PAGE
2

CONTROL STRUCTURES

The Processor Status and the FLAGS Register

The circuits in the CPU can perform simple decision-making based on the current state of the processor. For the 8086/8088 processors, the processor state is implemented as nine bits, called flags, in the Flags register. Each decision made by the 8086/8088 CPU is based on the values of these flags.

The flags are classified as either status flags or control flags. There are 6 status flags: Carry flag (CF), Parity flag (PF), Auxiliary carry flag (AF), Zero flag (ZF), Sign flag (SF), and Overflow flag (OF). There are 3 control flags: Trap flag (TF), Interrupt flag (IF), and Direction flag (DF).

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	
	
	
	
	OF
	DF
	IF
	TF
	SF
	ZF
	
	AF
	
	PF
	
	CF

The Flags register: Bits 8, 9, and 10 are the Control flags.
The Status flags reflect the result of some instructions executed by the processor. For example, when a subtraction operation results in a zero, the Zero flag (ZF) is set to 1 (true). The Control flags enable or disable certain operations of the processor. For example, if the Interrupt flag (IF) is cleared to 0, inputs from the keyboard are ignored by the processor.

Most 8086/8088 instructions can be classified into three categories:

(i) Instructions that modify one or more Status flags. (Status flags modifying instructions).

(ii) Instructions that modify one or more Control flags. (Control flags modifying instructions).

(iii) Instructions that do not modify any flag.

FLOW CONTROL INSTRUCTIONS

· The JMP (Jump), CALL, RET, and IRET instructions transfer control unconditionally to another part of the program.

· The conditional jump instructions, except JCXZ and JECXZ, transfer control to another part of the program each depending on one or more Status flag settings. These instructions are of the form Jcondition, where condition is represented by one, two, or three letters.

· JCXZ and JECXZ transfer control to another part of the program if CX = 0 and ECX = 0 respectively.

· The LOOP instruction decrements CX and transfer control to the beginning of its loop if CX (0. If CX = 0 before the LOOP instruction, it is decremented to -1 at the end of the first iteration of the loop. This -1 is treated as the unsigned number 65535, thus the loop will iterate 65536 times.

· The conditional loop instructions LOOPE and LOOPZ, which are equivalent, decrement CX and transfer control to the beginning of their loops if CX (0 and ZF = 1. If CX (0 before the loop, the loop is executed once.

· The conditional loop instructions LOOPNE and LOOPNZ, which are equivalent, decrement CX and transfer control to the beginning of their loops if CX (0 and ZF = 0. If CX (0 before the loop, the loop is executed once.

THE JMP INSTRUCTION (Unconditional Jump)

The JMP instruction, whose syntax is:

JMP target

unconditionally transfers control to the target location. There are two major categories of JMP instructions:

(i) Intrasegment jump: A jump to a statement in the same code segment.

(ii) Intersegment or far jump: A jump to a statement in a different code segment.
Intrasegment jumps simply change the value in the IP register. Intersegment jumps change both CS and IP.

Direct and Indirect jumps

A jump can either be direct or indirect. In a direct jump the address of the target is obtained from the instruction itself, i.e., the operand of the JMP instruction is a label. Example:

JMP L2

 In an indirect jump the address of the target is obtained from a 16-bit or a 32-bit variable or a general-purpose register referenced by the JMP instruction. Example:

JMP AX

CONDITIONAL JUMP INSTRUCTIONS

Conditional jumps are of the general form:
 Jcondition StatementLabel

where (i) condition is one, two, or three letters (ii) the StatementLabel must in the current code segment and should be within -128 to +127 bytes from the conditional jump instruction.

How the CPU implements a conditional jump
Except for the JCXZ (Jump if the value in the CX register is zero) and JECXZ (Jump if the value in ECX register is zero) instruction, every conditional jump instruction must follow a status-flag modifying instruction, either immediately or otherwise. It is the settings of the flags by this status-flag modifying instruction to which the conditional jump reacts:
When a conditional jump is executed, the CPU checks the flags register. If the conditions for the jump (expressed as one or more status flag settings) are true, the CPU adjusts the IP register to point to the destination label, so that the instruction at this label will be executed next. If the jump condition is false, then the IP register is not altered; this means that the next sequential instruction will be executed.

Note: The conditional jump instructions do not modify the flags; they only react to the current flag values.

Example:
. . .

SUB AX , BX

JZ L2

; jump to L2 if the result is zero

.

.

.

