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Software engineering development has gradually become essential element in different aspects of the
daily life and an important factor in numerous critical real-industry applications, such as, nuclear plants,
medical monitoring control, real-time military, bioinformatics, oil and gas industry, and air traffic control.
This paper proposes a functional network as a novel computational intelligence scheme for tracking and
predicting the software reliability. Several applications are presented to illustrate this new intelligent
system framework models. To demonstrate the usefulness of functional networks and the existing data
mining schemes, we briefly describe the learning algorithm of functional networks associativity model in
predicting the software reliability. Comparative studies will be carried out to compare the performance of
functional networks with the most popular existing data mining techniques, such as, statistical regres-
sion multilayer feed forward neural networks, and support vector machines. The results show that the
performance of functional networks is more reliable, stable, accurate, and outperforms other techniques.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Since computer software has become essential element in dif-
ferent aspects of our daily life and an important factor in numerous
critical real-industry applications, there is a great demand for high-
quality software products. One of the fundamental quality charac-
teristics for the software is the reliability. Software reliability deals
with behavior of a software system. It can be defined as the prob-
ability of a system to work without failures for a specified interval
of time in a particular environment. It is possible to estimate the
current or the future reliability of a system using reliability models.
These models estimate the reliability based on failure data col-
lected during the test phase. This, in turn, will help software pro-
ject managers to estimate and schedule the time, effort, and cost
to test and release the software at an acceptable level of reliability.
There are many empirical correlations for modeling current and fu-
ture reliability of a system. Different software reliability models
were proposed to estimate and predict the reliability such as Aljah-
dali, Sheta, and Rine (2001), Cai, Cai, Wang, Yu, and Zhang (2001),
Chen (2007), Costa, Vergilio, Pozo, and Souza (2005), El-Aroui and
Soler (1996), Kimura, Yamada, and Osaki (1995), Lyu (1996), Musa,
Jannino, and Okumoto (1987), Pai and Hong (2006), Pham and
Pham (2000, 2001), Pham and Zhang (2003), Xie (1991), Xu, Xie,
Tang, and Ho (2003) most of these modeling schemes were devel-
oped using linear or non-linear multiple regression, Bayesian sta-
tistical (BS), Autoregressive integrated moving average (ARIMA),
multilayer feedforward neural networks (MFEN), radial basis func-
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tion (RBF), genetic algorithm (GA), and support vector machines
(SVMs). However, they often do not perform very accurate and suf-
fer from a number of drawbacks. Each correlation was developed
for a certain range of software reliability and geographical environ-
ment with similar failures for a specified interval. Thus, the accu-
racy of such correlations is critical and not often known in advance.
Recently, functional networks have been introduced by El-Seba-
khy (2004), El-Sebakhy, Hadi, and Faisal (2007), El-Sebakhy, Faisal,
El-Bassuny, Azzedin, and Al-Suhaim (2006), Li, Liao, Wu, and Yu
(2001), Castillo (1998), Castillo, Cobo, Gutierrez, and Pruneda
(1998), Castillo, Cobo, Gutierrez, and Hadi (1999), Castillo and Gut-
ierrez (1998) as a generalization of the standard neural networks.
It dealt with general functional models instead of sigmoid-like
ones. In these networks the functions associated with the neurons
are not fixed but are learnt from the available data. There is no
need, hence, to include weights associated with links, since the
neuron functions subsume the effect of weights. It is a general
framework useful for solving a wide range of problems in probabil-
ity, statistics, science, bioinformatics, biomedicine, structural civil
engineering, signal processing, pattern recognition, functions
approximations, real-time flood forecasting and other business
and engineering applications (see El-Sebakhy, 2004; El-Sebakhy
et al.,, 2006, 2007; Li et al., 2001; Bruen & Yang, 2005; Castillo,
Cobo, & Gutierrez, 1998; Castillo, Gutiérrez, Hadi, & Lacruz, 2001;
Castillo, Hadi, & Lacruz, 2001; Pruneda, Lacruz, & Solares, 2005;
Rajasekaran, Mohan, & Khamis, 2004; Solares, Vieira, & Minguez,
2006) and the references therein for more details. The performance
of functional networks has shown bright outputs for future appli-
cations in both industry and academic research of science and
engineering based on its reliable and efficient results.
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Yet, this new intelligence system framework has not been uti-
lized in the area of software engineering. The main contribution
of this research is to propose functional networks as a new frame-
work for predicting the software reliability. The built calibration
model will be developed and tested based on the use of distinct
known software reliability databases. Next, the developed
functional networks model will be utilized to predict software reli-
ability including time and frequency time between software suc-
cessive failures.

