Project Course

change__project assign_to_course

FIGURE 4.10 A uML class diagram corresponding to the EER diagram in Figure 4.7, illustrating UML
notation for specialization/generalization

In database design, we are mainly concerned with specifying concrete classes whose
collections of objects are permanently (or persistently) stored in the database. The
bibliographic notes at the end of this chapter give some references to books that describe
complete details of UML. Additional material related to UML is covered in Chapter 12,
and object modeling in general is further discussed in Chapter 20.

4.7 RELATIONSHIP TYPES OF DEGREE
HIGHER THAN TWO

In Section 3.4.2 we defined the degree of a relationship type as the number of participat-
ing entity types and called a relationship type of degree two binary and a relationship type
of degree three ternary. In this section, we elaborate on the differences between binary

456

Chapter 4 Enhanced Entity-Relationship and uML Modeling

and higher-degree relationships, when to choose higher-degree or binary relationships,
and constraints on higher-degree relationships.

4.7.1 Choosing between Binary and Ternary
(or Higher-Degree) Relationships

The ER diagram notation for a ternary relationship type is shown in Figure 4.11a, which
displays the schema for the suppLy relationship type that was displayed at the instance
level in Figure 3.10. Recall that the relationship set of suppLy is a set of relationship
instances (s, j, p), where s is a suppLiER who is currently supplying a PART p to a PROJECT j. In
general, a relationship type R of degree n will have n edges in an ER diagram, one con-
necting R to each participating entity type.

Figure 4.11b shows an ER diagram for the three binary relationship types can_suppLy,
uses, and suppLies. In general, a ternary relationship type represents different information
than do three binary relationship types. Consider the three binary relationship types can_
SUPPLY, USES, and suppLIES. Suppose that CAN_SUPPLY, between suppLiER and PART, includes an
instance (s, p) whenever supplier s can supply part p (to any project); uses, between PROJECT
and pARrT, includes an instance (j, p) whenever project j uses part p; and suppLiEs, between
suppLIER and PROJECT, includes an instance (s, j) whenever supplier s supplies some part to
project j. The existence of three relationship instances (s, p), (j, p), and (s, j) in CAN_SupPLY,
uses, and suppLIES, respectively, does not necessarily imply that an instance (s, j, p) exists in
the ternary relationship suppLy, because the meaning is different. It is often tricky to decide
whether a particular relationship should be represented as a relationship type of degree n
or should be broken down into several relationship types of smaller degrees. The designer
must base this decision on the semantics or meaning of the particular situation being
represented. The typical solution is to include the ternary relationship plus one or more of
the binary relationships, if they represent different meanings and if all are needed by the
application.

Some database design tools are based on variations of the ER model that permit only
binary relationships. In this case, a ternary relationship such as suppLY must be represented
as a weak entity type, with no partial key and with three identifying relationships. The
three participating entity types SUPPLIER, PART, and PROJECT are together the owner entity
types (see Figure 4.11c). Hence, an entity in the weak entity type suppLy of Figure 4.11c is
identified by the combination of its three owner entities from SUPPLIER, PART, and PROJECT.

Another example is shown in Figure 4.12. The ternary relationship type oFfers
represents information on instructors offering courses during particular semesters; hence
it includes a relationship instance (i, s, c) whenever INSTRUCTOR i offers courst ¢ during
semesTER s. The three binary relationship types shown in Figure 4.12 have the following
meanings: CAN_TEACH relates a course to the instructors who can teach that course, TAUGHT_
DURING relates a semester to the instructors who taught some course during that semester,
and OFFERED_DURING relates a semester to the courses offered during that semester by any
instructor. These ternary and binary relationships represent different information, but
certain constraints should hold among the relationships. For example, a relationship
instance (i, s, ¢) should not exist in ofrers unless an instance (i, s) exists in TAUGHT_DURING,

4.7 Relationship Types of Degree Higher Than Two | 457

@
@ ProjName

SUPPLIER SUPPLY PROJECT

PART
ProjName

M

N
SUPPLIES PROJECT

SUPPLIER

©
ProjName

PROJECT

|

PART

FIGURE 4.11 Ternary relationship types. (a) The suppLy relationship. (b) Three binary relationships not
equivalent to suppLy. (c) suppLy represented as a weak entity type.