L2:

Making a conditional jump to “jump” to a label outside the range -128 to 127 bytes

A conditional jump cannot jump to a label outside the range -128 to +127 bytes. To overcome this, change the conditional jump to its opposite, and then use a JMP instruction to jump to the label. Example: Suppose label L2 in the following fragment is outside the range:

. . .

SUB AX , BX

JZ L2

; jump to L2 if the result is zero

.

.

.

L2:

then change the fragment to the following equivalent fragment:

. . .

SUB AX , BX

JNZ L1

JMP L2

L1:
.

.

.

L2:

MASM 6.0 and above can automate jump-extending for you. If you target a conditional jump to a label farther than 128 bytes away, MASM rewrites the instruction with an unconditional jump, which ensures that the jump can reach its target.

The comparison of signed numbers and the comparison of unsigned numbers: THE CMP (Compare) INSTRUCTION

· A signed number can be greater, less, or equal to another signed number.

· An unsigned number can be above, below, or equal to another unsigned number.

The CMP instruction, whose syntax is:

CMP Operand1 , Operand2

compares two operands, and then sets or clears the following flags: AF , CF , OF , PF , and ZF. The instruction performs the subtraction:

Operand1 - Operand2

without modifying any of its operands.

Note:

· The two operands must be of the same size, except in a comparison of the form:

CMP Operand, Immediate

 Immediate may be of a smaller size than Operand.

· Both operands may not be memory locations at the same time.

· No operand may be a segment register.

· Operand1 may not be an immediate value.

Conditional jumps can be classified into three: (1) Signed jumps, (2) Unsigned jumps, and (3) Single flag jumps.

	
	
	SIGNED JUMPS
	UNSIGNED JUMPS

	condition
	equivalent condition
	mnemonic
	jump condition
	mnemonic
	jump condition

	(
	not (
	JG , JNLE
	ZF = 0 and SF = OF
	JA , JNBE
	CF = 0 and ZF = 0

	(
	not (
	JGE , JNL
	SF = OF
	JAE , JNB
	CF = 0

	(
	not (
	JL , JNGE
	SF (OF
	JB , JNAE
	CF = 1

	(
	not (

	JLE , JNG
	ZF = 1 or SF (OF
	JBE , JNA
	CF = 1 or ZF = 1

Single flag jumps
	mnemonic
	jump condition
	description

	JE , JZ
	ZF = 1
	Jump if equal

	JNE , JNZ
	ZF = 0
	Jump if not equal

	JC
	CF = 1
	Jump if carry

	JNC
	CF = 0
	Jump if no carry

	JO
	OF = 1
	Jump if overflow

	JNO
	OF = 0
	Jump if no overflow

	JS
	SF = 1
	Jump if sign negative

	JNS
	SF = 0
	Jump if sign is not negative

	JP , JPE
	PF = 1
	Jump if parity even, i.e., if there is an even number of 1 bits in the result.

	JNP , JPO
	PF = 0
	Jump if parity odd, i.e., if there is an odd number of 1 bits in the result.

Example: Write a loop to display: AAAAAA

Solution:
. . .

MOV CX , 6

MOV AH , 02H

MOV DL , ‘A’

 L1:
INT 21H

DEC CX

JNZ L1

. . .

an alternative solution is:

. . .

MOV CX , 6

MOV AH , 02H

MOV DL , ‘A’

 L1:
INT 21H

DEC CX

JCXZ L2

JMP L1

 L2:

. . .

Example: Write a loop to display: ABCDEFG

Solution:
. . .

MOV BL , 7

MOV AH , 02H

MOV DL , ‘A’

 START:
INT 21H

INC DL

DEC BL

JNZ START

. . .

an alternative solution is:

. . .

MOV AH , 02H

MOV DL , ‘A’

 LABEL1:
INT 21H

INC DL

CMP DL , ‘G’

JBE LABEL1

. . .

Example: Write a loop to display: Z

Y

X

W

V

U

Solution:

MOV AH , 02H

MOV BL , ‘Z’

L2:
MOV DL , BL

INT 21H

MOV DL , 0DH

; generate CR and LF

INT 21H

;

MOV DL , 0AH

;

INT 21H

;

DEC BL

CMP BL , ‘U’

JAE L2

Example: Write a procedure which sets the Carry Flag if the AL register contains an ASCII digit, i.e., ‘0’ , ‘1’ , ‘2’ , . . . , or ‘9’, otherwise it clears the Carry Flag.

