PAGE
7

INTRODUCTION TO MACROS

A macro is a symbolic name given to one or more assembly language statements. A macro may be used to generate instructions or data definitions.

Syntax of macro definition (for MASM and TASM):

macro_name
MACRO d1, d2, . . . , dn

statement1

statement2

. . .

statementk

ENDM

where d1, d2, . . . , dn is an optional list of dummy parameters. Dummy parameters are temporary variables; they are not declared by data definition directives (DB, DW, DD, . . .). They can be used as input as well as output parameters.

A macro definition can appear anywhere in an assembly language program before the END directive; however for MASM and TASM the definition of a macro must appear before a call to that macro and a macro definition cannot appear inside another macro definition. It is usual to place all macro definitions at the beginning of a program before the segment definitions.

A macro definition is not assembled until the macro is called. Each macro call is replaced by the statements in the macro definition (i.e., each call expands the macro).

Syntax of a macro call:

macro_name
a1, a2, . . . , aN

where a1, a2, . . . , aN is an optional list of actual arguments. An actual argument can be an immediate value (i.e., a constant), a variable, or a register name. Argument names may be duplicates of other names (labels, variables, etc.).

A macro call for a macro designed to generate assembly language instructions must appear in a code segment. A macro call for a macro designed to generate data definitions must appear in a portion of a program where it will not be treated as an instruction by the assembler.

Example of macro definitions and calls to those macros:

	DISPLAY_CHAR MACRO CHAR

PUSH AX

PUSH DX

MOV AH , 02H

MOV DL , CHAR

INT 21H

POP DX

POP AX

ENDM

. . .

.CODE

. . .

DISPLAY_CHAR ‘A’

. . .

MOV BL , ‘X’

DISPLAY_CHAR BL

. . .

	 READ_STRING MACRO BUFFER_NAME

 PUSH AX

 PUSH DX

 MOV DX , OFFSET BUFFER_NAME

 MOV AH, 0AH

 INT 21H

 POP DX

 POP AX

 ENDM

. . .

.DATA

 INPUT_BUFFER DB 71, 72 DUP(?)

 . . .
.CODE

 . . .

 READ_STRING INPUT_BUFFER

 . . .

	READ_CHAR MACRO

 ;; Read character with echo

 MOV AH , 01H

 INT 21H

ENDM

 .CODE

 . . .
 READ_CHAR

 . . .

	CRLF MACRO

 ;; Move cursor to beginning of new line

 PUSH AX

 PUSH DX

 MOV AH , 02H

 MOV DL , 0DH

 INT 21H

 MOV DL , 0AH

 INT 21H

 POP DX

 POP AX

ENDM

. . .

.CODE

 . . .

 CRLF

 . . .

	 DISPLAY_STRING MACRO STRING

 PUSH AX

 PUSH DX

 MOV AH , 09H

 MOV DX , OFFSET STRING

 INT 21H

 POP DX

 POP AX

 ENDM

 . . .

 .DATA

 PROMPT1 DB ‘ID# ?’, 0DH , 0AH , ‘$’

 PROMPT2 DB ‘NAME ?’ , 0DH , 0AH , ‘$’

 . . .

 . CODE

 . . .

 DISPLAY_STRING PROMPT1

 . . .

 DISPLAY_STRING PROMPT2

 . . .

	SWAP MACRO WORD1 , WORD2

 ;;Exchanges two word memory operands

 PUSH AX

 MOV AX , WORD1

 XCHG AX , WORD2

 MOV WORD1 , AX

 POP AX

ENDM

. . .

.DATA

 VAR1 DW 2FE4H

 VAR2 DW 5000H

. . .

.CODE

 . . .

 SWAP VAR1 , VAR2

 . . .

	 A macro may be called from the data segment to allocate memory:

 ALLOC MACRO ARRAY_NAME , NUMBYTES

 ARRAY_NAME DB NUMBYTES DUP(?)

ENDM

.DATA

 ALLOC ARRAY1 , 20

 ALLOC ARRAY2 , 50

 . . .

the calls will generate:

 ARRAY1 DB 20 DUP(?)

 ARRAY2 DB 50 DUP(?)
	DISPLAY_BUFFER MACRO BUFFER

 PUSH AX

 PUSH BX

 PUSH CX

 PUSH DX

 MOV AH , 40H

 MOV BX , 01H

 MOV CH , 00H

 MOV CL , BUFFER[1]

 LEA DX , BUFFER[2]

 INT 21H

 POP DX

 POP CX

 POP BX

 POP AX

ENDM

Invalid macro calls:

A macro call is invalid if the macro expansion for that call produces an invalid assembly language statement.

