1
4

SYNTAX OF 8086/8088 ASSEMBLY LANGUAGE

· The language is not case sensitive.

· There may be only one statement per line. A statement may start in any column.

· A statement is either an instruction, which the assembler translates into machine code, or an assembler directive (pseudo-op), which instructs the assembler to perform some specific task.

· Syntax of a statement:

{name} mnemonic {operand(s)} {; comment}

(a) The curly brackets indicate those items that are not present or are optional in some statements.

(b) The name field is used for instruction labels, procedure names, segment names, macro names, names of variables, and names of constants.

(c) MASM 6.1 accepts identifier names up to 247 characters long. All characters are significant, whereas under MASM 5.1, names are significant to 31 characters only. Names may consist of letters, digits, and the following 6 special characters: ? . @ _ $ % .If a period is used; it must be the first character. Names may not begin with a digit.

(d) Instruction mnemonics, directive mnemonics, register names, operator names and other words are reserved.

· Syntax of an instruction:

{label:} mnemonic {operand { , operand} } {; comment}

The curly brackets indicate those items that are not present or are optional in some instructions. Thus an instruction may have zero, one, or two operands.

· Operators:

The 8086/8088 Assembly language has a number of operators. An operator acts on an operand or operands to produce a value at assembly time. Examples are: + , - , *, / , DUP, and OFFSET

· Comments:

A semicolon starts a comment. A comment may follow a statement or it may be on a separate line. Multiple-line comments can be written by using the COMMENT directive. The syntax is:

COMMENT delimiter {comment}

comment

. . .
delimiter { comment }

where delimiter is any non-blank character not appearing in comment. The curly brackets indicate an item that is optional.

e.g.,

 COMMENT *

This program finds

the maximum element in a byte array

*

· Numbers:

(a) A binary number is suffixed by b or B.

e.g.,

11010111B

(b) A decimal number is suffixed by an optional d or D.

e.g.,

42d

-22D

3578

(c) A hexadecimal number must begin with a decimal digit and it is suffixed by h or H

e.g.,

20H

0bF2Ah

· Characters:

A character is enclosed in a pair of single quotes or in a pair of double quotes.

e.g.,

‘x’

“B”

· Strings:

A string is enclosed in a pair of single quotes or in a pair of double quotes.

e.g.,
 ‘ENTER YOUR NAME: ’

 “THE MAXIMUM VALUE IS ”

 ‘Omar shouted, “help !” ’

 “say, ‘hello’ ”

 “Omar’s books”

For a string delimited by single quotes, a pair of consecutive single quotes stands for a single quote.

e.g.,

‘Omar’ ’s books’

· Data definition
Each variable has a data type and is assigned a memory address by the program. The data-defining directives are:

	Directive
	Description of Initializers

	

	BYTE, DB (byte)
	Allocates unsigned numbers from 0 to 255.

	SBYTE (signed byte)
	Allocates signed numbers from –128 to +127.

	WORD, DW (word = 2 bytes)
	Allocates unsigned numbers from
0 to 65,535 (64K).

	SWORD (signed word)
	Allocates signed numbers from
–32,768 to +32,767.

	DWORD, DD (doubleword = 4 bytes),
	Allocates unsigned numbers from
0 to 4,294,967,295 (4 megabytes).

	SDWORD (signed doubleword)
	Allocates signed numbers from
–2,147,483,648 to +2,147,483,647.

e.g.,

ALPHA DB 4

VAR1 DB ?

ARRAY1 DB 40H, 35H, 60H, 30H

VAR2 DW 3AB4h

ARRAY2 DW 500, 456, 700, 400, 600

PROMPT DB ‘ENTER YOUR NAME $’

POINTER1 DD 6BA7000AH

A ? in place of an initializer indicates you do not require the assembler to initialize the variable. The assembler allocates the space but does not write in it. Use ? for buffer areas or variables your program will initialize at run time.
integer BYTE 16
negint SBYTE -16
expression WORD 4*3
signedexp SWORD 4*3
empty QWORD ? ; Allocate uninitialized long int
 BYTE 1,2,3,4,5,6 ; Initialize six unnamed bytes
long DWORD 4294967295

longnum SDWORD -2147433648

The DUP operator can be used to generate multiple bytes or words with known as well as un-initialized values.

e.g.,

table dw 100 DUP(0)

stars db 50 dup(‘*’)

ARRAY3 DB 30 DUP(?)

ARRAY4 DB 10 DUP(50), 45, 22, 20 DUP(60)

STRINGS DB 20H DUP(‘Dhahran’)

Note: If a variable name is missing in a data definition statement, memory is allocated; but no name is associated with that memory. For example:

DB 50 DUP(?)

allocates 50 un-initialized bytes; but no name is associated with those 50 bytes.