Solution: The state of the Carry Flag following the execution of the instruction:

CMP Destination , Source

is one of:

	
	State of Carry Flag

	Destination (Source
	0

	Destination = Source
	0

	Destination (Source
	1

Based on the above table, the required procedure is:

AL_IS_DIGIT? PROC

CMP AL , 30H

; CF = 1 if AL (‘0’ otherwise CF = 0

CMC

; CF = 0 if AL (‘0’ otherwise CF = 1

JNC DONE

; Jump to DONE if CF = 0

CMP AL , 3AH

; CF = 1 if AL ((‘9’ + 1) otherwise CF = 0

DONE:
RET

AL_IS_DIGIT? ENDP

A typical call to the above procedure is:

CALL AL_IS_DIGIT?

JC L4

; Jump to L4 if AL contains an ASCII digit

.

. (Action to be taken if AL does not contain an ASCII digit)

.

JMP L5

 L4:
.

. (Action to be taken if AL contains an ASCII digit)
 L5:
IMPLEMENTATION OF HIGH-LEVEL LANGUAGE CONTROL STRUCTURES

Note: In what follows it is assumed that OP, OP1 and OP2 are signed operands such that in any comparison there is no assembly error, and statement' is the assembly language translation of statement.

1. IF-ENDIF STATEMENT

(a) IF(OP1 = OP2)THEN

 statement1

 statement2

ENDIF

can be translated to:

CMP OP1 , OP2

JE NEXT_LABEL

JMP END_IF

NEXT_LABEL:

 statement1’

 statement2’

END_IF:

however, if the condition is reversed a better solution is obtained:

CMP OP1 , OP2

JNE END_IF

 statement1’

 statement2’

END_IF:

(b) IF((AL > OP1) OR (AL >= 0P2))THEN

 statement

 ENDIF

can be translated to:

CMP AL , OP1

JG L1

CMP AL , OP2

JGE L1

JMP L2

 L1: statement’

 L2:

(c) IF((AL > OP1) AND (AL >= OP2))THEN

statement’

 ENDIF

 can be translated to:

 CMP AL , OP1

 JG L1

 JMP END_IF

 L1:
 CMP AL , OP2

 JGE L2

 JMP END_IF

 L2: statement’

 END_IF:

however a better solution is obtained by reversing each of the conditions and jumping to an END_IF label when any reversed condition is true:

CMP AL , OP1

JNG END_IF

CMP AL , OP2

JNGE END_IF

statement’

 END_IF:

2.
IF-ELSE-ENDIF STATEMENT

IF(OP1 <= OP2)THEN

statement1

statement2

ELSE

statement3

ENDIF

can be translated to:

CMP OP1 , OP2

JLE L1

statement3’

JMP END_IF

L1:
statement1’

statement2’

END_IF:

however, if the condition is reversed the following solution is obtained:

CMP OP1 , OP2

JNLE L1

statement1’

statement2’

JMP END_IF

L1:
statement3’

END_IF:

3. WHILE LOOP (while loop condition is true)

WHILE(OP1 < OP2)DO
 statement1
 statement2
ENDWHILE
can be translated to:
START: CMP OP1 , OP2
 JL WHILE_BODY
 JMP END_WHILE
WHILE_BODY:
statement1’
statement2’
JMP START
END_WHILE:
 however, a better solution is obtained by reversing the condition and exiting the loop when the reversed condition becomes true:
 START: CMP OP1 , OP2
 JNL END_WHILE
statement1’
statement2’
JMP START
END_WHILE:
4. DO-WHILE (do, while loop condition is true)
DO
 statement1
 statement2
WHILE(OP1 < OP2)
can be translated to:
START: statement1’
statement2’
CMP OP1 , OP2
JL START
5. REPEAT- UNTIL LOOP (Repeat until the loop condition becomes true)
 REPEAT
 statement1
 statement2
 statement3
 UNTIL(OP1 = OP2) OR (OP1 > 0P3)
can be translated to:
SREPEAT:
 statement1’
 statement2’
 statement3’
 CMP OP1 , OP2
 JE END_REPEAT
 CMP OP1 , OP3
 JG END_REPEAT
 JMP SREPEAT
END_REPEAT:
however, a better solution is obtained by reversing the last condition:
SREPEAT:
 statement1’
 statement2’
 statement3’
 CMP OP1 , OP2
 JE END_REPEAT
 CMP OP1 , OP3
 JNG SREPEAT
END_REPEAT:
6. FOR LOOP
for(i = 3 ; i <= 40 ; i++)
 {
 statement1 ;
 statement2 ;
 statement3 ;
 }
can be translated to:
 MOV BL , 3
START: CMP BL , 40
 JA END_FOR
statement1’
 statement2’
 statement3’
 INC BL
 JMP START
END_FOR:
Note: We assume that BL is not modified in any of the statements: statement1’, statement2’, and statement3’
7. THE SWITCH STATEMENT
switch(OP)
 {
 case const1: statement1 ;
 break ;
 case const2: statement2 ;
 break ;
. . .
 case constN: statementN ;
 break ;
default:
 statementN+1 ;
}
can be translated to:
CMP OP , const1
JE L1
CMP OP , const2
JE L2
. . .
CMP OP , constN
JE LN
statementN+1’
JMP END_SWITCH
L1: statement1’
JMP END_SWITCH
L2: statement2’
 JMP END_SWITCH
 . . .