The rest of this paper is organized as follows: Section 2 provides
the related work and the literature review. The methodology and
learning steps of functional networks as a new intelligence system
paradigm is proposed in Section 3. Section 4 contains a brief ex-
plains of how the empirical study is conducted. The implantation
process with parameters initialization is proposed in Section 5.
Discussing both performance results and comparative studies were
carried out in Section 6. The conclusion and recommendations for
future works are drawn in Section 7.

2. Related work

Several statistics and data mining modeling schemes have been
developed and applied for software reliability prediction. El-Aroui
and Soler (1996) used Bayesian statistical model to predict software
reliability. They made an assumption that the successive times be-
tween software failures follow the exponential distribution. The
proposed model is useful for simulated software failure data based
on the numerical examples. Pham and Pham (2000, 2001) applied
Bayesian approach to predict software reliability. Their results
show that proposed model outperforms other times-between-fail-
ures models in terms of the sum of square errors. Pham and Zhang
(2003) proposed a prediction model based on non-homogeneous
Poisson process (NHPP) approaches for software reliability forecast-
ing. The results show that proposed model has better goodness-of-
fit than other exist NHPP models.

Recently, machine learning techniques have been applied for
predicting software reliability. A neural network was proposed
by Cai et al. (2001) to predict software reliability. They evaluated
the performance of neural network model by different network
architectures. They concluded that neural network model is better
for a smooth reliability data set than a fluctuating one. Xu et al.
(2003) applied two techniques of neural networks: (i) multilayer
perceptron feedforward neural networks and (ii) radial basis func-
tion to predict the reliability of engine systems. They found that
the neural network approaches provide more accurate prediction
results than the ARIMA model.

A multilayer perceptron feedforward neural network has been
proposed by Aljahdali and Sheta (2001) as an alternative technique
to build software reliability growth models. The proposed model
was used with a slightly different configuration in which the num-
ber of neurons in the input layer represents the number of delay in
the input data. They made a comparison between regression para-
metric models and neural network models. Their results indicate
that neural networks were able to provide models with small
sum of squares errors (SSE) than the regression model. Costa
et al. (2005) used genetic programming (GP) to estimate the reli-
ability growth. They carried out two experiments: one based on
time and the other one based on test coverage. Also, they com-
pared the results with other traditional and non-parametric ANN
models.

Recently, used support vector machines (SVM) with simulated
annealing algorithms to predict software reliability (Pai & Hong,
2006). The results indicate that the SVM model with simulated
annealing algorithms provides more accurate prediction results
than the other prediction models. Chen (2007) applied support

vector regression with genetic algorithms to predict reliability
in engine systems. The experimental results indicate that the
proposed model outperforms the existing neural-network ap-
proaches and the ARIMA models based on the normalized root
mean square error and mean absolute percentage error. Several
other methods, such as Markov processes, Kalman filter model,
operational-profile, and times-between-failures model had been
developed in predicting software reliability (Kimura et al,
1995; Lyu, 1996; Musa et al., 1987; Xie, 1991). None of the
above works, however, used and/or evaluated the capability of
functional networks (FunNets) in predicting the software reliabil-
ity growth.

3. Functional networks
3.1. Background

Recently, functional networks have been introduced by El-
Sebakhy (2004), El-Sebakhy et al. (2007, 2006), Li et al. (2001),
Castillo (1998), Castillo and Gutierrez (1998), Castillo et al.
(1999, 1998) as a generalization of the standard neural networks.
It dealt with general functional models instead of sigmoid-like
ones. In these networks the functions associated with the neurons
are not fixed but are learnt from the available data. There is no
need, hence, to include weights associated with links, since the
neuron functions subsume the effect of weights. Functional net-
works allow neurons to be multi-argument, multivariate, and dif-
ferent learnable functions, instead of fixed functions. Functional
networks allow converging neuron outputs, forcing them to be
coincident. This leads to functional equations or systems of func-
tional equations, which require some compatibility conditions on
the neuron functions. Functional networks have the possibility of
dealing with functional constraints that are determined by the
functional properties of the network model.

