4. Client-Side Scripting
m Why Client-Side Coding?
m Introduction to Dynamic HTML (DHTML)
m Overview of XHTML Document Object Model (DOM)

m Overview of JavaScript

Syntax
Built-in Objects
User-defined Objects

m Manipulating DOM Objects using JavaScript

SWE 444: Internet & Web Application Development 4.1

Why Client-Side Coding?

m What is client-side code?

Software that is downloaded from Web server to browser and then
executes on the client

m Including code within a web page, leads to addition of a number of
features to a Web page

Without the need to send information to the Web Server which takes
time.

m Why client-side code?

Better scalability: less work done on server
Better performance/user experience

Create Ul constructs not inherent in HTML (i.e., special formatting
features that go beyond HTML)

> Drop-down and pull-out menus
> Tabbed dialogs

Cool effects, e.g. animation
Data validation

SWE 444: Internet & Web Application Development 4.2

Introduction to Dynamic HTML

m Traditionally, Web page elements are static and they
never change unless the Web page itself is changed

Appropriate for pages where the content and styling seldom
change and where the visitor is merely a passive reader of page
content.

Not appropriate for dynamic pages where layout, styling, and
content need to change in response to visitor actions and
desires.

m Examples of dynamic effects
A hyperlink changing its visual appearance to indicate user
actions

A picture having its size or lightness changing, or be hidden or
revealed, by user clicks on accompanying buttons.

A block of text changing (revealing words definitions) by moving
the mouse on top of the underlined terms being defined

A Web page "programmed" to carry out processing tasks
through interaction with the user.

SWE 444: Internet & Web Application Development 4.3

Dynamic HTML (DHTML)

m A collection of techniques to change static Web pages
Into dynamic Web pages that react to events.

Events can be initiated by the user or by the Web page itself.

m DHTML pages requires familiarity with four main topics

XHTML
CSS

The browser's Document Object Model (DOM)
> the collection of XHTML elements appearing on a Web page
JavaScript

m There are DOM standards (published by W3C) to
provide common approaches to using DHTML.

Unfortunately, not all browsers follow these standards, and
some augment the standards with additional capabilities.

SWE 444: Internet & Web Application Development 4.4

The DOM

m A Web page is made dynamic by applying JavaScript processing to
the XHTML elements on that page

XHTML tags are also software objects , having properties and
methods that can be programmed

These objects are programmed through JavaScript processing routines
to make Web pages dynamic

m The DOM is the programming interface to the XHTML objects
appearing on a Web page

m All XHTML elements, along with their containing text and
attributes, can be accessed through the DOM.

The contents can be modified or deleted, and new elements can
be created.

m The XHTML DOM is platform and language independent.

It can be used by any programming language like Java, JavaScript,
and VBScript.

SWE 444: Internet & Web Application Development 4.5

The DOM Hierarchy

m The DOM is organized as a hierarchy of browser

components
b rrod Qo nawigator
document history lacation
Anchar Applat Are Farm Image Link
Buttan FileUpload F asamord Rezet Submit Textarza
Checkb o Hidden Radia Selact Text

SWE 444: Internet & Web Application Development 4.6

Window Object

m The window object is the “master” DOM object at the top
of the DOM hierarchy

m Useful properties:

Iength: number of frames in window
frames: an array of window objects, one for each frame

parent: Since frames are window objects, sometimes parent
window is needed

m Examples:

window.document : if frameless, accesses the top level
document. If frames, accesses the top frame’s document

window. frame[1l].document : Access the document
contained in the first frame

frame[1l].parent.document : Access the document
contained in the parent frame

SWE 444: Internet & Web Application Development 4.7

Window Object Methods

m alert, confirm and prompt are actually methods
of the window object, ex: window.alert

m window.open(); /* opens a window */

m window.close(); /7* closes window */

SWE 444: Internet & Web Application Development 4.8

Navigator Object

m Contains information about the browser

m Can be accessed as window.navigator or just
navigator

m Useful properties:
appName: name of browser used (can be deceiving;
more on this in a later class)

appVersion: version of browser used (can be
deceiving; more on this in a later class)

platform: operating system in use
cookreEnabled: can the browser store cookies?

SWE 444: Internet & Web Application Development 4.9

Location Object

m Contains information about the current URL

m Can be accessed as window.location or just
location

m Useful properties:

hret: retrieves entire URL

host: retrieves just the domain name (ex:
yahoo.com)

pathname: retrieves just the path inside the domain
(page name is at end)

hash: retrieves the anchor

SWE 444: Internet & Web Application Development 4.10

History Object

m Contains information on the URLSs that the browser has
visited In this session within a window

m Can be accessed as window.history or just history

m Useful properties: next, previous (tells you the URL, but
won't direct you there)

m Useful methods:

back: same as pressing the back arrow button
forward: same as pressing the forward arrow button

go: go back or forward a given number of pages; to go back 3
pages:
> history.go(-3);

SWE 444: Internet & Web Application Development 411

Document Object

m This is the typically the most accessed object

m YOou can access all items In the document
window through the document object

Forms, tables, paragraphs, lists, images, etc.
Consult a reference for properties and methods

m Frameless document: Access as
window.document or document

m Document contained in a frame:
window. frame[x] .document, where X Is the
number or name of the frame

SWE 444: Internet & Web Application Development 4.12

ldentifying DOM QObjects

navigator The browser itself.

window The main browser window.

window. framename A frame that occupies the browser window and identified by
its assigned name.

window.document The document appearing in the main browser window.

window. framename.document The document appearing in a frame identified by its assigned
name.

document.getElementByld("'id"")|An XHTML element appearing in a document and identified by
its assigned 1d value.

document.all.id Alternate reference to an XHTML element appearing in a
document and identified by its assigned id value.
id Alternate reference to an XHTML element appearing in a

document and identified by its assigned id value.