458 | Chapter 4 Enhanced Entity-Relationship and uML Modeling

TAUGHT_DURING @ @

INSTRUCTOR

OFFERS SEMESTER

CAN_TEACH

OFFERED_DURING

COURSE

FIGURE 4.12 Another example of ternary versus binary relationship types

an instance (s, ¢) exists in OFFERED_DURING, and an instance (i, ¢) exists in CAN_TEACH.
However, the reverse is not always true; we may have instances (i, s), (s, c), and (i, ¢) in
the three binary relationship types with no corresponding instance (i, s, c¢) in offers. Note
that in this example, based on the meanings of the relationships, we can infer the
instances of TAUGHT_DURING and OFFERED_DURING from the instances in offers, but we cannot
infer the instances of cAN_TEACH; therefore, TAUGHT_DURING and OFFERED_DURING are redundant
and can be left out.

Although in general three binary relationships cannot replace a ternary relationship,
they may do so under certain additional constraints. In our example, if the CAN_TEACH
relationship is 1:1 (an instructor can teach one course, and a course can be taught by only
one instructor), then the ternary relationship offers can be left out because it can be
inferred from the three binary relationships CAN_TEACH, TAUGHT_DURING, and OFFERED_DURING.
The schema designer must analyze the meaning of each specific situation to decide which
of the binary and ternary relationship types are needed.

Notice that it is possible to have a weak entity type with a ternary (or n-ary)
identifying relationship type. In this case, the weak entity type can have several owner
entity types. An example is shown in Figure 4.13.

4.7.2 Constraints on Ternary (or Higher-Degree)
Relationships
There are two notations for specifying structural constraints on n-ary relationships, and

they specify different constraints. They should thus both be used if it is important to fully
specify the structural constraints on a ternary or higher-degree relationship. The first

4.7 Relationship Types of Degree Higher Than Two | 459

COMPANY

CANDIDATE

Department

INTERVIEW JOB_OFFER

FIGURE 4.13 A weak entity type INTerview with a ternary identifying relationship type

notation is based on the cardinality ratio notation of binary relationships displayed in Fig-
ure 3.2. Here, a 1, M, or N is specified on each participation arc (both M and N symbols
stand for many or any number).!? Let us illustrate this constraint using the suppLy relation-
ship in Figure 4.11.

Recall that the relationship set of suppLy is a set of relationship instances (s, j, p),
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint exists that for
a particular project-part combination, only one supplier will be used (only one supplier
supplies a particular part to a particular project). In this case, we place 1 on the suppLIER
participation, and M, N on the proJecT, PART participations in Figure 4.11. This specifies
the constraint that a particular (j, p) combination can appear at most once in the
relationship set because each such (project, part) combination uniquely determines a
single supplier. Hence, any relationship instance (s, j, p) is uniquely identified in the
relationship set by its (j, p) combination, which makes (j, p) a key for the relationship set.
In this notation, the participations that have a one specified on them are not required to
be part of the identifying key for the relationship set.!?

The second notation is based on the (min, max) notation displayed in Figure 3.15 for
binary relationships. A (min, max) on a participation here specifies that each entity is
related to at least min and at most max relationship instances in the relationship set.
These constraints have no bearing on determining the key of an n-ary relationship, where
n > 2, but specify a different type of constraint that places restrictions on how many
relationship instances each entity can participate in.

12. This notation allows us to determine the key of the relationship relation, as we discuss in Chapter 7.
13. This is also true for cardinality ratios of binary relationships.

14. The (min, max) constraints can determine the keys for binary relationships, though.

460 | Chapter 4 Enhanced Entity-Relationship and uML Modeling

4.8 DATA ABSTRACTION, KNOWLEDGE
REPRESENTATION, AND ONTOLOGY CONCEPTS

In this section we discuss in abstract terms some of the modeling concepts that we
described quite specifically in our presentation of the ER and EER models in Chapter 3 and
earlier in this chapter. This terminology is used both in conceptual data modeling and in
artificial intelligence literature when discussing knowledge representation (abbreviated
as KR). The goal of KR techniques is to develop concepts for accurately modeling some
domain of knowledge by creating an ontology!® that describes the concepts of the
domain. This is then used to store and manipulate knowledge for drawing inferences,
making decisions, or just answering questions. The goals of KR are similar to those of
semantic data models, but there are some important similarities and differences between
the two disciplines:

® Both disciplines use an abstraction process to identify common properties and impor-
tant aspects of objects in the miniworld (domain of discourse) while suppressing
insignificant differences and unimportant details.

