Parsing Strings with split
Parsing
token
one piece of information, a "word"
delimiter
one (or more) characters used to separate tokens
parsing
dividing a string into tokens based on the given delimiters
When we have a situation where strings contain multiple tokens, then we will need to parse (i.e., split) the string to extract the individual tokens.
Parsing Strings in Java
Strings in Java can be parsed using the split method of the String class. (The StringTokenizer class can also be used to parse a string; we will not be covering it here):

 String[] split(String regularExpression)
General template for using split
String s = string_to_parse;
String delims = "[delimiters]+"; // use + to treat consecutive delims as one;
 // omit to treat consecutive delims separately
String[] tokens = s.split(delims);
Note: The number of tokens is obtained by using the length of the tokens array: tokens.length
Issues to consider when parsing a string:
· What are the delimiters (and how many are there)?
· How should consecutive delimiters be treated?
When there is just one character used as a delimiter put the character inside the square brackets: []
Example 1
We want to spit a sentence into words where spaces are used to separate words. For example:
the noise made it hard to concentrate
In this case, we have just one delimiter (space) and consecutive delimiters (i.e., several spaces in a row) should be treated as one delimiter. To parse this string in Java, we do
String sentence = "the noise made it hard to concentrate";
String delims = "[]+";
String[] tokens = sentence.split(delims);
Note that:
· the general form for specifying the delimiters that we will use is "[delim_characters]+" . (This form is a kind of regular expression. You do not need to know about regular expressions - just use the template shown here.) The plus sign (+) is used to indicate that consecutive delimiters should be treated as one.
· the split method returns a String array containing the tokens (as strings):
	Array element
	value

	tokens[0]
	“the”

	tokens[1]
	“noise”

	tokens[2]
	“made”

	tokens[3]
	“it”

	tokens[4]
	“difficult”

	tokens[5]
	“to”

	tokens[6]
	“concentrate”

Example 2
Suppose a string contains an employee's last name, first name, employee ID#, and the number of hours worked for each day of the week, separated by commas. So
Omar,Yusuf,3014,,8.25,6.5,,,10.75,8.5
represents an employee named Omar Yusuf, whose ID was 3014, and who worked 8.25 hours on Monday, 6.5 hours on Tuesday, 10.75 hours on Friday, and 8.5 hours on Saturday. In this case, we have just one delimiter (comma) and consecutive delimiters (i.e., more than one comma in a row) should not be treated as one. To parse this string, we do
String employee = "Omar,Yusuf,3014,,8.25,6.5,,,10.75,8.5";
String delims = "[,]";
String[] tokens = employee.split(delims);
After this code executes, the tokens array will contain ten strings (note the empty strings): "Omar", "Yusuf", "3014", "", "8.25", "6.5", "", "", "10.75", "8.5"
Note: Regardless of how consecutive delimiters are handled; if the string starts with one (or more) delimiters, then the first token will be the empty string ("").
When there are several characters being used as delimiters list all the delimeter characters inside the square brackets: []
Example 3
Suppose we have a string containing several English sentences that uses only commas, periods, question marks, and exclamation points as punctuation. We wish to extract the individual words in the string (excluding the punctuation). In this situation we have several delimiters (the punctuation marks as well as spaces) and we want to treat consecutive delimiters as one:
String str = "This is a sentence. This is a question, right? Yes! It is.";
String delims = "[.,?!]+";
String[] tokens = str.split(delims);
Example 4
There are several characters that have a special meaning when they appear inside []. The characters are ^ - [and two &s in a row(&&). In order to use one of these characters, we need to put \\ in front of the character:
String expr = "2*x^3 - 4/5*y + z^2";
String delims = "[+\\-*/\\^]+"; // so the delimiters are: + - * / ^ space
String[] tokens = expr.split(delims);

Controlling the number of tokens returned by the split method

You can control the number of tokens returned by the split method by using the following version of split:
 String[] split(String regularExpression, int limit)

This method splits the string according to given regular expression. The number of resultant
tokens is equal to the value of the limit argument.

Example:

String str = "st1-st2-st3";
String delimiter = "[-]";
String[] temp;
temp = str.split(delimiter);
System.out.println(“Number of tokens = “ + temp.length);
System.out.println(temp[0]);
System.out.println(temp[1]);
System.out.println(temp[2]);

The output is:
Number of tokens = 3
st1
st2
st3

Example:

String str = "st1-st2-st3";
String delimiter = "-";
String[] temp;
temp = str.split(delimiter, 2);
System.out.println(“Number of tokens = “ + temp.length);
System.out.println(temp[0]);
System.out.println(temp[1]);

The output is
Number of tokens = 2
st1
st2-st3