SWE 444: Internet & Web Application Development 4.13

Referencing XHTML Elements

m An XHTML element must be assigned an id for a script
to refer to it:

<tag id="idValue"...>

The assigned idValue value must be unique and composed of
alphanumerics excluding spaces

m Once an id Is assigned, the XHTML object can be
referenced in a script:

document.getElementByld("idValue")

m An alternate is the notation
document.all.idValue,

m In some cases only the value itself is needed
idValue

SWE 444: Internet & Web Application Development 4.14

Getting and Setting Style Properties

m DHTML is created commonly by changing the
style properties of XHTML elements

-- Get a current style property:

-- Set a different style property:
document.getElementByld("id").style.property = value

m For example, given
<h2 id="Head" style="color:blue">This is a Heading</h2>

m \We can change the color property as
document.getElementByld("Head").style.color = "red"

SWE 444: Internet & Web Application Development 4.15

Applying Methods

m DHTML can also be created by by activating methods
built into the objects. E.g., Given

Enter your name: <input id="Box" type="text"/>

m We automatically make the textbox gain focus by:
document.getElementByld("Box").focus()

m Gaining focus means if the page containing the above
code first loads, the cursor is automatically placed in the
textbox

The user can immediately begin typing without having to click
first.

m Learning DHTML is to do with learning the numerous
properties and methods available for the numerous DOM
components

SWE 444: Internet & Web Application Development 4.16

The JavaScript Language

m A client-side scripting language — i.e., the ability to run
JavasScript code is built into modern desktop browsers.

Code embedded in Web pages along with XHTML and CSS
formatting codes.

The browser interprets and runs scripts locally, on the PC

m JavaScript Is not Java, or even related to it

The original name for JavaScript was “LiveScript”
The name was changed when Java became popular
Released in the Fall of 1995

m JavaScript and Java are unrelated except for minor
syntactical similarities.

SWE 444: Internet & Web Application Development 4.17

JavaScript versus Java

JavaScript

Java

Interpreted (not compiled) by client.

Compiled bytecodes downloaded from
server, executed on client.

Object-oriented. No distinction between
types of objects. Inheritance is through the
prototype mechanism, and properties and
methods can be added to any object
dynamically.

Class-based. Objects are divided into
classes and instances with all inheritance
through the class hierarchy. Classes and
instances cannot have properties or
methods added dynamically.

Code integrated with, and embedded in,
HTML.

Applets distinct from HTML (accessed from
HTML pages).

Variable data types not declared (dynamic
typing).

Variable data types must be declared
(static typing).

Cannot automatically write to hard disk.

Cannot automatically write to hard disk.

SWE 444: Internet & Web Application Development

4.18

Placement of JavaScripts

m JavaScript can be put in the <head> or in the <body> of an HTML
document

JavaScript functions should be defined in the <head>
> This ensures that the function is loaded before it is needed
JavasScript in the <body> will be executed as the page loads

m JavaScript can be put in a separate . js file

<script src="myJavaScriptFile.js"></script>

Put this HTML wherever you would put the actual JavaScript code

An external .js file lets you use the same JavaScript on multiple HTML
pages

The external . J S file cannot itself contain a <script> tag

m JavaScript can be put in HTML form object, such as a button
This JavaScript will be executed when the form object is used

SWE 444: Internet & Web Application Development 4.19

JavaScript Functions

m A JavaScript function works just like subprograms in
other languages:

<script type="text/javascript">

function ChangeStyle() {
document.getElementByld("MyTag").style.fontSize = "14pt";
document.getElementByld("MyTag").style.fontWeight = "bold";
document.getElementByld(*MyTag").style.color = "red";

}

</script>

<p id="MyTag” onclick="ChangeStyle()" >This is a paragraph that
has its styling changed.</p>

m The semicolon ending a line is optional unless two or
more statements appear on the same line.

SWE 444: Internet & Web Application Development 4.20

Mouse Event Handlers

m There are numerous page events and associated event
handlers that need to be learned to create DHTML

onclick

The mouse button is clicked and released with the cursor positioned over a page
element.

ondblclick

The mouse button is double-clicked with the cursor positioned over a page element.

onmousedown

The mouse button is pressed down with the cursor positioned over a page element.

onmousemove

The mouse cursor is moved across the screen.

onmouseout

The mouse cursor is moved off a page element.

onmouseover

The mouse cursor is moved on top of a page element.

onmouseup

The mouse button is released with the cursor positioned over a page element.

SWE 444: Internet & Web Application Development

421

Inline Scripts

m A second way is to code a script inside the event handler itself:

<p id="MyTag" onclick="document.getElementByld('MyTag').style.fontSize="14pt’;
document.getElementByld('MyTag').style.fontWeight="bold’;
document.getElementByld('MyTag').style.color="red™> This is a paragraph that
has its color changed.</p>

m Note

The <script> tag is not necessary in this case

Quoted values inside the script must be enclosed in single quotes
(apostrophes) to alternate and differentiate the sets of quote marks.

