Defining and Using Complex Data Types

Arrays and Strings

An array is a sequential collection of variables, all of the same size and type.

A string is an array of characters. For example, in the string “ABC,” each letter is an element.

Declaring and Referencing 1D-Arrays

The following examples declare the arrays warray and xarray:
warray WORD 1, 2, 3, 4
xarray DWORD 0FFFFFFFFh, 789ABCDEh

Initializer lists of array declarations can span multiple lines:
big BYTE 21, 22, 23, 24, 25,
 26, 27, 28

somelist WORD 10,
 20,
 30

The DUP Operator

You can also declare an array with the DUP operator:
count DUP (initialvalue [[, initialvalue]]...)

The following examples show various ways to allocate data elements with the DUP operator:
array DWORD 10 DUP (1) ; 10 doubleword initialized to 1
buffer BYTE 256 DUP (?) ; 256-byte buffer

masks BYTE 20 DUP (040h, 020h, 04h, 02h)
; 80-byte buffer

three_d DWORD 5 DUP (5 DUP (5 DUP (0))) ; 125 doublewords

Referencing Arrays

Each element in an array is referenced with an index number, beginning with zero. The array index appears in brackets after the array name, as in: array[9]

Assembly-language indexes differ from indexes in high-level languages. In high-level languages the index number always corresponds to the element’s position regardless of the element’s size.

In assembly language, an element’s index refers to the number of bytes between the element and the start of the array. Thus, for the array:
wprime WORD 1, 3, 5, 7, 11, 13, 17

wprime[4] represents the third element (5), which is 4 bytes from the beginning of the array. Similarly, the expression wprime[6] represents the fourth element (7) and wprime[10] represents the sixth element (13).

A variable name is a symbol that represents the contents of a particular address in memory. Thus, if the array wprime begins at address DS:2400h, the reference wprime[6] means to the processor “the word value contained in the DS segment at offset 2400h-plus-6-bytes.”
Thus you can substitute the plus operator (+) for brackets, as in:
wprime[9]
wprime+9

Since brackets simply add a number to an address, you don’t need them when referencing the first element. Thus, wprime and wprime[0] both refer to the first element of the array wprime.

Example:

W dw 10,20,30,40,50,60

The address of the array variable is called the base address of the array

If the offset address of the array is 0200h, the array looks like this in memory:

element offset address symbolic address contents
 1
 0200h
W

10
 2
 0202h
W+2

 20
 3
 0204h
W+4

 30
 4
 0206h
W+6

 40

Location of Array Elements

The offset address of an array element may be computed by adding a constant to the base address:

If A is an array and S denotes the number of bytes in an element, then the offset address of element A[i] is A + i*S

To exchange the 9th and 24th element in an word array W you can use:

mov ax,W+18
; ax has 9th element of W
xchg W+48, ax
; ax has 24th element of W
mov W+18, ax
; complete exchange

LENGTHOF, SIZEOF, and TYPE for Arrays

The LENGTHOF operator returns the number of elements in the array. The SIZEOF operator returns the number of bytes used by the initializers in the array definition. TYPE returns the size of the elements of the array. The following examples illustrate these operators:
array WORD 40 DUP (5)

larray EQU LENGTHOF array ; 40 elements
sarray EQU SIZEOF array ; 80 bytes
tarray EQU TYPE array ; 2 bytes per element

num DWORD 4, 5, 6, 7, 8, 9, 10, 11

lnum EQU LENGTHOF num ; 8 elements
snum EQU SIZEOF num ; 32 bytes
tnum EQU TYPE num ; 4 bytes per element

warray WORD 40 DUP (40 DUP (5))

len EQU LENGTHOF warray ; 1600 elements
siz EQU SIZEOF warray ; 3200 bytes
typ EQU TYPE warray ; 2 bytes per element

Declaring and Initializing Strings

A string is an array of characters. Initializing a string like "Hello, there" allocates and initializes 1 byte for each character in the string. An initialized string can be no longer than 255 characters.
As with arrays, string initializers can span multiple lines. The line must end with a comma if you want the string to continue to the next line.
str1 BYTE "This is a long string that does not ",

 "fit on one line."

Strings must be enclosed in single (') or double (") quotation marks. To put a single quotation mark inside a string enclosed by single quotation marks, use two single quotation marks. Likewise, if you need quotation marks inside a string enclosed by double quotation marks, use two sets. These examples show the various uses of quotation marks:
char BYTE 'a'
message BYTE "That's the message." ; That's the message.
warn BYTE 'Can''t find file.'
; Can't find file.
string BYTE "This ""value"" not found."
; This "value" not found.