Functional networks as a new modeling scheme has been used
in solving both prediction and classification problems. It is a gen-
eral framework useful for solving a wide range of problems in
probability, statistics, signal processing, pattern recognition, func-
tions approximations, real-time flood forecasting, science, bioin-
formatics, medicine, structure engineering, and other business
and engineering applications (see El-Sebakhy, 2004; El-Sebakhy
et al., 2006, 2007; Li et al., 2001; Bruen & Yang, 2005; Castillo
et al., 1998; Castillo, Hadi, et al., 2001; Pruneda et al., 2005; Raj-
asekaran et al., 2004; Solares et al., 2006; Castillo, Gutiérrez,
et al., 2001) and the references therein for more details.

The performance of functional networks has shown bright out-
puts for future applications in both industry and academic research
of science and engineering based on its reliable and efficient re-
sults. Several comparative studies have been carried to compare
its performance with the performance of the most popular predic-
tion/classification modeling data mining, machine learning
schemes in the literature (El-Sebakhy, 2004). The results show that
functional networks performance outperforms most of these pop-
ular modeling schemes in machine learning, data mining, and sta-
tistics communities (El-Sebakhy et al., 2006, 2007).

3.2. Functional networks in use: an example

Dealing with functional networks in prediction and classifica-
tion required some concepts and definitions, which can be briefly
summarized as follows:

Suppose that, we use the set X={xy,...,X,} to be the set of
nodes, such that each node x; is associated with a variable X;. The
neuron (neural) function over a set of nodes X is a tuple U = (x,f,z),

Please cite this article in press as: El-Sebakhy, E. A., Software reliability identification using functional networks: A comparative study,
Expert Systems with Applications (2008), doi:10.1016/j.eswa.2008.02.053




E.A. El-Sebakhy / Expert Systems with Applications xxx (2008) XxX—Xxx 3

where x is a set of the input nodes, f is a processing function and z
is the output nodes, such that z = f(x), where x and Z are two non-
empty subsets of X. The best way to illustrate the functional
networks and its way of representation is to use an example
(El-Sebakhy et al., 2007). As it can be seen in Fig. 1, a functional
network consists of: (a) several layers of storing units, one layer
for containing the input data (x;; i=1,2,3,4), another for contain-
ing the output data (x;) and none, one or several layers to store
intermediate information (x5 and xg); (b) one or several layers of
processing units that evaluate a set of input values and delivers a
set of output values (f;); and (c) a set of directed links. Generally,
functional networks extend the standard neural networks by
allowing neuron functions f; to be not only true multiargument
and multivariate functions, but to be different and learnable,
instead of fixed functions. In addition, the neuron functions in
functional networks are unknown functions from a given family,
such as, polynomial, exponential, Fourier, to be estimated during
the learning process. Furthermore, functional networks allow con-
necting neuron outputs, forcing them to be coincident (Castillo
et al,, 1999, 1998; El-Sebakhy et al., 2007).

The functional network uses two types of learning: (a) struc-
tural learning, (b) parametric learning. In structural learning, the
initial topology of the network, based on some properties available
to the designer is arrived at and finally a simplification is made
using functional equation to a simpler architecture. In parametric
learning, usually activation functions by considering the combina-
tion of “basis” functions are estimated by using the least square,
steepest descent and mini-max methods (Cuddy, 1997). In this
paper, we use the least square method for estimating activation
functions.

Generally, functional network is a problem driven, which means
that the initial architecture is designed based on a problem in
hand. In addition, to the data domain, information about the other
properties of the function, such as associativity, commutativity,
and invariance, are used in selecting the final network. In the func-
tional network, neuron functions are arbitrary known or unknown
to be learned from the provided data, but in neural networks they
are a sigmoid, linear or radial basis and other functions. In func-
tional networks, neuron functions in which weights are incorpo-
rated are learned, and in neural networks, weights are learned.
Neural networks work well if the input and output data are nor-
malized in a specific range, such as, in between 0 and 1, but in
functional networks there is no such restriction. Furthermore, it
can be pointed out that neural networks are special cases of func-
tional networks (El-Sebakhy et al., 2007). Dealing with functional
networks required the several steps through the networks imple-
mentations and learning process.