Example, consider:

 MOVW MACRO WORD1 , WORD2

 ;; Copies one word to another

 MOV WORD1 , WORD2

 ENDM

 .DATA

 VAR1 DW 12ACH

 VAR2 DW 6200H

 . . .

 The call:

 MOVW VAR1 , VAR2

generates the code:

 MOV VAR1 , VAR2

which is invalid, because it is a direct memory to memory transfer.

The call:

 MOVW VAR2 , BL

generates the code:

 MOV VAR2 , BL

which is invalid because the operands are of different sizes.

Register actual parameters

Care must be taken when using register actual parameters; a register actual parameter should not conflict with the usage of that register in the macro.

 Consider: DISPLAY_CHAR MACRO CHAR

 PUSH AX

 PUSH DX

 MOV AH , 02H

 MOV DL , CHAR

 INT 21H

 POP DX

 POP AX

 ENDM

 . . .

 .CODE

 . . .

 MOV AH , ‘K’

 DISPLAY_CHAR AH

 . . .

The call: DISPLAY_CHAR AH

expands to:
PUSH AX

PUSH DX

MOV AH , 02H

MOV DL , AH

INT 21H

POP DX

POP AX

thus K is not displayed because its ASCII code is replaced by 02H before the invocation of INT 21H.

A macro calling another macro

For MASM and TASM a macro can contain calls to other previously defined macros. A macro X may contain calls to another macro Y defined later in the program provided that the call to the macro X appears after both macro definitions. Thus, provided all macro definitions appear before the segment definitions, the macros may be written in any order.

Example:

DISPLAY_CHAR MACRO CHAR

 PUSH AX

 PUSH DX

 MOV AH , 02H

 MOV DL , CHAR

 INT 21H

 POP DX

 POP AX

ENDM

CRLF MACRO

 DIPLAY_CHAR 0DH

 DISPLAY_CHAR 0AH

ENDM

A macro calling a procedure

A macro can contain calls to one or more procedures.

Example:

MDSPLY_STRING MACRO STRING

PUSH DX

MOV DX , OFFSET STRING

CALL DSPLY_STRING

POP DX

ENDM

. . .

.DATA

 MESSAGE1 DB ‘ICS 232 ’, 0DH, 0AH, ‘$’

 MESSAGE2 DB ‘ICS 301 ’, 0DH, 0AH, ‘$’

 . . .

.CODE

. . .

MAIN PROC

 . . .

 MDSPLY_STRING MESSAGE1

 . . .

 MDSPLY_STRING MESSAGE2

 . . .

MAIN ENDP

DSPLY_STRING PROC

 PUSH AX

 MOV AH, 09H

 INT 21H

 POP AX

 RET

 DSPLY_STRING ENDP

 END MAIN

The LOCAL directive for generating unique labels in a macro expansion

A macro with loops or jumps contains one or more labels. If such a macro is called more than once in a program, duplicate labels appear when the macro calls are expanded, resulting in an assembly error. Similarly a macro containing a data definition, if called more than once, will result in an assembly error. This problem can be avoided by using local labels or local identifiers in the macro. To declare them, we use the LOCAL directive, whose syntax is:

LOCAL list-of-labels

where list-of-labels is a list of labels and/or identifiers separated by commas. The LOCAL directive must be the first statement after the MACRO directive. Not even a comment can separate a MACRO directive and a LOCAL directive.

Every time a macro is expanded, MASM or TASM assigns a unique label to each local label or identifier in each expansion. These labels are of the form:

??d1d2d3d4

where di is a hexadecimal digit. Thus the labels range from ??0000 to ??FFFF. Since a local label or identifier is assigned the next unique label from the list ??0000 - ??FFFF in each macro expansion, a local label or identifier may have the same name as a global label or a global identifier (i.e. a label or identifier defined outside a macro).

