ICS 202 HOMEWORK#1 KEY (TERM 091)

Question#1 [50 points]
A course consists of three lecture sections. The course can be modeled as a MySearchableContainer containing three Association objects. Each Association object associates an instructor with a sectionMySearchableContainer containing the students in that section:

[image: image1.jpg]CourseContainer

section] Assaciation

student
container

section2Assaciation

student
container

section3Assaciation

i
o

Assume that the sections are taught by three different instructors and that each section has 5 students.
An instructor has a name and ID and a student has a name, ID, and one exam grade.

Write a Java console program that has a menu with the following options Display, Find, Calculate, and Exit:

1. Display all students that are taught by a given instructor using an iterator
2. Find whether a given student x is taking the course or not by using a visitor on the course container and an iterator on each section container. Your visitor must stop immediately it finds student x.
3. Calculate the exam average for the course by using a visitor on the course container and an iterator on each section container.
4. Exit

Your program must be able to detect all possible error conditions and display appropriate error messages; it must also use visitors in options 2 and 3 with the following headers, respectively:

	Option#
	Visitor header

	2
	FindStudentVisitor(Student student)

	3
	CalculateAverageVisitor()

Note: Your program must run on a continuous loop that only terminates if option 4 is selected.

Question#2 [20 points] [Note: Grade by the analysis, not the exact number of operations: A student should get total marks for this question if he demonstrates that he can analyze the problem correctly]
By counting the exact number of basic operations, determine the worst-case running time T(n) of the selection sort algorithm given below. You must show the details of your computations:

public void SelectionSort(int x[], int n){

 //The algorithm sorts a given array by selection sort

 //Input: An int array x[0..n-1]
 //Output: Array x[0..n-1] sorted in ascending order
int min, temp;
for(int i = 0; i <= n – 2; i++){

min = i;

for(int k = i + 1; k <= n – 1; k++){

if(x[k] < x[min])

min = k;

 }

temp = x[i];

 x[i] = x[min];
 x[min] = temp;

}

Outer loop:

 Initialization of i: 1

The outer loop iterates n – 1 times:

 Outer condition: n

 Update: 2(n – 1)

 4 assignments: 4(n – 1)

 Inner initialization: 2(n – 1)

The number of times the inner loop is not executed is 0

Number of iterations of the dependent inner loop:
 (n – 1) + (n – 2) + . . . + 1 = (n - 1)(n) / 2

 = n2 / 2 – n / 2
 (Using Sn = n(an + a1)/2)

 Number of times the inner condition is executed:

 n + (n – 1) + … + 2 = (n – 1)(n + 2) / 2
 = n2 / 2 – n / 2 – 1

Number of basic operations for inner loop [for worst case]:

 (n2 / 2 – n / 2 – 1) + (n2 / 2 – n / 2)(4) = 5n2 / 2 – 5n / 2 – 1

Total number of basic operations = 1 + n + 8(n – 1) + 5n2 / 2 – 5n / 2 – 1

 = 5n2 / 2 + 13n / 2 - 8
Question#3 [15 points] [5 points for each region]
Given that n is the problem size, determine the Big-O complexity of the program fragment given below WITHOUT counting the number of basic operations. You must show the details of your computations and state the Big-O rules that are used in the computations:
--
int sum = 0; O(1)
if(x > 12){ O(1)
 for(int i = 0; i < n; i++) O(n) // loop1
 for(int k = 0; k < n * n; k++) O(n2) // loop2
 sum++; O(1)
}

else{

 for(int i = 1; i < 10000; i = i * 2) O(1) // loop3
 sum++; O(1)
}

--
for(int i = 1; i < n; i = i * 2) O(log n) // loop4
 sum++; O(1)
for(int i = 0; i < n; i++) // loop5
 for(int k = 0; k < i; k++) O(n2) dependent // loop6
 sum++; O(1)
--
Total Complexity = Max(Initialization of Sum + if-else + loop4 + loop6)

 = Max(O(1), O(n3), O(log n), O(n2)) = O(n3)

Rules used: if-else rule and sequential rule

Question#4 [5 points] [1 + 1 + 2 + 1]
Without proof, find the Big-O complexity of each of the following functions:
 f(n) = 4n2 + 97n log n + 400n + 1000 O(n2)
 f(n) = 5000 O(1)
 f(n) = n + 300n log n + 4n + 500n6 O(4n)
 f(n) = 9n + 13log n O(n)
Question#5 [10 points] [5 + 5]
By finding suitable values of the constants c and n0 , prove that the function:
 f(n) = 10n3log n + 15n2 + 6n + 3 is O(n3log n)
 By the definition of Big-O f(n) is O(n3 log n) if:

 10n3log n + 15n2 + 6n + 3 ≤ c * n3 log n for c > 0
 (10 + 15 / (n log n) + 6 / (n2 log n) + 3 / (n3 log n) ≤ c
 ((Using n = 2 and log2)

 10 + 15 / 2 + 6 / 4 + 3 / 8 = c
· c = 19.375
Therefore, f(n) is O(n3 log n) because f(n) ≤ 19.375 * n3 log n (n ≥ 2
Prove that:
 f(n) = 6n3 + 5n2 + 4n + 6 is not O(n2)
Assume that f(n) is O(n2), then by the definition of Big-O:

 6n3 + 5n2 + 4n + 6 ≤ cn2 (1)
 (6n + 5 + 4 / n + 6 / n2 ≤ c (2)
 But since c is a fixed constant, (2) is a contradiction, because we can choose n
 to be arbitrarily large.

 Hence f(n) is not O(n2)

Important Notes and Submission Instructions:

· All the classes you define yourself for this homework, must be stored in a package ics202.hw01
· To access MySearchableContainer class in a class you must import ics202.lab02 package. In addition to importing ics202 in all classes you define in the package hwo1.

· Your report for this homework assignment and all subsequent homework assignments must be word-processed or it must be neatly hand written. You must submit the hardcopy of your Java programs. Your report must follow the homework submission template format, which you can get from the course Web site.

· You need to submit two things:

1. Submit your entire ics202 package, as a zipped file, in your folder in

 ccse-xeon\Courses\ICS202
2. A copy of your report at the beginning of the class after on the due date.