3.3. Implementation and learning process in functional networks
First, define the problem in hand by specifying the initial topol-

ogy based on the domain of the problem in hand. Second, simplify
the chosen initial architecture using functional equations and the

Fig. 1. Functional network topology: an example.

equivalence concept, then check the uniqueness condition of
the desired architecture (see Castillo et al., 1998, 1999) for more
details. Third, gather the required data and handle multicollinear-
ity problem with the implementation of the required quality con-
trol check before the functional networks implementation. Fourth,
the learning procedures and training algorithm based on either
structure or parametric learning by considering the combinations
of linear independent functions, ¥ = {y,..., ¥, }, for all s to
approximate the neuron functions, that is

g,(x)= i asiyg(x) for all s, (1)
i=1

where the coefficients ag; are the parameters of functional networks.
The most popular linearly independent functions in the literature
are:

W:{]7X7~"7Xm}7
or

¥ = {1,cos(X),...,cos'(X),sin'(X)}, m=2l,

or
Y= {]an797X: . A7emX7e—mX}7

where m is the number of elements in the combination of sets of
linearly independent function. The parameters in (1) can be learned
using one of the known optimization (loss criterion) techniques,
such as, least squares estimation, conjugate gradient, iterative least
squares, minimax, or maximum likelihood estimation. The last step
in the implementation process is to select the best model and vali-
date it. The best functional networks model is chosen based on the
minimum description length and some other quality measure-
ments, such as, the correlation coefficients and the root-mean-
squared errors. The selection is achieved using one of the well
known selection schemes, such as, exhaustive selection, forward
selection, backward elimination, backward forward selection, and
forward backward elimination. Therefore, if the validation perfor-
mance is satisfactory, then the functional networks model is ready
to be used in predicting unseen new unseen datasets from real-
world industry applications.

The learning method of a functional network consists of obtain-
ing the neuron functions based on a set of data D = {X,Y}, where
X e RP represents the matrix of size (n x p) of p input feature vari-
ables and the column YeR or Y C R for prediction or classification
output results. The goal in both forecasting and classification is to
determine the linear/nonlinear relationship among the output and
the input variables using one of the following equations:

. Xip) +& oOr
k=1,...,c

g =f(xa, ..
g(mi) = f(Xin, ... Xp) + &3 @

or

Vi =fXi, X2, ..., Xip) +& O
Tik :f(Xi1,Xi2,....Xip)+8,‘; k=1,...,c

3.4. The most popular functional networks architectures in the
literature

The most popular functional networks architecture used in lit-
erature are: the generalized associativity functional network (gafn)
and the separable functional network (SFN) models to predict and
identify the relationship functions f(x, ..., x;y). These two types of
functional networks were described in details in Lyu (1996),
El-Sebakhy et al. (2006). We briefly expressed these functional net-
works models as follows:
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1. The Generalized Associativity model which leads to the additive
model:

k

fxa, .o x0) :th(xk)v 4

j=1

the corresponding architecture is shown in Fig. 2.
2. The Separable functional networks model which considers a more
general form for the unknown function, f(xi,...,Xp):

q

9k
foxa,ox) = Gy (%) - by (%), (5)

L8}

& ={¢, :1s=1,...,q5}, s=1,2,..,k, are linearly independent.
An example of this functional network for k=2 and
ql =q2=q is shown in Fig. 3. Egs. (4) and (5) are functional
equations since their unknowns are functions. Their corre-
sponding functional networks are the graphical representations
of these functional equations.We note that the graphical struc-
ture is very similar to a neural network, but the neuron func-
tions are unknown. Our problem consists of learning
hi,hy,...,he in (4) and C;, .., in (5). In order to obtain
hi,hy, ... ke in (5), we approximate each hy(x;), for j=1,2,.. .,k
by a linear combination of sets of linearly independent func-
tions y;; defined above, that is,

9
hj(xj) :Zajsl//)s(xj)~ ]: 1727/p7 (6)
s=1

where the coefficients a; subsume the actual parameters
Cr ry...r, i (5). Therefore, the problem is reduced to estimate
the parameters a;,, for all j and s (El-Sebakhy et al., 2006; Lyu,
1996). Generally, by setting appropriate input and applying sys-
tem identification to study the defect prone classes identifica-
tion, one can customize the characteristics of input value
according to wishful output. In this paper, we follow the same
procedures in both (Lyu, 1996) and choose the least squares cri-
terion to learn the parameters, but the additive model requires

x, o—r@—»
X, o—r@—u—b

_uy

x o—{

Fig. 2. Additive functional networks topology.