¢ Both disciplines provide concepts, constraints, operations, and languages for defining
data and representing knowledge.

® KR is generally broader in scope than semantic data models. Different forms of knowl-
edge, such as rules (used in inference, deduction, and search), incomplete and default
knowledge, and temporal and spatial knowledge, are represented in KR schemes. Data-
base models are being expanded to include some of these concepts (see Chapter 24).

® KR schemes include reasoning mechanisms that deduce additional facts from the
facts stored in a database. Hence, whereas most current database systems are limited
to answering direct queries, knowledge-based systems using KR schemes can answer
queries that involve inferences over the stored data. Database technology is being
extended with inference mechanisms (see Chapter 24).

® Whereas most data models concentrate on the representation of database schemas,
or meta-knowledge, KR schemes often mix up the schemas with the instances them-
selves in order to provide flexibility in representing exceptions. This often results in
inefficiencies when these KR schemes are implemented, especially when compared
with databases and when a large amount of data (or facts) needs to be stored.

In this section we discuss four abstraction concepts that are used in both semantic
data models, such as the EER model, and KR schemes: (1) classification and instantiation,
(2) identification, (3) specialization and generalization, and (4) aggregation and
association. The paired concepts of classification and instantiation are inverses of one
another, as are generalization and specialization. The concepts of aggregation and
association are also related. We discuss these abstract concepts and their relation to the
concrete representations used in the EER model to clarify the data abstraction process and

15. An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and
exceptions.

4.8 Data Abstraction, Knowledge Representation, and Ontology Concepts

to improve our understanding of the related process of conceptual schema design. We
close the section with a brief discussion of the term ontology, which is being used widely in
recent knowledge representation research.

4.8.1 Classification and Instantiation

The process of classification involves systematically assigning similar objects/entities to
object classes/entity types. We can now describe (in DB) or reason about (in KR) the
classes rather than the individual objects. Collections of objects share the same types of
attributes, relationships, and constraints, and by classifying objects we simplify the pro-
cess of discovering their properties. Instantiation is the inverse of classification and refers
to the generation and specific examination of distinct objects of a class. Hence, an object
instance is related to its object class by the I1S-AN-INSTANCE-OF or 1S-AN-MEMBER-OF
relationship. Although UML diagrams do not display instances, the UML diagrams allow a
form of instantiation by permitting the display of individual objects. We did not describe
this feature in our introduction to UML.

In general, the objects of a class should have a similar type structure. However, some
objects may display properties that differ in some respects from the other objects of the
class; these exception objects also need to be modeled, and KR schemes allow more varied
exceptions than do database models. In addition, certain properties apply to the class as a
whole and not to the individual objects; KR schemes allow such class properties. UML
diagrams also allow specification of class properties.

In the EER model, entities are classified into entity types according to their basic
attributes and relationships. Entities are further classified into subclasses and categories
based on additional similarities and differences (exceptions) among them. Relationship
instances are classified into relationship types. Hence, entity types, subclasses, categories,
and relationship types are the different types of classes in the EER model. The EER model
does not provide explicitly for class properties, but it may be extended to do so. In UML,
objects are classified into classes, and it is possible to display both class properties and
individual objects.

Knowledge representation models allow multiple classification schemes in which one
class is an instance of another class (called a meta-class). Notice that this cannot be
represented directly in the EER model, because we have only two levels—classes and
instances. The only relationship among classes in the EER model is a superclass/subclass
relationship, whereas in some KR schemes an additional class/instance relationship can be
represented directly in a class hierarchy. An instance may itself be another class, allowing
multiple-level classification schemes.