Amount of use and convenience dictate whether to use functions or
inlining

The paragraph “MyTag” (containing the script) refers to itself in the
script

SWE 444: Internet & Web Application Development 4.22

The this Keyword

m The preceding code can be simplified thus:

<p id="MyTag" onclick="this.style.fontSize="'14pt’;
this.style.fontWeight='bold"; this.style.color="red"> This is a paragraph
that has its color changed.</p>

m Self reference can also be passed to a function:

<script type="text/javascript">

function ChangeStyle(SomeTag) {
SomeTag.style.fontSize = "14pt";
SomeTag.style.fontWeight = "bold";
SomeTag.style.color = "red";

}

</script>

<p onclick="ChangeStyle(this)">Style this paragraph in 14pt bold red
text.</p>

<p onclick="ChangeStyle(this)">Style this paragraph in the same
way.</p>

SWE 444: Internet & Web Application Development 4.23

JavaScript Comments
m JavaScript uses C-style comments: // and /* */

m Some old browsers do not recognize script tags
These browsers will ignore the script tags but will display the
Included JavaScript

To get old browsers to ignore the whole thing, use:
<script type=""text/javascript''>

<Il-—

document.write("'Hello World!™)
//-->
</script>

The <!-- introduces an HTML comment

To get JavaScript to ignore the HTML close comment, —->, the
// starts a JavaScript comment, which extends to the end of
the line

SWE 444: Internet & Web Application Development 4.24

Primitive data types

m JavaScript has three “primitive” types: number, string,
and boolean

Everything else is an object

m Numbers are always stored as floating-point values

Hexadecimal numbers begin with 0x
Some platforms treat 0123 as octal, others treat it as decimal

m Strings may be enclosed in single quotes or double
quotes

Strings can contains \n (newline), \"" (double quote), etc.

m Booleans are either true or false

0, ""0", empty strings, undefined, null, and NaN are false,
other values are true

SWE 444: Internet & Web Application Development 4.25

Variables

m Variables are declared with a var statement:

var pi = 3.1416, X, y, name = "Dr. ABC" ;
Variables names must begin with a letter or underscore
Variable names are case-sensitive

Variables are untyped (they can hold values of any type)
The word var is optional (but it's good style to use it)

m Variables declared within a function are local to that function
(accessible only within that function)

m Variables declared outside a function are global (accessible from
anywhere on the page)

SWE 444: Internet & Web Application Development 4.26

Operators, |

m Because most JavaScript syntax is borrowed from C (and is therefore just
like Java), we won't spend much time on it

m Arithmetic operators:
+ - * / % ++ -

m Comparison operators:
< <= == 1= >= >

m Logical operators: o
&& 11 I (&& and || are short-circuit operators)

m Bitwise operators:
& | N (XO0R) ~ (NOT) << >> (Shifts
binary bits to right, discarding bits shifted off) >>> (Shifts binary bits to
right, discarding bits shifted off and shifting in zeros from left.)

m Assignment operators:
+= -= ¥*= /= %= <<= >>= >>>=
&= N= I =

SWE 444: Internet & Web Application Development 4.27

Operators, |

m String operator:
+

m The conditional operator:
condition ? value if true : value if false

m Special equality tests:
== and "= try to convert their operands to the same type before
performing the test

=== and !== consider their operands unequal if they are of
different types

Using x=3 and y="3": 1) x==y Result: returns true
2) x===y Result: returns false

m Additional operators:
new typeof void delete

SWE 444: Internet & Web Application Development 4.28

Statements, |

m Most JavaScript statements are also borrowed
from C

Assignment: greeting = "Hello, " + name;

Compound statement:
{ statement, ...; statement }

If statements:

it (condrtron) statement,

1T (condition) statement, else statement,
Familiar loop statements:

while (conditiron) statement,

do statement while (condirtion),

for (inrtralizatron; condirtion; iIncrement)
statement;

SWE 444: Internet & Web Application Development 4.29

Statements, Il

m The switch statement:
switch (expression){
case label :

statement;
break:;
case label :
statement;
break;
aéfault - statement;
}
m Other familiar statements:
break;
continue;

The empty statement, asin ;; or{ }

SWE 444: Internet & Web Application Development

4.30

Exception handling, |

m Exception handling in JavaScript is almost the same as
In Java

m throw expressioncreates and throws an exception

The expressionis the value of the exception, and can be of
any type (often, it's a literal String)

m try {
statements to try

} catch (e) { // Notice: no type declaration for e
exception-handling statements

} finally { // optional, as usual
code that 1s always executed

}

With this form, there is only one catch clause

SWE 444: Internet & Web Application Development 431

Exception handling,

m try {
statements to try

} catch (e i1f testl) {
exception-handling for the case that testl is true

} catch (e 1f test2) {

exception-handling for when testl is false and test? iIs true

} catch (e) {

exception-handling for when both testl and test2? are false
} finally { // optional, as usual
code that i1s always executed

}

m Typically, the test would be something like
e == ""Invali1dNameException"

SWE 444: Internet & Web Application Development 4.32

Basic Input and Output

m Programming languages need to start with some data and manipulate it
m Confirmasks a yes or no question in a dialog box

m Prompt prompts the user to type in some information into a text field inside
the dialog box

m Sources of data can include:

Files

Databases

User (keyboard & mouse typically)
Variable assignments (ex: pi=3.14159)

Javascript objects
> Example: date object

m Example:

User_name = prompt(“What is your name?”, “Enter your name
here’);

SWE 444: Internet & Web Application Development 4.33

Output

m After a program manipulates the input data with
various statements it usually creates an output
of some kind

m Source of output may include:

Files

Database

Display or Printer

Devices (sound card, modems etc)

Javascript Objects
> Via Object Methods

SWE 444: Internet & Web Application Development 4.34

Simple Input/Output - 1

<script type="text/javascript''>
function Multiply(Q {

var Nol = prompt(Enter the first number:", "");

var No2 = prompt("Enter the second number:", ");

var Product = Nol * NoZ2;

Str = Nol +" * "+ No2 + ' =" ;
alert(Str + Product.toFixed(2));
¥

</script>

<input type="button' value="Get Number"
onclick="Multiply()'/>

SWE 444: Internet & Web Application Development

4.35

Simple Input/Output - 2

<script type=""text/javascript'>

function Subtract() {
document.getElementByld("'Output') .value =
document.getElementByld("'"FirstNo') .value -
document.getElementByld(''SecondNo™) .value;

+

</script>

<input 1d="FirstNo" type=""text" value="10" style="width:50px"/>

<input 1d="SecondNo" type="text" value="20" style="width:50px'/>

<input type="button' value=" = " onclick=*“Subtract()"/>

<input 1d="Output" type=""text" style="width:50px"/>

SWE 444: Internet & Web Application Development 4.36

Simple Input/Output - 3

<script type="text/javascript''>
function TextSize() {
var ReturnedValue = window.confirm(''Larger text?");
IT (Returnedvalue == true) {
document.body.style.fontSize = "12pt"';

} else {
document.body.style.fontSize

"10pt';

}

</script>

<input type="button" value="Set Text'" onclick="TextSize()'">

SWE 444: Internet & Web Application Development 4.37

Some Built-in DOM QObjects

m The DOM includes built-in objects besides those associated with
specific elements of a Web page.

Number
Boolean
Math
String
Date
Array

m http://msconline.maconstate.edu/tutorials/JSDHTML/default.htm

SWE 444: Internet & Web Application Development 4.38

http://msconline.maconstate.edu/tutorials/JSDHTML/default.htm

Numbers
m In JavaScript, all numbers are floating point

m Special predefined numbers:

InfFinity, Number.POSITIVE_INFINITY

> the result of dividing a positive number by zero
Number .NEGATIVE_INFINITY

> the result of dividing a negative number by zero
NaN, Number.NaN (Not a Number)

> the result of dividing 0/0

> NaN is unequal to everything, even itself

> There is a global isNaN(Q) function
Number .MAX_ VALUE

> the largest representable number
Number .MIN_VALUE

> the smallest (closest to zero) representable number

SWE 444: Internet & Web Application Development 4.39

Boolean

m The boolean values are true and false

m \When converted to a boolean, the following
values are also false:

0]

0" and "O*

the empty string, " or """
undefined

null

NaN

SWE 444: Internet & Web Application Development 4.40

Math Object

m Can be accessed as Math.property, ex:
x=Math.pow(3,3); // x=27

= Allows many common mathematical calculations
Including (all prefixed with Math as above):

abs(x) : absolute value

ceill (xX) and floor(x) : smallest integer not less than x and
largest integer not greater than x

cos(X), exp(x), log(x), sin(x), tan(x) :trigonometric
and log rhythmic functions

min(x,y) or max(X,Yy) :returns the minimum or maximum
of values x and y

pow(X,Yy) : raises X to the powery
round(x) : rounds to nearest integer
sqrt(x) : Square root

SWE 444: Internet & Web Application Development 441

Strings and characters

m In JavaScript, string is a primitive type

m Strings are surrounded by either single quotes or double quotes

m There is no “character” type

m Special characters are.

\O NUL

\b backspace
\T form feed

\n newline

\r carriage return
\t horizontal tab

SWE 444: Internet & Web Application Development

\Vv vertical tab
*" single quote
\" double quote

\\ backslash
\XDD Unicode hex DD
\XDDDD Unicode hex DDDD

4.42

Some string methods

1 (smallest) - 7 (largest).

Method Description

bold() Changes the text in a string to bold.

italicsQ Changes the text in a string to italic.

strike() Changes the text in a string to strike-through characters.

sub() Changes the text in a string to subscript.

sup() Changes the text in a string to superscript.

toLowerCase() Changes the text in a string to lower-case.

toUpperCase() Changes the text in a string to upper-case.

fixed() Changes the text in a string to fixed
(monospace) font.

fontcolor (‘“'color™) Changes the color of a string using color]
names or hexadecimal values.

fontsize(''n™) Changes the size of a string using font sizes

Link(""href™)

Formats a string as a link.

SWE 444: Internet & Web Application Development

4.43

More string methods

Method Description
charAt(index) Returns the character at position index in the string.
charCodeAt(index) Returns the Unicode or ASCII decimal value of the character at position index

in the string.

indexOf(*'chars™™)

Returns the starting position of substring "chars" in the string. If "chars" does
not appear in the string, then -1 is returned.

lastindexOf(*'chars'™)

Returns the starting position of substring "char" in the string, counting from
end of string. If "chars" does not appear in the string, then -1 is returned.

slice(indexl[, index2])

Returns a substring starting at position indexl and ending at (but not
including) position index2. If index2 is not supplied, the remainder of the
string is returned.

split(delimiter)

Splits a string into separate substrings which are copied as individual
elements into a new array object. The delimiter identifies the separator
character for splitting the string but it is not included in the substrings. The
array object does not need to be prior declared.

substr(index[, length])

Returns a substring starting at position index and including length characters.
If no length is given, the remaining characters in the string are returned.

substring(indexl, index2)

Returns a substring starting at position indexl and ending at (but not
including) position index2.

toString() Converts a value to a string.
toFixed(n) Returns a string containing a number formatted to n decimal digits.
toPrecision(n) Returns a string containing a number formatted to n total digits.