Fig. 3. The functional network for the separable model with p=2 and q; =¢> =q.

E.A. El-Sebakhy / Expert Systems with Applications xxx (2008) XxX—Xxx

add some constrains to guarantee uniqueness. Alternatively,
one can choose different optimization criterion based on his
interest. The main advantage in choosing the least squares
method is that the least squares criterion leads to solve a linear
system of equations in both prediction and classification
problems.

In this research we utilized both types of functional networks to
estimate the software reliability based on both actual inter-failure
time and the accumulated frequency failure time. We follow the
same procedures in both (Castillo et al., 1999; El-Sebakhy et al.,
2007) and choose the least squares criterion to learn the parame-
ters, but with the additive model requires add some constrains to
guarantee uniqueness. Alternatively, one can choose different opti-
mization criterion based on his interest. The main advantage in
choosing the least squares method is that the least squares crite-
rion leads to solve a linear system of equations in both prediction
and classification problems.

4. Empirical study

This section describes the conducted empirical studies that are
used in predicting the software reliability based on both actual in-
ter-failure time and the accumulated frequency failure time data
collected during the test phase. In this paper, we chosen only some
of the most common utilized modeling schemes in software engi-
neering, data mining, and machine learning communities, such as,
multiple regression (MR), feedforward neural networks (FFN), and
support vector regression (SVR) machines methods for the sake of
simplicity and space to compare their performance with our devel-
oped functional networks model.

4.1. The main goal

The goal of this empirical study can be defined, using the GQM
template (Basili & Rombach, 1988), as follows: Compare FunNets,
SVM, MR, and FFN models for the purpose of software reliability
prediction with respect to their prediction performance from the
point of view of researchers and practitioners in the context of two
software reliability datasets.

4.2. Characteristics of utilized datasets

Commonly, there are two types of failure data: time-domain
data and interval-domain data. Time-domain data are reporting
the individual times at which the failure occurred. Interval-domain
data are counting the number of failures occurring during a fixed
period of time. The time-domain data always provide better accu-
racy for the parameter estimates of current existing software reli-
ability models. However, it involves more data collection efforts
than the interval domain approach.

5. The implementations process and comparative studies
5.1. Initializations

To implement functional networks and the predictive models,
the entire available dataset is usually divided into a training set
and a testing or validating set. The training set is used to build
the models and the testing set is used to evaluate the predictive
capability of the models.

We use associativity functional networks model with only
family of linearly independent families (basis) with polynomial
degree at most 2. In addition, we implement multiple regression
(MR), feedforward neural networks (FFN) based on both pure linear
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and sigmoid activation neuron functions based on two/three hid-
den layers, support vector regression (SVR) machines, and functional
networks. As it is commonly done in the literature (Duda, Hart, &
Stock, 2001), we implement these intelligent systems modeling
schemes with the required initialization process for their initial
parameters, which can be summarized as follows:

Multiple regressions: They do not require any parameters to pass
other than the method of optimization.

Support vector machines regression: This classifier requires sev-
eral parameters. These are:

1. The kernel function (matrix), $(x). The most common kernel
functions used in the literature are: Linear, Polynomial, Gaussian
or RBF, Sigmoidal, MLP, and Fourier series. Each one of these ker-
nel functions has its own parameters. After so many trials to
check which kernel gives the best performance in most situa-
tions, we found that the Sigmoidal kernel is the best kernel
for support vector machines classifier.

2. The parameters of each kernel function have to be initialized.
Linear kernel has no parameter; polynomial kernel has only one
parameter, which is, g, the most common choices for g are: 3
or 5.