You can always use single quotation marks inside a string enclosed by double quotation marks and vice versa.

The ? Initializer

You do not have to initialize an array. The ? operator lets you allocate space for the array without placing specific values in it.

The actual values stored in arrays allocated with ? depend on certain conditions. The ? initializer is treated as a zero in a DUP statement that contains initializers in addition to the ? initializer. If the ? initializer does not appear in a DUP statement, or if the DUP statement contains only ? initializers, the assembler leaves the allocated space unspecified.

LENGTHOF, SIZEOF, and TYPE for Strings

Because strings are simply arrays of byte elements, the LENGTHOF, SIZEOF, and TYPE operators behave as illustrated in this example:
msg BYTE "This string extends ",

 "over three ",

"lines."

lmsg EQU LENGTHOF msg
 ; 37 elements
smsg EQU SIZEOF msg
; 37 bytes
tmsg EQU TYPE msg
; 1 byte per element

Two-Dimensional Arrays

A 2D-array can be viewed as consisting of rows and columns:

A[0,0] A[0,1] A[0,2] A[0,3]
A[1,0] A[1,1] A[1,2] A[1,3]
A[2,0] A[2,1] A[2,2] A[2,3]

Locating an Element in a 2D Array

Elements may be stored in row-major order or column-major order

Row Major Ordering

Row major ordering assigns successive elements, row-wise, to successive memory locations.

[image: image1.jpg]wWN = O

Memory

Y

o[~ o]lO

HEE

NE BN

5 A33]
4 A32]
3 A31]
2 Al20]
1 AR3]
0 Al22]
A21]
A20]
Al
A2
Al
ALl
Aog|
Aoz
A1)
Ao.g]

Let A be an M x N array in row-major order, where the size of each element is S bytes.

· To find the offset address of A[i,j]:

· Find where row i begins

Row 0 begins at offset A -- row i begins at offset A + i*N*S

· Find the offset of the jth element in that row

The jth element is stored j*S bytes from the beginning of the row

So, the offset address of A[i,j] is A+(i*N + j)*S
Thus, for a two-dimensional column major array:

Element_Address = Base Address +

 (rowIndex * NumberOfColumns + columnIndex) * ElementSize

Column Major Ordering

Column major ordering assigns successive elements, column-wise, to successive memory locations.

[image: image2.jpg]wWN = O

Memory

0128

of1]z2]a

45|67

8 |9 1011

12[13 14 |15 P
P
I

5 A33]
4 A23]
3 A13]
2 A03]
1 A[32]
0 Al22|
A2
A2
A3
A1)
AL
A1)
AlS0]
A2.0]
Al
A0

Let A be an M x N array in column-major order, where the size of each element is S bytes.

· To find the offset address of A[i,j] :

· Find where column j begins

Column 0 begins at offset A -- column j begins at offset A + j*M*S

· Find the offset of the ith element in that column

The ith element is stored i*S bytes from the beginning of the column

So, the offset address of A[i,j] is A+(j*M + i)*S
Thus, for a two-dimensional column major array:

Element_Address = Base_Address +

 (columnIndex * numberOfRows + rowIndex) * Element_Size

Declaring and Referencing 2D-Arrays

A two-dimensional array is declared as a 1D-array:

Example:

Array1 byte
3 * 5 DUP(?)

Array2 word 4 DUP(6 DUP(?))
Example: 3 quiz grades for each of 4 students are stored in row-major, find the sum of the last row of the array:

.DATA

QuizGrade word 40,
70,
55,

 87,
90,
79,

 65,
80,
75,

 50,
60,
45

.CODE

MOV BX, @DATA

MOV DS, BX

MOV AX, QuizGrade + 18

; QuizGrade[3, 0]

ADD AX, QuizGrade + 20

; + QuizGrade[3, 1]

ADD AX, QuizGrade + 22

; + QuizGrade[3, 2]
Structures

A structure is a group variables of possibly dissimilar data types that can be accessed as a unit or by any of its components.

Each field in a structure has an offset relative to the first byte of the structure. The size of a structure is the sum of its components.
Declaring Structure Types

When a structure type is declared, a template for data is created not a variable. The template states the sizes and, optionally, the initial values in the structure, but allocates no memory.

The STRUCT or STRUC keyword marks the beginning of a type declaration for a structure. The format for STRUCT type declarations is:
name STRUCT
 fieldDeclarations
name ENDS
The fieldDeclarations is a series of one or more variable declarations. You can declare default initial values individually or with the DUP operator. You can nest structures.

Examples:

Date STRUCT
day db 1

;Day field, default value = 1
month db ?