4.8.2 Identification

Identification is the abstraction process whereby classes and objects are made uniquely
identifiable by means of some identifier. For example, a class name uniquely identifies a
whole class. An additional mechanism is necessary for telling distinct object instances

461

462

Chapter 4 Enhanced Entity-Relationship and uML Modeling

apart by means of object identifiers. Moreover, it is necessary to identify multiple manifes-
tations in the database of the same real-world object. For example, we may have a tuple
<Matthew Clarke, 610618, 376-9821> in a persoN relation and another tuple <301-54-
0836, CS, 3.8> in a STUDENT relation that happen to represent the same real-world entity.
There is no way to identify the fact that these two database objects (tuples) represent the
same real-world entity unless we make a provision at design time for appropriate cross-
referencing to supply this identification. Hence, identification is needed at two levels:

e To distinguish among database objects and classes

¢ To identify database objects and to relate them to their real-world counterparts

In the EER model, identification of schema constructs is based on a system of unique
names for the constructs. For example, every class in an EER schema—whether it is an
entity type, a subclass, a category, or a relationship type—must have a distinct name. The
names of attributes of a given class must also be distinct. Rules for unambiguously
identifying attribute name references in a specialization or generalization lattice or
hierarchy are needed as well.

At the object level, the values of key attributes are used to distinguish among entities
of a particular entity type. For weak entity types, entities are identified by a combination
of their own partial key values and the entities they are related to in the owner entity
type(s). Relationship instances are identified by some combination of the entities that
they relate, depending on the cardinality ratio specified.

4.8.3 Specialization and Generalization

Specialization is the process of classifying a class of objects into more specialized sub-
classes. Generalization is the inverse process of generalizing several classes into a higher-
level abstract class that includes the objects in all these classes. Specialization is concep-
tual refinement, whereas generalization is conceptual synthesis. Subclasses are used in the
EER model to represent specialization and generalization. We call the relationship
between a subclass and its superclass an 1S-A-SUBCLASS-OF relationship, or simply an 1S-A
relationship.

4.8.4 Aggregation and Association

Aggregation is an abstraction concept for building composite objects from their compo-
nent objects. There are three cases where this concept can be related to the EER model.
The first case is the situation in which we aggregate attribute values of an object to form
the whole object. The second case is when we represent an aggregation relationship as an
ordinary relationship. The third case, which the EER model does not provide for
explicitly, involves the possibility of combining objects that are related by a particular
relationship instance into a higher-level aggregate object. This is sometimes useful when the
higher-level aggregate object is itself to be related to another object. We call the relation-

4.8 Data Abstraction, Knowledge Representation, and Ontology Concepts

ship between the primitive objects and their aggregate object IS-A-PART-OF; the inverse
is called 1S-A-COMPONENT-OF. UML provides for all three types of aggregation.

The abstraction of association is used to associate objects from several independent
classes. Hence, it is somewhat similar to the second use of aggregation. It is represented in
the EER model by relationship types, and in UML by associations. This abstract
relationship is called 1S-ASSOCIATED-WITH.

In order to understand the different uses of aggregation better, consider the ER
schema shown in Figure 4.14a, which stores information about interviews by job
applicants to various companies. The class company is an aggregation of the attributes (or
component objects) CName (company name) and CAddress (company address), whereas
JOB_APPLICANT is an aggregate of Ssn, Name, Address, and Phone. The relationship
attributes ContactName and ContactPhone represent the name and phone number of
the person in the company who is responsible for the interview. Suppose that some
interviews result in job offers, whereas others do not. We would like to treat INTERVIEW as a
class to associate it with jos_orrer. The schema shown in Figure 4.14b is incorrect because
it requires each interview relationship instance to have a job offer. The schema shown in
Figure 4.14c is not allowed, because the ER model does not allow relationships among
relationships (although UML does).

One way to represent this situation is to create a higher-level aggregate class composed
of COMPANY, JoB_APPLICANT, and INTERVIEW and to relate this class to JoB_oFFeR, as shown in Figure
4.14d. Although the EER model as described in this book does not have this facility, some
semantic data models do allow it and call the resulting object a composite or molecular
object. Other models treat entity types and relationship types uniformly and hence permit
relationships among relationships, as illustrated in Figure 4.14c.

To represent this situation correctly in the ER model as described here, we need to
create a new weak entity type INTERVIEW, as shown in Figure 4.14e, and relate it to joB_OFFER.
Hence, we can always represent these situations correctly in the ER model by creating
additional entity types, although it may be conceptually more desirable to allow direct
representation of aggregation, as in Figure 4.14d, or to allow relationships among
relationships, as in Figure 4.14c.

The main structural distinction between aggregation and association is that when an
association instance is deleted, the participating objects may continue to exist. However,
if we support the notion of an aggregate object—for example, a car that is made up of
objects ENGINE, cHAssis, and TIRes—then deleting the aggregate cArR object amounts to
deleting all its component objects.