3. A constant M is commonly recommended value is 100.

Feedforward neural networks: It requires six parameters: the
number of hidden layers, the number of nodes in each hidden
layer, tolerance value for convergence, the initial weight, the max-
imum number of iterations, and the activation function. In the lit-
erature, multilayer Feedforward network is the most commonly
used network with the backpropagation algorithm. It has been
shown in the neural network literature that a one-hidden layer
network may be adequate. The most common choice for the num-
ber of hidden nodes is min{2p + 2, n/10}, where p is the number of
input nodes, and n is the total number of the observations in a
given training database. Therefore, as network architecture, a three
layered, fully connected, feedforward multi-layer perceptron
(MLP) was used. The MLP networks often use the log-sigmoid (log-
sig) or tan-sigmoid (tansig) transfer function. Therefore, we use the
transfer functions (tansig or logsig) and purelin for input to hidden,
hidden to output. To run the feedforward neural networks classi-
fier using the matlab built-in function newff(), we use 3000 for
the maximum iteration, and a tolerance of 0.01.

Functional networks require the parameter, q, which is the
degree of the approximating polynomial and the type of linearly
independent family.

5.2. Implementation process

For the sake of both statistical regression and neural networks,
the input datasets were normalized based on Eq. (7) to make sure
that the utilized input variables were independent of measurement
units. Thus, the predictors are normalized to interval of [0,1].

Y — min(x;))

new (Xx . .
X — G = minG) i=1,...,n (7)

Through the implementation, the input parameters for each
technique were chosen in such away to give the best performance.
The results are summarized by computing both root mean-squared
errors (RMSE) and correlation coefficient (R or R?).

Based on the above explanation and the setting up parameters
the implantation of the calibration functional networks model is
built on first 70% of the provided data (learning model) and it
was validated and tested using the remaining 30% of the provided
data for testing set to test (external validate) the built model. The
implantations are done using MATLAB V7 under Pentium M per-

sonal computer, and then compute the above discussed prediction
performance measures, i.e. RMSE and R?.

5.3. Statistical quality measures

In order to evaluate the performance of the compared predic-
tion models, we considered two commonly used evaluative mea-
sures: correlation coefficient and root mean squared error (RMSE).

Correlation coefficient represents the degree of success in
reducing the standard deviation by regression analysis, defined as

r= \j 1- i [(y)exp - (y)ESt]iZ/ i [(y)eXp 75,]7 ®
i=1

i=1

where y = 1371 [(¥)xp); Tanges from 1 for perfect positive cor-
relation results, through 0 when there is no correlation, to —1 for
perfect negative correlation.

Root Mean Squares Error: measures the data dispersion around
zero deviation which is defined as

1/2
_ I\
RMSE = {";E'} (9)

where E; is a relative deviation of an estimated value from an
experimental input datasets:

Ei _ {(y)exp - (y)est

- }xlOO; i=1(1)n (10)

The best model is the one with the highest correlation coeffi-
cient and the smallest root of the mean-squared errors.

6. Results and discussion

For studying the performance of functional Networks, SVM,
MLPFFN, and statistical regression based on the available data:
AT&T Bell telemetry network system and real-time control system,
details are shown in both Figs. 4 and 5. Each data set was divided
into two separate sets namely ‘training’ and ‘testing’ using a
suitable stratified sampling approach and cross-validation

B Figures - Figure 1 = e
Eile Edit Wiew [nsert Tools Debug Desktop Window Help i

D&k RAQAMS | 0B =0 0O =i

Time between failure

10 15 20 25
Number of Failure

Freq. time between failure
w

0 5 10 15 20 25
Number of Failure

Fig. 4. Software reliability data from AT&T Bell telemetry network system.
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criterion. The data points were selected randomly for training and
testing sets, such that, we randomly select 70% of the data for
training to build the calibration model, while the remaining 30%
was used for testing the built system. The criteria used for evaluat-
ing the predicted values include:

- The agreement between the predicted future accumulated reli-
ability for software and the actual reliability for software.

- The correlation between the predicted and the actual accumu-
lated reliability for software; and

- The RMSE (root mean square of error) between the actual and
the predicted values.

In the current study, the performance of the functional network
was compared with that of statistical regression (SR) and feedfor-
ward neural networks modeling techniques. The results obtained
during both training and validation of the four modeling schemes
were recorded when we used the two datasets. For the sake of both
simplicity and space, we recorded only the plots that were corre-
sponding to both functional networks and support vector machines
as it is shown in Figs. 6-9. Tables 1 and 2 summarized the results of
all the used computational intelligence modeling schemes based
on both datasets: AT&T Bell telemetry network system and real-time
control system in training and testing processes. The better results
were shown in boldfaces.