SWE 444: Internet & Web Application Development

4.44

Date Object

Permits you to work with date and time settings taken from the
system clock of the user's PC.

By default creates an object with the computer’s current date and time, ex:

now = new Date(); // variable now contains current date
and time

Note: months are expressed 0-11, 0 being January, 11 being December

Dates are actually stored as an integer representing the number of
milliseconds since January 1st, 1970

Negative values indicate dates before this date

Once you have a date object you can set the date, or read the date in a
number of useful formats

now.setFulllYear(2003, 0, 31); /* Jan 31st, 2003 */

nsw.setHours(lS, 13, 13); /* 1:13:13 PM, local time zone
*

SWE 444: Internet & Web Application Development 4.45

Date Methods

Method Description
getbate() Returns the day of the month.
getDay() Returns the numeric day of the week (Sunday = 0).
getMonth() Returns the numeric month of the year (January = 0).
getYear() Returns the current year.

getFullYear()

getTime() Returns the number of milliseconds since January 1, 1970.
getHours(Q Returns the military hour of the day.

getMinutes() Returns the minute of the hour.

getSeconds() Returns the seconds of the minute.

getMilliseconds() Returns the milliseconds of the second.

SWE 444: Internet & Web Application Development 4.46

Building an XHTML Table with JavaScript

<script type="text/javascript">

function BuildArray()
{
var SquareRoots = new Array();
for (i=0; i<10; i++) {
SquareRoots[i] = Math.sqrt(i + 1).toFixed(3);
¥

var TableOut =""
TableOut += "<table border="1" style="width:100px">";
TableOut += "<caption>SquareRoots</caption>";
for (i=0; i < SquareRoots.length; i++) {
TableOut += "<tr><td style="text-align:center'>" +
SquareRoots[i] + "</td></tr>";
}
TableOut += "</table>";
document.getElementByld(*"Output™).innerHTML = TableOut;

¥

</script>

<input type="button" value="Build Array" onclick="BuildArray()"/>
<p><div id="Output"></div></p>

SWE 444: Internet & Web Application Development 4.47

Searching An Array of Objects

<script type="text/javascript">

var Contacts = new Array();

function LoadArray(){
Contacts[0] = "M. Al-Turki, 555-1111, mturki@kfupm.edu.sa";
Contacts[1] = "I. Katebah, 555-2222, ikatebah@kfupm.edu.sa";
Contacts[2] = "U. Jan, 555-3333, ujan@kfupm.edu.sa™;
Contacts[3] = "L. Al-Awami, 555-4444, lawami@kfupm.edu.sa”;
Contacts[4] = "H. Al-Ramadi, 555-5555, hramadi@kfupm.edu.sa";
Contacts[5] = "H. Al-Helal, 555-6666, hhelal@kfupm.edu.sa™;
Contacts[6] ="S. Al-Awfi, 555-7777, sawfi@kfupm.edu.sa";

¥

function Find(){

LoadArray();
document.getElementByld("Output™).innerText = ";

var SearchName = document.getElementByld("FindString™).value.toLowerCase();
for (i=0; i < Contacts.length; i++) {
var ArrayName = Contacts[i].toLowerCase();
if (ArrayName.indexOf(SearchName) !=-1) {
var InfoArray = Contacts[i].split(*",");
document.getElementByld("Output™).innerHTML += "
" +
"" + InfoArray[0] + "
" +
InfoArray[1] + "
" +
"" + InfoArray[2] + "
";

} 3

</script>
Find: <input id="FindString" type="text" style="width:100px" value="gold"/>

<input type="button" value="Find" onclick="Find()"/>

SWE 444: Internet & Web Application Development 4.48

User-Defined Objects

m You can create complex data structures by creating your own
objects

JavasScript allows you, although it is not a full-featured OO language

m As usual, objects are created with a constructor function

function Employee(IDValue, NameValue, PayRateValue) {
this.ID = IDValue;
this.Name = NameValue;
this.PayRate = PayRateValue.toFixed(2);
this.Hours = 0;
this.Pay = 0;
}

m JavaScript's constructors are like its other functions

m Such a method can be viewed as a class definition, providing the
model for creating objects

SWE 444: Internet & Web Application Development 4.49

<script type="text/javascript'>

Creating an Object Array

var EmployeeDB = new Array():;

function Employee(1DValue, NameValue, PayRateValue){

this.ID = I1DValue;

this.Name = NameValue;

this.PayRate = PayRateValue.toFixed(2);

this.Hours = 0;
this.Pay = 0;

}

function AddEmployees(){
EmployeeDB[EmployeeDB.
EmployeeDB[EmployeeDB.
EmployeeDB[EmployeeDB.
EmployeeDB[EmployeeDB.
EmployeeDB[EmployeeDB.

