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Abstract

Naira is a compiler for Haskell, written in Glasgow parallel Haskell. It exhibits
modest, but irregular, parallelism that is determined by properties of the program being
compiled, e.g. the complexity of the types and of the pattern matching. We report four
experiments into Naira’s parallel behaviour using a set of realistic inputs: namely the 18
Haskell modules of Naira itself. The issues investigated are:
¢ Does increasing input size improve sequential efficiency and speedup?

e To what extent do high communications latencies reduce average parallelism and
speedup?

e Does migrating running threads between processors improve average parallelism and
speedup at all latencies? © 2002 Published by Elsevier Science Inc.

1. Introduction

The parallel behaviour of programs with regular parallelism is well under-
stood: there are good simulation tools [10], a variety of analytical cost models
[12,13] and hybrid methods [2]. Unfortunately many useful programs lack such
a regular structure, for example the number and size of tasks may be deter-
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mined by the input. It is much harder to construct analytical models of the
behaviour of programs with such irregular parallelism, and cost models are far
less well developed [2,10,13]. Instead we must rely on simulation and mea-
surement, and for these to be meaningful the program simulated must be re-
alistic, and applied to real input data.

Parallel functional languages with dynamic models of parallelism are well
suited to constructing programs with irregular parallelism. In the implemen-
tation of these languages many aspects of parallel behaviour, e.g. how many
threads to create, and where to execute a thread, are automatically managed by
a sophisticated runtime system. In consequence the runtime system can adapt
at runtime to irregular parallel behaviour. Glasgow parallel Haskell (GpH) is
one such language [11], and several irregularly parallel programs have been
constructed [8].

This paper reports a series of experiments into the irregular parallel be-
haviour of the Naira compiler. Naira comprises approximately 5000 lines of
GpH, and 1000 lines of C. As a compiler Naira performs symbolic manipu-
lation of program text. Although the results of our experiments only apply
directly to Naira, we hope that the principles established will hold for other
symbolic programs with irregular parallelism. Naira is a suitable basis for these
experiments because of the availability of a suite of real input data, and more
importantly it is a large, real program that achieves wall-clock speedups, as
reported in Section 2.

2. Naira

Naira compiles from a substantial subset of Haskell to a RISC-like target
language that has been extended with special parallel constructs [9]. The front
end of the compiler comprises about 5K lines of GpH code organised in 18
modules. Input is in the form of a Haskell module, i.e. a file containing
function definitions. The phases of the compiler, and the data dependencies
between them, are depicted in Fig. 1. The first phase, analysis, consists of the
lexical analyser and the parser. The next four phases implement the pattern
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Fig. 1. Naira architecture.
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matching compiler, the lambda lifter, the type checker and the intermediate
language optimiser, respectively. The detailed organisation and implementa-
tion of these phases is described elsewhere [5].

The main sources of parallelism in Naira are as follows: data-parallel
compilation of each function definition in the input; pipelining of data between
the compilation phases identified in Fig. 1; control parallelism in the pattern
matcher and lambda lifter.

Naira’s modest parallelism has been measured on the GranSim simula-
tor, and subsequently on a network of workstations. GranSim is a simu-
lator that can be parameterised to emulate different parallel architectures [3].
The best simulated speedups achieved are 10.9 on an idealised parallel
machine with an unbounded number of processors; 6.3 on an 8-processor
shared-memory architecture; 5.8 on an 8-processor distributed-memory ar-
chitecture. On a network of five Sun workstations Naira achieves a maxi-
mum speedup of 2.73 relative to its execution on a single workstation.
However parallel GpH code carries an execution overhead compared to
sequential code, and Naira’s sequential efficiency is 89%. As a result the
wall-clock speedup achieved 2.46 on five processors. These speedups agree
with GranSim’s predicted speedup of 3.01 for the workstation network.
Detailed descriptions of the parallelisation and other aspects of Naira can
be found in [4,5].

3. Experimental apparatus

The first experiment below measures Naira’s performance using GpH’s
GUM runtime system. The other experiments use the GranSim parame-
terisable simulator [3] because it provides a cheap and convenient platform.
GranSim is closely based on the GUM runtime system that manages
execution of GpH programs on real parallel architectures. GranSim takes
parameters describing many aspects of a parallel architecture, e.g. thread
creation costs, communication latency, etc. As outlined above, the accu-
racy of GranSim predictions for Naira has been corroborated, and its ac-
curacy for several other programs has been validated on several
architectures [7].

The parallel program metrics used are standard [1], as follows:

Runtime: the time to execute a program.

Sequential efficiency: the ratio between runtime under the sequential runtime

system, and runtime under the parallel runtime system on a single processor.