4.8.5 Ontologies and the Semantic Web

In recent years, the amount of computerized data and information available on the Web
has spiraled out of control. Many different models and formats are used. In addition to the
database models that we present in this book, much information is stored in the form of
documents, which have considerably less structure than database information does. One
research project that is attempting to allow information exchange among computers on
the Web is called the Semantic Web, which attempts to create knowledge representation

463

464 | Chapter 4 Enhanced Entity-Relationship and uML Modeling

=R

JOB_APPLICANT _ |

@

JOB_APPLICANT |

© JOB_APPLICANT |

@

COMPANY @ JOB_APPLICANT

JOB_OFFER

FIGURE 4.14 Aggregation. (a) The relationship type nTerview. (b) Including jos_oFrer
in a ternary relationship type (incorrect). (c) Having the resuLts_in relationship partic-
ipate in other relationships (generally not allowed in ER). (d) Using aggregation and a
composite (molecular) object (generally not allowed in ER). (e) Correct representa-
tion in ER.

4.9 Summary

models that are quite general in order to to allow meaningful information exchange and
search among machines. The concept of ontology is considered to be the most promising
basis for achieving the goals of the Semantic Web, and is closely related to knowledge rep-
resentation. In this section, we give a brief introduction to what an ontology is and how it
can be used as a basis to automate information understanding, search, and exchange.

The study of ontologies attempts to describe the structures and relationships that are
possible in reality through some common vocabulary, and so it can be considered as a way
to describe the knowledge of a certain community about reality. Ontology originated in
the fields of philosophy and metaphysics. One commonly used definition of ontology is “a
specification of a conceptualization.”'®

In this definition, a conceptualization is the set of concepts that are used to represent
the part of reality or knowledge that is of interest to a community of users. Specification
refers to the language and vocabulary terms that are used to specify the conceptualization.
The ontology includes both specification and conceptualization. For example, the same
conceptualization may be specified in two different languages, giving two separate
ontologies. Based on this quite general definition, there is no consensus on what exactly an
ontology is. Some possible techniques to describe ontologies that have been mentioned are
as follows:

e A thesaurus (or even a dictionary or a glossary of terms) describes the relationships
between words (vocabulary) that represent various concepts.

e A taxonomy describes how concepts of a particular area of knowledge are related
using structures similar to those used in a specialization or generalization.

® A detailed database schema is considered by some to be an ontology that describes
the concepts (entities and attributes) and relationships of a miniworld from reality.

¢ A logical theory uses concepts from mathematical logic to try to define concepts and
their interrelationships.

Usually the concepts used to describe ontologies are quite similar to the concepts we
discussed in conceptual modeling, such as entities, attributes, relationships, specializations,
and so on. The main difference between an ontology and, say, a database schema is that
the schema is usually limited to describing a small subset of a miniworld from reality in
order to store and manage data. An ontology is usually considered to be more general in
that it should attempt to describe a part of reality as completely as possible.

4.9 SUMMARY

In this chapter we first discussed extensions to the ER model that improve its representa-
tional capabilities. We called the resulting model the enhanced ER or EER model. The con-
cept of a subclass and its superclass and the related mechanism of attribute/relationship
inheritance were presented. We saw how it is sometimes necessary to create additional

16. This definition is given in Gruber (1995).

465

466

Chapter 4 Enhanced Entity-Relationship and uML Modeling

classes of entities, either because of additional specific attributes or because of specific rela-
tionship types. We discussed two main processes for defining superclass/subclass hierarchies
and lattices: specialization and generalization.

We then showed how to display these new constructs in an EER diagram. We also
discussed the various types of constraints that may apply to specialization or generalization.
The two main constraints are total/partial and disjoint/overlapping. In addition, a defining
predicate for a subclass or a defining attribute for a specialization may be specified. We
discussed the differences between user-defined and predicate-defined subclasses and
between user-defined and attribute-defined specializations. Finally, we discussed the
concept of a category or union type, which is a subset of the union of two or more classes,
and we gave formal definitions of all the concepts presented.