; Month field, no default value
year dw 2003

;Year field, default = 2003
Date ENDS
STUDENT STRUCT

StudentName BYTE 40 DUP(?)

ID
 WORD ?

QuizScore WORD 5 DUP (?)

STUDENT ENDS

ITEM STRUCT

ItemName BYTE 'Item Name'

 ItemNumber WORD ?

 ItemPrice
 WORD ?
ITEM ENDS

Structure field names must be unique within a nesting level because they represent the offset from the beginning of the structure to the corresponding field.

A label elsewhere in the code may have the same name as a structure field, but a text macro cannot. Also, field names between structures need not be unique.

Declaring Structure Variables

A structure variable declaration starts with a label, followed by the structure name, and ending with a list of default values in angle brackets.

The syntax for defining a structure variable is:

[[VariableName]] StructureTypeName < [[initializer [[,initializer]]...]] >
[[VariableName]] StructureTypeName { [[initializer [[,initializer]]...]] }

[[VariableName]] StructureTypeName constant DUP ({ [[initializer [[,initializer]]...]] })

Array and string initializers cannot be larger than their defaults.

The list of initializers can be broken only after a comma unless you end the line with a continuation character (\).

You can also use the line continuation character to extend a line as shown in the Item4 declaration that follows.

Examples:

.DATA

birthday Date <>

; 1-0-2003
today Date <16,3>

; 16-3-2003
registrationDay Date <15,4,1998>
 ; 15-4-1998
payday Date <,11,>

; 1-11-2003

yesterday Date {15, 3, 2003}

Item1 ITEM < >

; Accepts default initializers
Item2 ITEM { }

; Accepts default initializers
Item3 ITEM <'Bolts', 126, 5>
; Overrides default value of the fields
Item4 ITEM { \
 'Screws',
; Item name
 125 ,

; Part number

 10 \

; Price
 }

Uninitialized default field values are set to zero, unless all fields in the structure are un-initialized.

Using Structure Variables

The fields within structure variables can be accessed by the “dot operator”. The syntax is:
StructureVariable. FieldName

For example

mov today.day, 17
; change day to 17
mov ax, today.year

; put year into ax
add today.year, cx

; add cx to year field
mov bx, OFFSET today

; Load structure address

Nested Structures

Structures can be nested.

Example:

NAMELEN
 EQU
24

Employee
STRUCT

Name
DB
NAMELEN DUP (?)

ID
DW ?

HireDate
Date
<>

RetirementDate
Date
<>

Employee ENDS

employee1 Employee {“Zubeir Qasim”, 693754, {12, 7, 1997}, {12, 7, 20013}}
To declare a named structure inside another structure, give the STRUCT keyword first and then define a label for it. The ENDS directive of such a nested structure must not have a label.

Example:
 INVENTORY STRUCT

 quantity WORD ?

ItemInfo ITEM { }

 STRUCT supplier

 supplierID WORD ?

 name BYTE 60 DUP(?)

 address BYTE 80 DUP(?)

ENDS
 INVENTORY ENDS

yearly INVENTORY <62500, < “hammer”, 450, 12>, \

 <5987, “National Steel Company”, “Jubail, Saudi Arabia”>>

 . . .
 mov ax, yearly.ItemInfo.ItemNumber
 mov bx, yearly.supplier.supplierID;

Arrays of Structures

You can define an array of structures using the DUP operator or by creating a list of structures.

NUMEMPS
 EQU
100

EMPLIST
Employee
NUMEMPS DUP (<>)
Item8 ITEM {'Bolts', 126, 10},

{'Pliers',139, 7},

{'Saw', 414, 20}

LENGTHOF, SIZEOF, and TYPE for Structures

The size of a structure variable determined by SIZEOF is the offset of the last field, plus the size of the last field.
INFO STRUCT
 buffer BYTE 100 DUP (?)
 crlf BYTE 13, 10
 query BYTE 'Filename'
INFO ENDS

info1 INFO { , , 'Dir' }

lotsof INFO { , , 'file1' },
 { , , 'file2'},
 { , , 'file3' }

sinfo1 EQU SIZEOF info1 ;110 = number of bytes in initializers

linfo1 EQU LENGTHOF info1 ; 1 = number of items

tinfo1 EQU TYPE info1 ; 110 = same as size

slotsof EQU SIZEOF lotsof ; 116*3 = number of bytes in

 ;initializers

llotsof EQU LENGTHOF lotsof ; 3 = number of items

tlotsof EQU TYPE lotsof ; 110 = same as size for structure
 ; of type INFO