Sequential efficiency measures the additional work that the parallel language

must perform to synchronise with concurrent threads.

Average parallelism: the average number of active threads during a pro-

gram’s execution.
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Speedup (at N processors): the ratio between sequential runtime and parallel
runtime (on N processors).

4. Experiment 1: impact of input size

The first experiment investigates the impact of input size on both the se-
quential efficiency, and speedups achieved by Naira.

4.1. Input size vs sequential efficiency

What is the impact of input size on the sequential efficiency of symbolic ir-
regularly parallel GpH programs? Table 1 shows the runtimes for Naira com-
piling each of its 18 GpH modules. The runtime figures in this table are the
wall-clock (real) timings taken to compile each input module. These times
(measured in seconds) are averaged over several program executions. The
second column of Table 1 records the Naira runtime to compile of each
module, when Naira itself is running, fully optimised, under the standard se-
quential runtime system. The third column gives the Naira runtime to compile

Table 1

Naira’s runtime and sequential efficiency for each module

Input module Sequential Seq. for par. exec. Efficiency (%)
MyPrelude 2.5 3.0 83
DataTypes 2.8 32 89
Tables 3.4 4.1 83
PrintUtils 1.7 2.5 70
Printer 33 4.0 82
LexUtils 34 3.8 89
Lexer 3.0 3.6 83
SyntaxUtils 22.2 23.3 95
Syntax 4.9 5.4 90
MatchUtils 4.5 5.2 86
Matcher 5.0 5.5 91
LambdaUtils 2.1 2.6 79
LambdalLift 7.2 8.2 88
TCheckUtils 10.0 11.8 84
TChecker 2.8 3.7 75
OptmiseUtils 7.7 9.4 82
Optimiser 10.6 12.6 84
Main 6.9 8.4 82
Minimum efficiency 70
Maximum efficiency 90

Mean efficiency 86
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Table 2

Naira’s runtime and sequential efficiency for 2-module inputs

Input module Sequential Seq. for par. exec. Efficiency (%)
Preface 14.4 21.8 66
Printing 7.7 8.7 88
Lexing 8.4 9.1 92
Parsing 33.3 35.8 93
PMatching 13.2 14.6 90
LLifting 6.5 7.2 90
TChecking 15.5 17.9 86
Optimising 41.1 45.1 91
Minimum efficiency 66
Maximum efficiency 93
Mean efficiency 87

each module, under the parallel runtime system on a single processor. The
fourth column contains the efficiency calculated by dividing the second column
by the third, and shows that the overhead imposed by parallel execution can be
high for some inputs, e.g. PrintUtils, or TChecker. The last three rows contain
a summary of information in the table.

Naira’s input size can be increased by concatenating modules, for example
the module Preface in Table 2 is a result of concatenating the contents of the
MyPrelude and DataTypes modules from Table 1. Table 2 reports the se-
quential efficiency of Naira compiling these larger inputs. Similarly Table 3
reports the sequential efficiency of Naira compiling files constructed by con-
catenating four of the original modules.

The effect of increasing input size can be observed by comparing Tables 1—
3, and we note that the mean sequential efficiency of Naira modules increases
from 86% to 91%. Maximum efficiency likewise increases uniformly, from
90% to 93%; however, it is not clear why minimal efficiency drops to 66% in
Table 2. Sequential efficiency probably improves because fixed parallel exe-

Table 3

Naira’s runtime and sequential efficiency for 4-module inputs

Input module Sequential Seq. for par. exec. Efficiency (%)
MyPrelToPrinter 63.9 76.2 84
LexUToSyntax 67.1 74.8 90
MatchUToLLift 334 37.2 90

MAIN 115.3 120.3 96

Minimum efficiency 84

Maximum efficiency 96

Mean efficiency 91
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cution overheads, like program start-up costs, are amortised over a longer
runtime.

Conclusion 1.1. Sequential efficiency of Naira improves with input size.

4.2. Input size vs speedup

What is the impact of input size on the average parallelism and speedups
achieved by symbolic irregularly parallel GpH programs? Naira’s 18 GpH
modules are a varied collection of real compiler inputs. Several size metrics are
possible for compiler input, each with a different variability in the 18 modules.
For example lines of source code, varying from 100 to 500 lines; number of
function definitions, varying from 10 to 90 functions; number of output lines
produced, varying from 100 to 1200 lines (measures input size in the sense that
the number of output lines reflects the complexity of the functions compiled).
The measure selected is the number of function definitions as it provides a
suitably abstract view of compiler input.