We then introduced some of the notation and terminology of UML for representing
specialization and generalization. We also discussed some of the issues concerning the
difference between binary and higher-degree relationships, under which circumstances each
should be used when designing a conceptual schema, and how different types of constraints
on n-ary relationships may be specified. In Section 4.8 we discussed briefly the discipline of
knowledge representation and how it is related to semantic data modeling. We also gave an
overview and summary of the types of abstract data representation concepts: classification
and instantiation, identification, specialization and generalization, and aggregation and
association. We saw how EER and UML concepts are related to each of these.

Review Questions

4.1. What is a subclass? When is a subclass needed in data modeling?

4.2. Define the following terms: superclass of a subclass, superclass/subclass relationship,
is-a relationship, specialization, generalization, category, specific (local) attributes, spe-
cific relationships.

4.3. Discuss the mechanism of attribute/relationship inheritance. Why is it useful?

4.4. Discuss user-defined and predicate-defined subclasses, and identify the differences
between the two.

4.5. Discuss user-defined and attribute-defined specializations, and identify the differ-
ences between the two.

4.6. Discuss the two main types of constraints on specializations and generalizations.

4.7. What is the difference between a specialization hierarchy and a specialization
lattice?

4.8. What is the difference between specialization and generalization? Why do we not
display this difference in schema diagrams?

4.9. How does a category differ from a regular shared subclass? What is a category used
for? Illustrate your answer with examples.

4.10. For each of the following UML terms (see Sections 3.8 and 4.6), discuss the corre-
sponding term in the EER model, if any: object, class, association, aggregation, gener-
alization, multiplicity, attributes, discriminator, link, link attribute, reflexive association,
qualified association.

4.11. Discuss the main differences between the notation for EER schema diagrams and
UML class diagrams by comparing how common concepts are represented in each.

4.12.

4.13.

4.14.

4.15.

4.16.

Discuss the two notations for specifying constraints on n-ary relationships, and
what each can be used for.

List the various data abstraction concepts and the corresponding modeling con-
cepts in the EER model.

What aggregation feature is missing from the EER model? How can the EER model
be further enhanced to support it?

What are the main similarities and differences between conceptual database mod-
eling techniques and knowledge representation techniques?

Discuss the similarities and differences between an ontology and a database
schema.

Exercises

4.17.

4.18.

4.19.

4.20.

Design an EER schema for a database application that you are interested in. Spec-
ify all constraints that should hold on the database. Make sure that the schema
has at least five entity types, four relationship types, a weak entity type, a super-
class/subclass relationship, a category, and an n-ary (n > 2) relationship type.
Consider the Bank ER schema of Figure 3.18, and suppose that it is necessary to
keep track of different types of ACCOUNTS (SAVINGS_ACCTS, CHECKING_ACCTS, . . .) and
LOANS (CAR_LOANS, HOME_LOANS, . . .). Suppose that it is also desirable to keep track of
each account’s TRANSACTIONs (deposits, withdrawals, checks, . . .) and each loan’s
PAYMENTs; both of these include the amount, date, and time. Modify the sank
schema, using ER and EER concepts of specialization and generalization. State any
assumptions you make about the additional requirements.

The following narrative describes a simplified version of the organization of
Olympic facilities planned for the summer Olympics. Draw an EER diagram that
shows the entity types, attributes, relationships, and specializations for this appli-
cation. State any assumptions you make. The Olympic facilities are divided into
sports complexes. Sports complexes are divided into one-sport and multisport types.
Multisport complexes have areas of the complex designated for each sport with a
location indicator (e.g., center, NE corner, etc.). A complex has a location, chief
organizing individual, total occupied area, and so on. Each complex holds a series
of events (e.g., the track stadium may hold many different races). For each event
there is a planned date, duration, number of participants, number of officials, and
so on. A roster of all officials will be maintained together with the list of events
each official will be involved in. Different equipment is needed for the events
(e.g., goal posts, poles, parallel bars) as well as for maintenance. The two types of
facilities (one-sport and multisport) will have different types of information. For
each type, the number of facilities needed is kept, together with an approximate
budget.

dentify all the important concepts represented in the library database case study
described here. In particular, identify the abstractions of classification (entity
types and relationship types), aggregation, identification, and specialization/gen-
eralization. Specify (min, max) cardinality constraints whenever possible. List

Exercises

467

468

Chapter 4 Enhanced Entity-Relationship and uML Modeling

details that will affect the eventual design but have no bearing on the conceptual
design. List the semantic constraints separately. Draw an EER diagram of the
library database.