LN: statementN’
END_SWITCH:
THE LOOP INSTRUCTION

The syntax of the LOOP instruction is:

LOOP StatementLabel

where StatementLabel is the label of a statement, in the current code segment, that is within -128 bytes from the loop instruction. (Note: The label may be within +127 bytes from the LOOP instruction; but although such loops are syntactically correct, they are meaningless; the body of the loop is not executed).

Note: If the label is outside the range, the assembler generates the error: “jump destination too far”. Unlike a conditional jump, the range of a loop is not automatically extended.

The LOOP instruction decrements CX and transfer control to the beginning of its loop if CX (0; otherwise the next sequential instruction in the program is executed. If CX = 0 before the loop it is decremented to -1 at the end of the first iteration of the loop. This -1 is treated as the unsigned number 65535, thus the loop will iterate 65536 times. Similarly if CX = -n before the loop, the loop will iterate m + 1 times, where m is the 2’s complement of -n.

The LOOP instruction is used to implement a for-loop that will execute at least once and in which the loop index decrements by one in each loop iteration, and the loop terminates when the loop index becomes zero. For example, the loop:

for(k = 50 ; k > 0 ; k--)

 {

 statement1 ;

 statement2 ;

 }
can be implemented as:

MOV CX , 50

START_FOR:
statement1’

statement2’

LOOP START_FOR
Note: The value of CX must not be modified, without being saved and restored, within the loop.

If the number of iterations of the LOOP instruction is computed dynamically, it is better to check that that number is positive before the loop is executed; otherwise the loop will be executed many times:

MOV CX , NUMBER

CMP CX , 0

JLE END_FOR

START_FOR:

. . .

LOOP START_FOR

END_FOR:

The LOOP instruction can also be used to implement for-loops in which the loop index is incremented, if a general purpose register of an appropriate size, other than CX, or a variable of an appropriate size is used as the loop index. For example, the loop:

 for(i = 5 ; i <= 100 ; i++)

 {

 statement1 ;

 statement2 ;

 }

can be implemented as:

MOV BL , 5

MOV CX , 96

 L1:
statement1’

statement2’

INC BL

LOOP L1

assuming that (a) BL and CX are not modified by statement1’ and statement2’ , and (b) BL is used in at least one of the statements.

Nested LOOP instructions
LOOP instructions can be nested provided the CX register is saved before entering the inner loop and then restored when exiting the inner loop. For example, the nested for-loops:

for(i = 40 ; i > 0 ; i--)

 {

 statement1 ;

 statement2 ;

 for(k = 10 ; k > 0 ; k--)

 {

 statement3 ;

 statement4 ;

 }

 statement5 ;

 }

can be implemented as:

MOV CX , 40

OUTER_FOR:
statement1’

statement2’

PUSH CX

MOV CX , 10

INNER_FOR:
statement3’

statement4’

LOOP INNER_FOR

POP CX

statement5’

LOOP OUTER_FOR

Example: Write nested LOOP instructions to display the pattern:

AxxxxxxxxxxAxxxxxxxxxxAxxxxxxxxxxAxxxxxxxxxx

Solution:
. . .

MOV AH , 02H

MOV CX , 4

 L1:
MOV DL , ‘A’

INT 21H

PUSH CX

MOV CX , 10

MOV DL , ‘x’

 L2:
INT 21H

LOOP L2

POP CX

LOOP L1

. . .