Fig. 2 plots the graph for the size of 18 modules against speedup. We sce a
weak correlation between size and speedup. There are several reasons why
speedup may be improved with larger input, most probably the overheads of
parallel structures, like pipeline startup and shutdown, are amortised over a
longer runtime. For irregularly parallel programs, however, a special factor
may be at work: a longer runtime allows the runtime system more time to
adapt, and take advantage of the adaptation.
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Fig. 2. Number of functions in input vs speedups.



S.B. Junaidu, P.W. Trinder | Information Sciences 140 (2002) 229-240 235

Conclusion 1.2. There is a weak correlation between input size and speedup in
Naira.

5. Experiment 2: impact of latency

To what extent do high communication latencies reduce average parallelism
and speedup of symbolic irregularly parallel GpH programs? A key issue in
parallel computing is achieving a high ratio of computation time to commu-
nication time. To discuss this issue in an architecture-independent way the time
to send a message, or communications latency, is expressed in terms of the
number of (computational) machine cycles. There are a whole range of parallel
architectures, ranging from: shared-memory machines with a latency of around
5 or 10 cycles; fast distributed-memory machines (e.g. Meiko CS2) with a la-
tency of 100-500 cycles; conventional distributed memory machines (e.g. IBM
SP2) with a latency of 1000-5000 cycles; to networked machines (e.g. Suns on
an ethernet) with a latency of 25000-100 000 cycles.

Parallel language implementations in general, and GpH in particular, use a
variety of mechanisms to hide latency costs, and high latencies expose the
limitations of these mechanisms. GranSim allows us to measure a program on
simulated architectures with varying latencies. Similar experiments have been
reported elsewhere [3,6], but Naira is a larger program, and is measured on a
set of real input data.

Table 4 and Figs. 3(a) and (b) summarise the average parallelism and
speedups of Naira on a range of loosely coupled architectures with varying
communication latencies. In the table the maximum and minimum average
parallelism and speedup figures at each latency are boxed. We note that
compiling some modules typically produces the greatest speedup, or the
greatest average parallelism. Likewise some modules typically produce the least
speedup, or average parallelism.

The table shows that the average parallelism and speedup for each program
falls linearly as latency increases. Figs. 3(a) and (b) give a depiction of the trend
for all programs, plotting mean, minimum and maximal speedup and average
parallelism figures. This result is in contrast to earlier work on smaller irregular
symbolic programs (approximately 500 lines) with greater speedups (approxi-
mately 28) that report an exponential reduction in speedup [3,6]. The difference
may be because speedup and average parallelism are already low in Naira.

The figures also show that the difference between average parallelism and
speedup is dramatic at a latency of 400 cycles; however as latency increases the
difference between average parallelism and speedup diminishes. This indicates
that at high latencies less unnecessary work is performed, but why this is so is
currently unclear.



Table 4

Naira on 8-node GranSim with varying latencies: with migration

Input Communication latencies (distributed memory architectures)
module 400 cycles 2K cycles 5K cycles 25K cycles S0K cycles 85K cycles 120K cycles
Paral. Spdup Paral. Spdup Paral. Spdup Paral. Spdup Paral. Spdup Paral. Spdup Paral. Spdup

MyPrelude 4.6 3.41 4.2 3.00 4.3 3.17 3.0 2.18 2.5 1.80 (L8] 1.50 [Lo] 1.39
DataTypes 4.7 3.86 3.8 3.12 4.3 3.53 3.9 3.25 3.6 3.01 2.0 1.66 1.7 1.51
Tables 5.0 3.21 4.6 2.93 4.9 3.13 4.1 2.64 4.0 2.77 2.7 1.79 2.6 1.86
PrintUtils 2.66 2.62 2.57 2.52 209 19 206 18 2.04
Printer 3.8 3.98 3.8 3.90 3.7 3.87 33 3.43 2.4 2.52 2.6 2.71 1.8 1.88
LexUtils 3.18 5.6 4.32 5.4 3.32 5.1 4.38 3.89 3.7 2.99 2.7 2.50
Lexer 49 3.92 4.7 3.94 4.5 3.68 3.2 3.25 2.6 2.87 2.2 2.84 2.2 2.78
SyntaxUtils 6.2 2.46 2.54 231 2.10 3.7 433 36 455 27 3.19
Syntax 4.3 2.62 39 2.41 4.1 2.54 3.5 2.12 2.9 1.81 2.3 1.43 2.2 1.34
MatchUtils 3.9 4.05 3.6 3.75 3.7 3.86 2.9 3.04 3.1 4.06 1.8 1.87 1.7 2.04
Matcher 4.2 3.66 4.1 3.68 4.2 2.98 34 2.41 3.1 3.27 2.8 2.77 2.0 1.50
LambdaUtils 3.7 2.32 3.5 2.21 34 2.14 2.9 1.82 2.6 1.60 2.4 1.57 2.1 1.34
LambdaLift 4.6 4.26 4.3 4.67 4.0 4.84 34 3.06 2.8 2.72 2.6 2.59 1.9 2.00
TCheckUtils 5.1 4.86] 52 487 52 4901 43 4.10 4.3 4.07 3.69 3.53
TChecker 2.7 1.77 2.8 1.71 2.6 1.77 2.4 1.48 2.3 1.49 1.9 1.17 2.0 1.27
OptmiseUtils 3.0 3.59 3.0 3.55 2.6 3.11 2.4 2.92 2.3 2.72 2.0 2.33 1.8 2.23
Optimiser 34 4.76 3.3 4.67 3.3 4.59 3.0 4.23 2.9 4.05 2.3 3.88 2.0 3.66
Main 3.6 2.69 3.5 2.70 3.1 2.31 3.1 2.33 2.5 1.98 2.6 1.97 2.1 2.03
Mean 4.3 3.40 4.0 3.37 4.0 3.26 34 2.85 3.0 2.84 2.5 2.41 2.1 2.12
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Naira on 8-Node GrAnSim: with Migration
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Fig. 3. Naira on 8-node GranSim: no migration. (a) Parallelism; (b) speedups.