}

</script>

length]
length]
length]
length]

length]

new

new

new

new

new

Employee(*'11111"
Employee(''22222"
Employee(*'33333"
Employee(''44444"

Employee(*'55555"

SWE 444: Internet & Web Application Development

“F.

“Y-

. Katebah™, 10.00);
‘H. Al-Helal", 15.00);

‘M. Araman', 20.00);

Nabulsi™, 25.00);

Al-Amer™, 30.00);

4.50

Adding Methods to Your Objects

m Suppose you defined methods ShowRecord() and
ComputePay () (with or without parameters)

m You add them to your object as follows

function Employee(IDValue, NameValue, PayRateValue){
this.ID = IDValue;
this.Name = NameValue;
this.PayRate = PayRateValue.toFixed(2);
this.Hours = 0;
this.Pay = 0O;
this.ShowRecord = ShowRecord;
this.ComputePay = ComputePay;

SWE 444: Internet & Web Application Development 451

Using Your Object’'s Methods

function ShowRecord() {
/I code not shown
return s;

+
function ComputePay(hours) {

this.Hours = document.getElementByld(hours).value;
this.Pay = this.PayRate * this.Hours;
this.Pay = this.Pay.toFixed(2);

}

function ShowEmployees() {
var OutString = """

// code not shown
for (i=0; 1 < EmployeeDB.length; i1++) {
OutString += EmployeeDB[1].ShowRecord();
be
/l code not shown
by
function EnterHours() {
for (i=0; i<EmployeeDB.length; 1++) {
iIT (EmployeeDB[1].-1D == document.getElementByld("'EmployeelD™) .value) {
EmployeeDB[1] .ComputePay("'EmployeeHours™);
break;

}
}

/I code not shown
}

SWE 444: Internet & Web Application Development 4.52

Sorting Array Elements

m To sort an array alphabetically:
myArray.sort()

m To sort an array Sorts numerically:
myArray.sort(function(a, b) { return a - b; })

function SortDESC(){
EmployeeDB.sort(function(a,b){return b.ID - a.ID});
ShowEmployees();

}

function SortASC(){
EmployeeDB.sort(function(a,b){return a.ID - b.ID});
ShowEmployees();

}

SWE 444: Internet & Web Application Development 4.53

The Window Object

m The navigator object at the top of the DOM hierarchy represents the browser.
has properties used to get information about the browser, version, OS platform

etc

m Aninstance of a window object is created when a browser is launched

Its properties become available for inspection/use as: window.property or
self.property or only property

m Common window properties:

Property Description and Setting
defaultStatus (Sets the text to display in the status bar appearing at the bottom of the browser window.
top.defaultStatus=
(No message set; default is blank or "Done" when refreshing a page.)
length Gets the number of frames in the window top.length = 2
location Gets or sets the URL of the document in the window.
top. location=ttp://msconline._maconstate.edu/tutorials/JSDHTML/default_htm
screenlLeft Gets or sets the pixel position of the window relative to the top-left corner of the screen.
screenTop
top.screenLeft=26
top.screenTop = 120

SWE 444: Internet & Web Application Development 4.54

The location Window Property

m The location property is extremely useful in setting up scripted links.

Has the same effect as the <a> tag but with scripted control.
Can create links using it along with other DHTML settings (see example below)

A scripted link:

<span style="color:blue; text-decoration:underline; cursor:hand"
onmouseover="this.style.fontWeight="bold™"
onmouseout="this.style.fontWeight="normal """
onmousedown="this.style.color="red""
onmouseup=""this.style.color="blue""
onclick="location="http://webcourses.kfupm.edu.sa"">

Link to WebCT (KFUPM’s)

SWE 444: Internet & Web Application Development 4.55

The Window Object’'s Methods

m Like other objects, the Window object has methods, too, that become available when a
new window Is opened

Example: alert(), prompt(), focus(), open(), close(), resizeTo(h,v), print(),
createPopup(), etc

m Window timers:

two sets of windows methods relate to setting up timing devices to control the automatic
display of pages.

» one set introduces a delay before showing a page;

> the other set defines a continuous interval during which activities are repeated.

m Delay timer

established with setTimout() and cleared with clearTimout() methods.
setTimeout() causes the script to pause for a specified number of milliseconds.
> setTimeout("statement”, milliseconds)

m Interval timer
established with setlnterval () and cleared with clearInterval () methods.

SWE 444: Internet & Web Application Development 4.56

Delay Timer Example

<script type="text/javascript'>

var SlideWindow;

function SlideShow(){
SlideWindow = open(“slidel.jpg*, ", "width=300,height=200");
SlideWindow.moveTo(400,400);
setTimeout("'SlideWindow. location=“slide2.jpg"", 2000);
setTimeout("'SlideWindow. location=“slide3.jpg"", 4000);
setTimeout('SlideWindow. location=“slide4.jpg"", 6000);
setTimeout('SlideWindow. location=“slide5.jpg"', 8000);
setTimeout('SlideWindow. location=“slide6.jpg"", 10000);
setTimeout("'SlideWindow.close()", 12000);

}

</script>

<input type="button"™ value="Slide Show" onclick="SlideShow()"/>

SWE 444: Internet & Web Application Development 4.57

Interval Timer Example

<script type="'text/javascript'>
var SlideCount;
var SlideWindow;
function SlideShow(){
SlideCount = 1;
SlideWindow = open(*''Slidel.jpg", "', "width=300,height=200"");
SlideWindow.moveTo(400,400) ;
SlideTimer = setlnterval (*'ShowNextSlide()',2000);
+
function ShowNextSlide(){
SlideCount ++;
iIT (SlhideCount <= 5 && SlideWindow.closed !'= true) {
SlideWindow. location = "Slide" + SlideCount + ".jpg";
+
else {
cleariInterval (SlideTimer);
SlideWindow.close();

}
}

</script>
<input type="button" value="Show Slides" onclick="SlideShow()"/>

SWE 444: Internet & Web Application Development

4.58

The Form Object

m Forms are devices for collecting information from users and
submitting it for processing.