THE LOOPE (Loop while Equal) OR LOOPZ (Loop while zero) INSTRUCTION

LOOPE and LOOPZ are different mnemonics for the same instruction. The syntax of the LOOPE instruction is:

LOOPE StatementLabel

where StatementLabel is the label of a statement, in the current code segment, that is within -128 bytes from the loop instruction. (Note: The label may be within +127 bytes from the LOOPE instruction; but although such loops are syntactically correct, they are meaningless; the body of the loop is not executed).

Note: If the label is outside the range, the assembler generates the error: “jump destination too far”. Unlike a conditional jump, the range of a conditional loop is not automatically extended.
The LOOPE instruction decrements CX and transfer control to the beginning of its loop if CX (0 and ZF = 1; otherwise the next sequential instruction in the program is executed. If CX (0 before the loop, the loop is executed once.

The LOOPE instruction is used to implement for-loops in which the existence of an equal condition at the end of the loop is used to repeat the loop, i.e., loops of the form:

for(k = 50 ; k > 0 ; k--)

 {

 statement1 ;

 statement2 ;

 if(OP1 (OP2)

 break ;

 }

the above for-loop can be implemented as:

MOV CX , 50

START_FOR:
statement1’

statement2’

CMP OP1 , OP2

LOOPE START_FOR

Note: A flag modifying instruction should not appear between the CMP which determines loop continuation or termination and the conditional loop instruction; otherwise the logic of the loop will change.

Example: Write a loop that reads 16 characters if each is ‘Y’, otherwise the loop terminates. The count of the number of characters read must be left in the BL register.

Solution:
MOV BL , -1

MOV AH, 01H

MOV CX , 16

 START:
INC BL

; This flag modifying instruction cannot appear between CMP and LOOPE

INT 21H

CMP AL , ‘Y’

LOOPE START

JNZ L1

INC BL

L1:

THE LOOPNE (Loop while Not Equal) OR LOOPNZ (Loop while not zero)

INSTRUCTION

LOOPNE and LOOPNZ are different mnemonics for the same instruction. The syntax of the LOOPNE instruction is:

LOOPNE StatementLabel

where StatementLabel is the label of a statement, in the current code segment, that is within -128 bytes from the loop instruction. (Note: The label may be within +127 bytes from the LOOPNE instruction; but although such loops are syntactically correct, they are meaningless; the body of the loop is not executed).

Note: If the label is outside the range, the assembler generates the error: “jump destination too far”. Unlike a conditional jump, the range of a conditional loop is not automatically extended.
The LOOPNE instruction decrements CX and transfer control to the beginning of its loop if CX (0 and ZF = 0; otherwise the next sequential instruction in the program is executed. If CX (0 before the loop, the loop is executed once.

The LOOPNE instruction is used to implement for-loops in which the existence of a not equal condition at the end of the loop is used to repeat the loop, i.e., loops of the form:

 for(k = 50 ; k > 0 ; k--)

 {

 statement1 ;

 statement2 ;

 if(OP1 = OP2)

 break ;

 }

the above for-loop can be implemented as:

MOV CX , 50

START_FOR:
statement1’

statement2’

CMP OP1 , OP2

LOOPNE START_FOR

Note: A flag modifying instruction should not appear between the CMP which determines loop continuation or termination and the conditional loop instruction; otherwise the logic of the loop will change.

Example: Write a loop that reads 16 characters if each is not ‘Y’, otherwise the loop terminates. The count of the number of characters read must be left in the BL register.

Solution:
MOV BL , -1

MOV AH, 01H

MOV CX , 16

 START:
INC BL

; This flag modifying instruction cannot appear between CMP and LOOPNE

INT 21H

CMP AL , ‘Y’

LOOPNE START

JZ L1

INC BL

L1:

Anonymous Labels

When you code jumps and loops in assembly language, you must invent many label names. One alternative to continually thinking up new label names is to use anonymous labels, which you can use anywhere in your program. But because anonymous labels do not provide meaningful names, they are best used for jumping over only a few lines of code. You should mark major divisions of a program with actual named labels.
Use two at signs (@@) followed by a colon (:) as an anonymous label. To jump to the nearest preceding anonymous label, use @B (back) in the jump instruction’s operand field; to jump to the nearest following anonymous label, use @F (forward) in the operand field.
The jump in the following example targets an anonymous label:
 JGE @F
 .
 .
 .
@@:

The items @B and @F always refer to the nearest occurrences of @@:, so there is never any conflict between different anonymous labels.
_968729457.unknown