Example:

MIN2 MACRO FIRST , SECOND

 LOCAL END_IF

 ;; Puts minimum of two signed words in the AX register

 MOV AX , FIRST

 CMP AX , SECOND

 JLE END_IF

 MOV AX , SECOND

 END_IF:

ENDM

This macro returns, in the AX register, the minimum of arguments corresponding to the parameters FIRST and SECOND. The contents of the register AX are compared to the parameter SECOND, if AX is less or equal to SECOND a jump is taken to the label END_IF; otherwise the instruction MOV AX , SECOND is executed. (Jumps, Conditional jumps, and Loop instructions will be discussed in detail in the next chapter)

Assuming that call:

MIN2 VAR1 , VAR2

to the above macro is the first macro call in the program, it will expand to:

MOV AX , VAR1

CMP AX , VAR2

JLE ??0000

MOV AX , VAR2

 ??0000:

and assuming that the call:

MIN2 VAR4 , VAR2

to the above macro is the third macro call in the program, after a second macro call to a different macro in which four local labels where defined, the call will expand to:

MOV AX , VAR4

CMP AX , VAR2

JLE ??0005

MOV AX , VAR2

 ??0005:

Visibility of global identifiers in a macro

A global identifier is an identifier defined in the program body outside all macros. An instruction in a macro can reference any global identifier in the program in which the macro is defined. However, an instruction defined outside a macro cannot reference a local identifier. References within a macro to an identifier that is both local to that macro and global to the program within which the macro appears will be resolved in favor of its local definition.

TOWNS MACRO

 LOCAL TOWN, DONE

PUSH AX

PUSH DX

PUSH DS

MOV AX, CS

MOV DS, AX

MOV DX , OFFSET TOWN

; local TOWN

CALL DISPLAY_STRING

; DISPLAY_STRING is a global identifier

POP DS

POP AX

MOV DX , OFFSET COUNTRY
; COUNTRY is a global identifier

CALL DISPLAY_STRING

POP DX

 JMP DONE

 TOWN DB 'DHAHRAN', 0DH , 0AH , '$'

 DONE:

ENDM

.MODEL SMALL

.STACK 0400H

.DATA

 TOWN DB 'RIYADH', 0DH , 0AH , '$'

 COUNTRY DB 'SAUDI ARABIA', 0DH , 0AH , '$'

.CODE

 MAIN PROC

 MOV AX, @DATA

 MOV DS , AX

 MOV DX , OFFSET TOWN

;global TOWN

 CALL DISPLAY_STRING

 TOWNS

; a macro call

 MOV AX , 4C00H

 INT 21H

 MAIN ENDP

 DISPLAY_STRING PROC

 PUSH AX

 MOV AH , 09H

 INT 21H

 POP AX

 RET

 DISPLAY_STRING ENDP

END MAIN

The output of the previous program is:

RIYADH

DHAHRAN

SAUDI ARABIA

PLACING MACRO DEFINITIONS IN THEIR OWN FILE
Macro definitions can be placed in their own file. Common extensions to the text file containing macro definitions are LIB, H, and MAC. We use the INCLUDE directive to indicate that an assembly language program file will include a file that contains external macro definitions. Example:

INCLUDE C:\PROGS\MACROS.LIB

A file containing macro definitions may contain macros that are not required in a particular assembly language program. To remove these unwanted macros in the program we first INCLUDE all the macros and then use the PURGE directive to remove the unwanted ones. For example suppose a macro file MACROS.H contains macros PROMPT and DIVIDE which are not required in the current assembly language program, we write:

INCLUDE C:\MACROS.H

PURGE PROMPT , DIVIDE

MACROS versus PROCEDURES

Both procedures and macros can improve a program when, if they are not used, the program would contain repeated occurrences of a group of instructions. The decision of whether to use a macro or procedure is often based on one or more of the following considerations:

1. Assembly time

A program containing macros usually takes longer to assemble than a similar program containing procedures, because it takes time to expand the macros.

2. Execution time

The code generated by a macro expansion generally executes faster than a procedure call, because there is no overhead of the CALL and RET instructions.

3. Program size

A program with macros is generally larger than a similar program with procedures, because each macro call inserts a new copy of its code in the program.

4. Parameter passing

Parameter passing mechanism of macros is more convenient than parameter passing mechanisms of procedures.

SYSTEM-DEFINED MACROS

MASM 6.0 and latter versions supports a number of system-defined macro calls. Examples of such macro calls are:

.STARTUP and .EXIT

.STARTUP macro call in a program with a data segment directs the assembler to generate instructions that, when executed, set the DS register to address the data segment.

.EXIT macro call directs the assembler to generate the instructions that, when executed, will return control to DOS. The call .EXIT generates:

MOV AH , 4CH

INT 21H

and the call .EXIT 0 generates:

MOV AL , 0

MOV AH , 4CH

INT 21H

DEFAULT VALUES FOR MACRO ARGUMENTS

In MASM 6.0 and above, an argument to a macro may have a default value.

Example:
DISPLAY_STRING MACRO string , length , flag := < 0 >

. . .

ENDM

The dummy parameter flag := < 0 > indicates that if the third actual argument is omitted from a call to this macro, then the default value of 0 is assumed for that argument.