Used to interact with a Web page and through which server and browser
scripts respond to user needs.

Web forms contain various types of controls like textbox, button, text
area, drop-down list etc

m Form controls, as a group, often are enclosed inside <form> tags.
<form> tags can contain action and method attributes governing
submission of form values for processing by server scripts.

<form> tags are not required when form controls are used for input to
browser scripts.

m Example:

<input type="text" value="'"Change this text."

onchange=""document.getElementBy ld("'MSG"") . I1nnerText=
"You changed the text.""/>

SWE 444: Internet & Web Application Development 4.59

Validating Form Data

m JavaScript can be used to validate input

data In

XHTML forms before sending off the

content to a server.

m Form data that typically are checked by a
JavaScript could be:

nas t
nas t
nas t
nas t

ne user left required fields empty?
ne user entered a valid e-mail address?
ne user entered a valid date?

ne user entered text in a numeric field?

SWE 444: Internet & Web Application Development 4.60

Example: Validating Empty Field

<script type=""text/javascript'>
<l--
function CheckNull(){
document.getElementByld("*"MSG"") . innerHTML = "***;
iIT (document.getElementByld("'MyField"™) .value == """) {
document.getElementByld("*"MSG") . 1nnerHTML = "'Missing data!'';
document.getElementByld(""MyField") . focus();
+
else {
document.getElementByld("*"MyFi1eld') . focus();

}

+
//—->

</script>

</head>

<body>

<input type="Text" i1d="MyField"/>

<input type="button" value="Submit" onclick="CheckNull()"/>
<body onload=""document.getElementByld("MyField").focus(Q" />

SWE 444: Internet & Web Application Development 4.61

Reqgular Expressions

m A notational convention used to match a word, a number or any other string of text
within another

m Introduced in JavaScript 1.2
Mainly used in form validation

m Aregular expression can be written statically or dynamically

Within slashes, such as re = Zab+c/

With a constructor, such as re = new RegExp(‘'ab+c')
> Used when pattern to match i1s taken as user input, for example

m Regular expressions are almost the same as in Perl or Java (only a few unusual
features are missing)

m Examples

var pattern = /[0-9]/
> Matches an integer
var pattern = /[A-Za-z]/
> Matches a string of letters

m Can specify more complex regular expressions to match phone numbers of the form
abc-def-ghij where a,b, .., j are digits

SWE 444: Internet & Web Application Development 4.62

Special Characters in Regular Expressions

Token Description
A Match at the start of the input string

$ Match at the end of the input string

* Match O or more times

+ Match one or more times

? Match O or 1 time

alb Match a or b

{n} Match the string n times

\d Match a digit

\D Match a non-digit

SWE 444: Internet & Web Application Development

4.63

... Special Characters in Regular Expressions

Token Description

\w Match any alphanumeric character or underscore

\W Match anything except alphanumeric characters or underscores

\s Match a whitespace character

\S Match anything except for whitespace characters

[...] Creates a set of characters, one of which must match if the
operation is to be successful. If you need to specify a range of
characters then separate the first and the last with a hyper: [0-9]
or [P-X]

[~...] Creates a set of characters which must not match. If any

character in the set matches then the operation has failed. This
fails if any lowercase letter d to g is matched: [*d-q]

SWE 444: Internet & Web Application Development 4.64

Example: Validating ID and Password

<script language="'JavaScript'>
<l--
function i1s6Digitint(elm) {
1T (elm.value == "") {
return false;

}

for (var 1 = 0; 1 < elm.value.length;
1T (elm.value.charAt(1) <

"9 {
}
}

return true;

return false;

+
function 1s6Digitint2(elm){

var pattern = /["0-9]/;

if(pattern.test(elm.value))
return false;

else return true;

}

// continued ..

SWE 444: Internet & Web Application Development

i++) {
"0" || elm.value.charAt(i) >

4.65

...Example: Validating ID and Password

function i1s8CharacterString(elm){
var pattern = /[A-Za-z0-9]/;
iT(pattern_test(elm.value))
return true;
else return false;
+
function i1sReady(iField, pField) {
var 1Result = iField.value.length '= 67?false:i1s6Digitint(iField);

var pResult = pField.value.length I=
8?false:1s8CharacterString(pField);

iIT (iIResult == false) {
alert("'Please enter 6-digit integer.");
iField.focus();
return false;

}

iIT (pResult == false) {
alert(""Please enter 8-character string.");
pField.focus();
return false;

by

return true;
+
//-->
</script>

SWE 444: Internet & Web Application Development 4.66

Example: Validation Phone and E-Mall

<script language="JavaScript''>
<l--
function i1sValidKFUPMPhone(elm){
var pattern = /0\d-?\d{3}-?\d{4}/;
if(pattern.test(elm.value))
return true;
else return false;
ks
function isvValidEmail(elm){
var pattern = /A\w+\@\w+(.\w+)+/
if(pattern.test(elm.value))
return true;
else return false;

}

// continued ..