Case Study: The Georgia Tech Library (GTL) has approximately 16,000
members, 100,000 titles, and 250,000 volumes (or an average of 2.5 copies per
book). About 10 percent of the volumes are out on loan at any one time. The
librarians ensure that the books that members want to borrow are available when
the members want to borrow them. Also, the librarians must know how many
copies of each book are in the library or out on loan at any given time. A catalog
of books is available online that lists books by author, title, and subject area. For
each title in the library, a book description is kept in the catalog that ranges from
one sentence to several pages. The reference librarians want to be able to access
this description when members request information about a book. Library staff is
divided into chief librarian, departmental associate librarians, reference librarians,
check-out staff, and library assistants.

Books can be checked out for 21 days. Members are allowed to have only five
books out at a time. Members usually return books within three to four weeks.
Most members know that they have one week of grace before a notice is sent to
them, so they try to get the book returned before the grace period ends. About 5
percent of the members have to be sent reminders to return a book. Most overdue
books are returned within a month of the due date. Approximately 5 percent of
the overdue books are either kept or never returned. The most active members of
the library are defined as those who borrow at least ten times during the year. The
top 1 percent of membership does 15 percent of the borrowing, and the top 10
percent of the membership does 40 percent of the borrowing. About 20 percent of
the members are totally inactive in that they are members but never borrow.

To become a member of the library, applicants fill out a form including their
SSN, campus and home mailing addresses, and phone numbers. The librarians
then issue a numbered, machine-readable card with the member’s photo on it.
This card is good for four years. A month before a card expires, a notice is sent to
a member for renewal. Professors at the institute are considered automatic mem-
bers. When a new faculty member joins the institute, his or her information is
pulled from the employee records and a library card is mailed to his or her campus
address. Professors are allowed to check out books for three-month intervals and
have a two-week grace period. Renewal notices to professors are sent to the cam-
pus address.

The library does not lend some books, such as reference books, rare books,
and maps. The librarians must differentiate between books that can be lent and
those that cannot be lent. In addition, the librarians have a list of some books
they are interested in acquiring but cannot obtain, such as rare or out-of-print
books and books that were lost or destroyed but have not been replaced. The
librarians must have a system that keeps track of books that cannot be lent as well
as books that they are interested in acquiring. Some books may have the same
title; therefore, the title cannot be used as a means of identification. Every book is
identified by its International Standard Book Number (ISBN), a unique interna-

4.21.

4.22.

tional code assigned to all books. Two books with the same title can have different

ISBNs if they are in different languages or have different bindings (hard cover or

soft cover). Editions of the same book have different ISBNs.

The proposed database system must be designed to keep track of the mem-
bers, the books, the catalog, and the borrowing activity.

Design a database to keep track of information for an art museum. Assume that

the following requirements were collected:

e The museum has a collection of ArRT_osjecTs. Each ART_ogjecT has a unique IdNo,
an Artist (if known), a Year (when it was created, if known), a Title, and a
Description. The art objects are categorized in several ways, as discussed below.

e ART_OBJECTs are categorized based on their type. There are three main types:
PAINTING, SCULPTURE, and STATUE, plus another type called oTHER to accommodate
objects that do not fall into one of the three main types.

® A paINTING has a PaintType (oil, watercolor, etc.), material on which it is DrawnOn
(paper, canvas, wood, etc.), and Style (modern, abstract, etc.).

® A ScuLPTURE or a STATUE has a Material from which it was created (wood, stone,
etc.), Height, Weight, and Style.

An art object in the oTHER category has a Type (print, photo, etc.) and Style.
ART_OBJECTS are also categorized as PERMANENT_COLLECTION, which are owned by the
museum (these have information on the DateAcquired, whether it is OnDis-
play or stored, and Cost) or sBorrowep, which has information on the Collec-
tion (from which it was borrowed), DateBorrowed, and DateReturned.

e ART_0BJECTs also have information describing their country/culture using infor-
mation on country/culture of Origin (Italian, Egyptian, American, Indian,
etc.) and Epoch (Renaissance, Modern, Ancient, etc.).

e The museum keeps track of ARTIST’s information, if known: Name, DateBorn (if
known), DateDied (if not living), CountryOfOrigin, Epoch, MainStyle, and
Description. The Name is assumed to be unique.

e Different exHiBITIONs occur, each having a Name, StartDate, and EndDate.
exHiBITIONs are related to all the art objects that were on display during the
exhibition.

e Information is kept on other cottecTions with which the museum interacts,
including Name (unique), Type (museum, personal, etc.), Description, Address,
Phone, and current ContactPerson.