In MASM 6.1 and obove, a comma at the end of a data definition line (except in the comment field) implies that the line continues. For example, the following code is legal in MASM 6.1:
longstring BYTE "This string ",
 "continues over two lines."
bitmasks BYTE 80h, 40h, 20h, 10h,
 08h, 04h, 02h, 01h

· Named constants:

The EQU (equate) directive, whose syntax is:

name EQU constant_expression

assigns a name to a constant expression. Example:

MAX EQU 32767

MIN EQU MAX - 10

LF EQU 0AH

PROMPT EQU ‘TYPE YOUR NAME: $’

Note: (i) No memory is allocated for EQU names

 (ii) A name defined by EQU may not be redefined later in a program.

· The LABEL directive, whose syntax is:

name LABEL type

where type (for MASM Version 5.1 and lower versions) is BYTE, WORD, DWORD, QWORD, TBYTE, NEAR, or FAR provides a way to define or redefine the type associated with a variable or a label.

 Example1:

ARRAY1 LABEL WORD

ARRAY2 DB 100 DUP(0)

Here ARRAY1 defines a 50-word array, and ARRAY2 defines a 100-byte array. The same memory locations are assigned to both arrays. Thus the array can be accessed as either the byte array ARRAY1 or the word array ARRAY2.

Example2:

VAR3 LABEL DWORD

WORD1 LABEL WORD

BYTE1 DB ?

BYTE2 DB ?

WORD2 LABEL WORD

BYTE3 DB 50H

BYTE4 DB 66H

in this example, each of the words, and each of the bytes of the double word variable VAR3 can be accessed individually.

· SEGMENT DEFINITION

An 8086/8088 assembly language program file must have the extension .asm

There are two types of 8086/8088 assembly language programs: exe-format and com-format.

An exe-format program generates executable files with extension .exe. A com-format program generates executable files with extension .com .
An exe-format program must contain a code segment and a stack segment. It may contain a data segment or an extra segment.

A com-format program contains only the code segment (the stack segment is explicit).
A programmer chooses an appropriate size for the stack segment, depending on the size of his program. Values in the range 100H to 400H are sufficient for most small programs.
Note: In a program, the data, code, and stack segments may appear in any order. However, to avoid forward references it is better to put the data segment before the code segment.
· SIMPLIFIED SEGMENT DIRECTIVES
MASM version 5.0 and above, and TASM provide a simplified set of directives for declaring segments called simplified segment directives. To use these directives, you must initialize a memory model, using the .MODEL directive, before declaring any segment. The format of the .MODEL directive is:
.MODEL memory-model
The memory-model may be TINY, SMALL, MEDIUM, COMPACT, LARGE, HUGE or FLAT :
	memory-model
	description

	TINY
	One segment. Thus code and data together may not be greater than 64K

	SMALL
	One code-segment. One data-segment. Thus neither code nor data may be greater than 64K

	MEDIUM
	More than one code-segment. One data-segment. Thus code may be greater than 64K

	COMPACT
	One code-segment. More than one data-segment. Thus data may be greater than 64K

	LARGE
	More than one code-segment. More than one data-segment. No array larger than 64K. Thus both code and data may be greater than 64K

	HUGE
	More than one code-segment. More than one data-segment. Arrays may be larger than 64K. Thus both code and data may be greater than 64K

	FLAT
	One segment up to 4GB. All data and code (including system resources) are in a single 32-bit segment.

All of the program models except TINY result in the creation of exe-format programs. The TINY model creates com-format programs.

	Memory Model
	Operating System
	Data and Code Combined

	Tiny
	MS-DOS
	Yes

	Small

	MS-DOS, Windows
	No

	Medium

	MS-DOS, Windows
	No

	Compact

	MS-DOS, Windows
	No

	Large

	MS-DOS, Windows
	No

	Huge

	MS-DOS, Windows
	No

	Flat

	Windows NT
	Yes

The simplified segment directives are: .CODE , .DATA , .STACK .

The .CODE directive may be followed by the name of the code segment.

The .STACK directive may be followed by the size of the stack segment, by default the size is 1K i.e., 1,024 bytes.

The definition of a segment extends from a simplified segment directive up to another simplified segment directive or up to the END directive if the defined segment is the last one.
· THE GENERAL STRUCTURE OF AN EXE-FORMAT PROGRAM

The memory map of a typical exe-format program, with segments defined in the order code, data, and stack is:

	
	(SP

	Stack segment

	(SS

	Data segment

	

	Code segment

	(CS , IP

	PSP (100H bytes)

	(DS , ES

	
	

The CS and IP registers are automatically initialized to point to the beginning of the code segment.

 The SS register is initialized to point to the beginning of the stack segment.

 The SP register is initialized to point one byte beyond the stack segment.

 The DS and ES registers are initialized to point to the beginning of the PSP (Program Segment Prefix) segment.

 This is a 100H (i.e., 256) byte segment that DOS automatically prefaces to a program when that program is loaded in memory.

 The PSP contains important information about the program.

 Thus if a program contains a data segment, the DS register must be initialized by the programmer to point to the beginning of that data segment.