As it can be seen in Table 1 that, the performances of all model-
ing schemes in the training process were very good and they are
close to each other in the correlation coefficients, except multiple
regression still the worst in both correlation coefficients and
root-mean squared errors values. In addition, feedforward neural
networks, support vector machines, and functional networks have
the highest correlation coefficients, but support vector machine
has the lowest root mean squared errors in the training process.
On the other hand, in the testing and validation process, functional
networks with the second-order polynomial degree have the high-
est correlation coefficient and the lowest root mean squared errors.
The results show that functional networks is more accurate and
reliable to predict the future software reliability in developing a
new project, which it is shown a bright light for future use in dif-

Actual future reliability

[

Fig. 6. Prediction of future reliability using support vector machines with q=2
based on number of failures for the AT&T Bell telemetry network system.

[E=E—)
File Edit View Insert Tools Desktop MWindow Help ]

DEH&|x Qe @ 08 =0

Training Performance: RMSE = 23.9956

Actual output versus the predicted utput for Y1 FunNet

£ 500 : : : : ]

N |t L B s s : A
=
o« '

g : - :

5 400 freneneaes froreezees foeneneee fromee b besneanens foesnne
& [ ¢ : :
B poenenees froneanas foemneeed freeeees .
3 #'P’ i i i i i

& "o 10 200 300 400 500 600 700

Actual Future Reliability
Testing Performance: RMSE = 11.2023

: : ] | o

N W s o,
e o 9o 9
= =

-
=3
=}

Predicted Future Reliability

=)

m i i i i
0 100 200 300 400 500
Actual Future Reliability

Fig. 7. Prediction of future reliability using functional networks with g = 2 based on
number of failures for the AT&T Bell telemetry network system.

ferent applications, such as, maintainability, risk analysis, and soft-
ware cost estimation.

As it can be seen in Table 2 that, the performances of all model-
ing schemes were acceptable in the training process, still multiple
regression has the worst performance in both correlation coeffi-
cients and root-mean squared errors values. Functional networks
have the highest correlation coefficients and lowest root mean
squared errors in both training and testing process. Furthermore,
the results support the previous obtained performance of
functional networks, which gives an indicator that; functional net-
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number of failures for the Real-time control system.

works have a reliable and efficient prediction for the future soft-
ware reliability in developing a new project. We conclude that
functional networks are efficient reliable modeling technique that
is trustable to be used in the area of software engineering. It is
shown a bright light performance for future use in different appli-
cations, such as, maintainability, risk analysis, and software cost
estimation.

Table 1
The correlation coefficient and RMSE values for the used four computational
intelligence modeling schemes based on AT&T Bell telemetry network system

Model Training Testing

R? RMSE R? RMSE
MR 0.932 51.83 0.988 132.29
FFN 0.984 29.92 0.996 50.47
SVM 0.982 28.79 0.996 19.56
FunNets 0.998 24 0.998 11.2
Table 2

The correlation coefficient and RMSE values for the used four computational
intelligence modeling schemes based on real-time control system

Model Training Testing

R? RMSE R? RMSE
MLR 0.935 7838.41 0.9611 8132.59
ANN 0.9963 2112.73 0.9973 1697.91
SVR 0.9948 3136.8 0.9978 3336.2
FunNet 0.9963 1859.35 0.998 1669.65

7. Conclusion

Overall, the results in both implementations shown that the
performances of all modeling schemes were acceptable in the
training process; still multiple regressions has the worst perfor-
mance in both correlation coefficients and root-mean squared
errors values. Functional networks have the highest correlation
coefficients and lowest root mean squared errors in both training
and testing process. Furthermore, the results support the previous
obtained performance of functional networks, which gives an indi-
cator that; functional networks have a reliable and efficient predic-
tion for the future software reliability in developing a new project.
We conclude that functional networks are efficient reliable model-
ing technique that is trustable to be used in the area of software
engineering. It is shown a bright light performance for future use
in different applications, such as, maintainability, risk analysis,
and software cost estimation.

We suggest for future work to use different independent fami-
lies other than polynomial and use more databases for software
engineering quality assurance. We should try the neuro-fuzzy
inference systems as well as extreme learning machine during
the comparative studies.
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