SWE 444: Internet & Web Application Development 4.67

... Example: Validation Phone and E-Mall

function i1sReady(pField, eField) {
var pResult = i1sValidKFUPMPhone(pField);
var eResult = i1sValidEmail(eField);
// display an alert when either of the above is false
return true;

+

//-->

</script>

</head>

<body>

<hl>Validating Phone and E-mail:</h1>

<form name=""i1dValid"” onSubmit="'return
IsReady(this.phone,this.email) ;" method="'post" action=""">

Phone : <input type="text" id="phone'" />

E-Mail: <input type="text" i1d="email" />

<input type="submit" value="Submit" />

<input type="reset'" value="Reset" />

</form>

</body>

</html>

SWE 444: Internet & Web Application Development 4.68

Example: Sliding Tabs

<script language="JavaScript'>

// Function to slide the tab into the visible portion of
the browser window

function showLayer() {
var hiddenLayer = document.getElementByld(''TabLayer');
var layerPosition = parselnt(hiddenLayer.style.left);
iIT (layerPosition < 0) {

hiddenLayer.style.left = (layerPosition + 5) +

TpXT;

}

setTimeout("'showLayer()", 20);

}

// Function to hide the tab again

function hideLayer() {
var hiddenLayer = document.getElementByld(''TabLayer');
hiddenLayer.style.left = "-75px"’;

}

</script>

SWE 444: Internet & Web Application Development 4.69

... Example: Sliding Tabs

<<body>
<div 1d="TabLayer"
style="position:absolute; left:-75px; top:50px;
width:115px; height:200px; z-index:1;
background-color: #CCCCCC; layer-background-
color: #CCCCCC;">
<p align="right" class="hideshow">

<a href=""javascript:hideLayer(Q;"
class="hideshow">&It;<hide |

<a href=""javascript:showLayer();"
class="hideshow'">show>>

</p>
<p align="left" style=""margin-left: 5px;">
Quizzes

Majors

Project

Final
</p>
</div>
</body>

SWE 444: Internet & Web Application Development 4.70

Debugging

m If you mess up on the syntax you will get a
Javascript Error

Netscape

> You will see a notification of an error on the status bar in the
bottom left corner

> You type “javascript.” in the URL field to pinpoint the error

Internet Explorer

> By default a tiny little Javascript error message appears at
the bottom left corner of the browser in yellow. Usually you
won't see it.

» Can be explicitly disabled under Tools/Internet Options

» Recommend under Tools/Internet
Options/Advanced/Browsing to uncheck “Disable Script
Debugging” and to check “Display a Notification about every
script error” while doing development

SWE 444: Internet & Web Application Development 4.71

Fixing Javascript Errors

m If possible use the debugging tool to locate the
line containing the error

m Errors can be hard to find and fix

“code a little, test a little” strategy

m Often errors are due to things that are easy to
overlook, like not closing a quote

SWE 444: Internet & Web Application Development 4.72

References

m hitp://devedqge-
temp.mozilla.org/library/manuals/2000/javascript/
1.3/quide/intro.html

m http://msconline.maconstate.edu/tutorials/JISDHT
ML/default.htm

m http://www.|Javascript.com

SWE 444: Internet & Web Application Development 4.73

http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.3/guide/intro.html
http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.3/guide/intro.html
http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.3/guide/intro.html
http://msconline.maconstate.edu/tutorials/JSDHTML/default.htm
http://msconline.maconstate.edu/tutorials/JSDHTML/default.htm
http://www.javascript.com/

	4. Client-Side Scripting
	Why Client-Side Coding?
	Introduction to Dynamic HTML
	Dynamic HTML (DHTML)
	The DOM
	The DOM Hierarchy
	Window Object
	Window Object Methods
	Navigator Object
	Location Object
	History Object
	Document Object
	Identifying DOM Objects
	Referencing XHTML Elements
	Getting and Setting Style Properties
	Applying Methods
	The JavaScript Language
	JavaScript versus Java
	Placement of JavaScripts
	JavaScript Functions
	Mouse Event Handlers
	Inline Scripts
	The this Keyword
	JavaScript Comments
	Primitive data types
	Variables
	Operators, I
	Operators, II
	Statements, I
	Statements, II
	Exception handling, I
	Exception handling, II
	Basic Input and Output
	Output
	Simple Input/Output - 1
	Simple Input/Output - 2
	Simple Input/Output - 3
	Some Built-in DOM Objects
	Numbers
	Boolean
	Math Object
	Strings and characters
	Some string methods
	More string methods
	Date Object
	Date Methods
	Building an XHTML Table with JavaScript
	Searching An Array of Objects
	User-Defined Objects
	Creating an Object Array
	Adding Methods to Your Objects
	Using Your Object’s Methods
	Sorting Array Elements
	The Window Object
	The location Window Property
	The Window Object’s Methods
	Delay Timer Example
	Interval Timer Example
	The Form Object
	Validating Form Data
	Example: Validating Empty Field
	Regular Expressions
	Special Characters in Regular Expressions
	… Special Characters in Regular Expressions
	Example: Validating ID and Password
	…Example: Validating ID and Password
	Example: Validation Phone and E-Mail
	… Example: Validation Phone and E-Mail
	Example: Sliding Tabs
	… Example: Sliding Tabs
	Debugging
	Fixing Javascript Errors
	References