Draw an EER schema diagram for this application. Discuss any assumptions you

made, and that justify your EER design choices.

Figure 4.15 shows an example of an EER diagram for a small private airport data-

base that is used to keep track of airplanes, their owners, airport employees, and

pilots. From the requirements for this database, the following information was
collected: Each arpLaNE has a registration number [Reg#], is of a particular plane

type [oF_Type], and is stored in a particular hangar [sTorep_IN]. Each pLaNE_TvPE has a

model number [Model], a capacity [Capacity], and a weight [Weight]. Each

HANGAR has a number [Number], a capacity [Capacity], and a location [Location].

The database also keeps track of the owners of each plane [owNs] and the empLoYEES

who have maintained the plane [mainTaiN]. Each relationship instance in owns

Exercises

469

470 | Chapter 4 Enhanced Entity-Relationship and uML Modeling

N
@ED_IN
1

HANGAR
CORPORATION PERSON
| ‘

G

FIGURE 4.15 EER schema for a smaLL airpORT database

relates an airplane to an owner and includes the purchase date [Pdate]. Each rela-
tionship instance in MAINTAIN relates an employee to a service record [service]. Each
plane undergoes service many times; hence, it is related by [PLANE_SERVICE] to a
number of service records. A service record includes as attributes the date of
maintenance [Date], the number of hours spent on the work [Hours], and the type
of work done [Workcode]. We use a weak entity type [sErvICE] to represent airplane
service, because the airplane registration number is used to identify a service

Selected Bibliography

record. An owner is either a person or a corporation. Hence, we use a union type
(category) [owNer] that is a subset of the union of corporation [corroraTION] and
person [PERSON] entity types. Both pilots [piLoT] and employees [empLOYEE] are sub-
classes of person. Each pilot has specific attributes license number [Lic_Num] and
restrictions [Restr]; each employee has specific attributes salary [Salary] and shift
worked [Shift]. All rerson entities in the database have data kept on their social
security number [Ssn], name [Name], address [Address], and telephone number
[Phone]. For corporaTiON entities, the data kept includes name [Name], address
[Address], and telephone number [Phone]. The database also keeps track of the
types of planes each pilot is authorized to fly [ruiEs] and the types of planes each
employee can do maintenance work on [works_oN]. Show how the smALL AlRPORT
EER schema of Figure 4.15 may be represented in UML notation. (Note: We have
not discussed how to represent categories (union types) in UML, so you do not
have to map the categories in this and the following question.)

4.23. Show how the uNiversiTY EER schema of Figure 4.9 may be represented in UML
notation.

Selected Bibliography

Many papers have proposed conceptual or semantic data models. We give a representa-
tive list here. One group of papers, including Abrial (1974), Senko’s DIAM model (1975),
the NIAM method (Verheijen and VanBekkum 1982), and Bracchi et al. (1976), presents
semantic models that are based on the concept of binary relationships. Another group of
early papers discusses methods for extending the relational model to enhance its model-
ing capabilities. This includes the papers by Schmid and Swenson (1975), Navathe and
Schkolnick (1978), Codd’s RM/T model (1979), Furtado (1978), and the structural model
of Wiederhold and Elmasri (1979).

The ER model was proposed originally by Chen (1976) and is formalized in Ng (1981).
Since then, numerous extensions of its modeling capabilities have been proposed, as in
Scheuermann et al. (1979), Dos Santos et al. (1979), Teorey et al. (1986), Gogolla and
Hohenstein (1991), and the entity-category-relationship (ECR) model of Elmasri et al.
(1985). Smith and Smith (1977) present the concepts of generalization and aggregation.
The semantic data model of Hammer and McLeod (1981) introduced the concepts of
class/subclass lattices, as well as other advanced modeling concepts.

A survey of semantic data modeling appears in Hull and King (1987). Another
survey of conceptual modeling is Pillalamarri et al. (1988). Eick (1991) discusses design
and transformations of conceptual schemas. Analysis of constraints for n-ary relationships
is given in Soutou (1998). UML is described in detail in Booch, Rumbaugh, and Jacobson
(1999).

471