 Similarly if a program contains an extra segment, the ES register must be initialized by the programmer to point to the beginning of that extra segment.
Initialization of DS

Note: The instructions which initialize the DS register for an exe-format program with simplified segment directives are:

MOV AX , @DATA

MOV DS , AX

where AX may be replaced by any other 16-bit general purpose register.

 At load time, @DATA is replaced with the 16-bit base address of the data segment.

 Thus @DATA evaluates to a constant value; such an operand is usually called an immediate operand.

 Since MOV instructions of the form:

MOV SegmentRegister , ImmediateOperand

are invalid, an initialization of the form:

MOV DS , @DATA

is invalid. Such an initialization is done indirectly using any 16-bit general-purpose register. Example:

MOV AX , @DATA

MOV DS , AX

Note: Every 8086 assembly language program must end with the END directive. This directive may be followed by an entry label, which informs the assembler the point where program execution is to begin. The entry label can have any valid name.

The general structure of an exe-format program is:

.MODEL SMALL

.STACK 200

.DATA

 ; data definitions using DB, DW, DD, etc. come here

 .CODE

START: MOV AX , @DATA

; Initialize DS

 MOV DS , AX

;

. . .

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

END START

Example:

.MODEL SMALL

.STACK 200

.DATA

 MESSAGE DB ‘ICS 232’ , ‘$’

.CODE

START: MOV AX , @DATA

; Initialize DS

 MOV DS , AX

;

 ; Display the string

 MOV AH , 09H

 MOV DX , OFFSET MESSAGE

 INT 21H

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

END START
· THE GENERAL STRUCTURE OF A COM-FORMAT PROGRAM

The memory map of a typical com-format program is:

	
	(SP

	Stack area

	

	Code segment

(code and data)

	(IP

	PSP (100H bytes)

	(CS, DS , ES, SS

	
	

To work out the locations corresponding to symbols (labels and variables) in the source program, the assembler uses a variable called the location counter.

 Before assembly of each segment begins the location counter is set to zero. As each statement in that segment is scanned, the location counter is incremented by the number of bytes required by that statement.

Since the CS register is initialized to point to the beginning of the PSP when a com-format program is loaded in memory, the location counter must be set to 100H instead of the usual zero, so that: (i) the assembler assigns offset addresses relative to the beginning of the code segment and not the PSP, and (ii) the IP register is set to 100H when the program is loaded.

The location counter is set to 100H by the directive:

ORG 100H

Hence this directive must appear at the beginning of every com-format program before the program entry point.

Since a com-format program contains only one explicit segment i.e., the code segment, data, if any, must be defined within the code segment anywhere a data definition statement will not be treated as an executable statement.

 This can be done at the beginning of the code segment by jumping across data definitions using a JMP instruction.

The general structure of a com-format program is:

.MODEL TINY

.CODE

ORG 100H

ENTRY: JMP L1

; data definitions using DB, DW, DD, etc. come here

. . .

L1:

. . .

; Return to DOS

MOV AX , 4C00H

INT 21H

END ENTRY

Example:

.MODEL TINY

.CODE

 ORG 100H

ENTRY: JMP START

 MESSAGE DB ‘ICS 232’ , ‘$’

START:

 ; Display the string

 MOV AH , 09H

 MOV DX , OFFSET MESSAGE

 INT 21H

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

END ENTRY

Other Directives
.STARTUP
Generates program start-up code.

The .EXIT directive accepts a 1-byte exit code as its optional argument:
 .EXIT 1 ; Return exit code 1

.EXIT generates the following code that returns control to MS-DOS, thus terminating the program. The return value, which can be a constant, memory reference, or 1-byte register, goes into AL:
 mov al, value
 mov ah, 04Ch
 int 21h

If your program does not specify a return value, .EXIT returns whatever value happens to be in AL.

.586
Enables assembly of nonprivileged instructions for the Pentium processor.

.686
Enables assembly of nonprivileged instructions for the Pentium Pro processor.

The USE16, USE32, and FLAT Options
When working with an 80386 or later processor, MASM generates different code for 16 versus 32 bit segments. When writing code to execute in real mode under DOS, you must always use 16 bit segments. Thirty-two bit segments are only applicable to programs running in protected mode. Unfortunately, MASM often defaults to 32 bit mode whenever you select an 80386 or later processor using a directive like .386, .486, .586 or .686 in your program. If you want to use 32 bit instructions, you will have to explicitly tell MASM to use 16 bit segments. The use16, use32, and flat operands to the segment directive let you specify the segment size.
For most DOS programs, you will always want to use the use16 operand. This tells MASM that the segment is a 16 bit segment and it assembles the code accordingly. If you use one of the directives to activate the 80386 or later instruction sets, you should put use16 in all your code segments or MASM will generate bad code.
If you want to force use16 as the default in a program that allows 80386 or later instructions, there is one way to accomplish this. Place the following directive in your program before any segments:
 option segment:use16

Example:

 .586

 option segment:use16