Conclusion 2.1. Increased latency linearly reduces both average parallelism and
speedup in Naira.

Conclusion 2.2. Increased latency reduces the difference between average par-
allelism and speedup in Naira.

6. Experiment 3: impact of thread migration
What is the impact of thread migration on the average parallelism and

speedups achieved by symbolic irregularly parallel GpH programs at a range of
latencies? Thread migration is an adaptive load-balancing technique for par-
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allel languages where a thread of computation started on a heavily loaded
processor may be moved to an idle processor. It is especially useful for cor-
recting poor load distributions where one processor is overburdened with
work. Implementing thread migration in a runtime is a complex undertaking,
and it is not currently available in GpH. Part of the motivation for this ex-
periment is to determine whether the benefits of thread migration for real
programs are worth the implementation effort.

The program measurements reported in Table 4 have been repeated with
GranSim parameterised to permit thread migration. The results are summarised
in Figs. 4(a) and (b). At high latencies, i.e. above 5K cycles, both the speedups
and average parallelism achieved with migration, and without it, are very sim-
ilar. Differences are of the order of a few percent, typically in favour of with-
migration, with occasional exceptions. This contradicts a body of earlier work
on smaller irregular programs that indicates that thread migration gives sig-
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Fig. 4. Naira on 8-node GranSim: with migration. (a) Parallelism; (b) speedups.
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nificant improvements [3]. There may be several reasons why migration does not
improve Naira speedups at high latencies. Naira may be naturally generating a
good load distribution, never requiring migration. Alternately the loss of data
locality caused by migration may offset the benefits of migration, e.g. the cost of
communicating large data structures like the symbol table outweigh the im-
proved load distribution. Further investigation might establish whether Naira is
typical of large irregular programs, or whether there are special considerations.
For most inputs at lower latencies speedup and average parallelism are
similar with migration and without it. However, for a few inputs at lower la-
tencies, speedup and average parallelism are dramatically improved by migra-
tion. This is reflected in the variability of Figs. 3(a) and (b) below 5K cycles, as
compared with Figs. 4(a) and (b). Example modules with dramatic improve-
ments are Syntax, and LexUtils, and we expect that poor load distributions are
generated for these inputs. This result is consistent with the earlier work on
thread migration [3], and extends it to medium-scale programs at low latencies.
It also confirms earlier observations suggesting that for low-latency architec-
tures a good load distribution is more important than good data locality [6].

Conclusion 3.1. At high latencies thread migration makes little difference to
speedup or average parallelism in Naira.

Conclusion 3.2. At low latencies thread migration can make Naira’s
performance more predictable: giving dramatic improvements for some in-
puts.

7. Conclusions

We have measured several aspects of the irregularly parallel behaviour of the
Naira compiler using the GranSim simulator. GranSim’s prediction of Naira’s
behaviour has previously been validated on a network of workstations. We
make the following conclusions: increasing input size improves both sequential
efficiency and speedups. Raising communication latency reduces average par-
allelism and speedup linearly, and also reduces the difference between average
parallelism and speedup. At low latencies we confirm earlier work on smaller
programs showing that thread migration gives more predictable speedups and
average parallelism, with dramatic improvements for some inputs. A new and
more controversial result is that, for Naira at least, thread migration makes
little difference at high latencies.

The experiments reported here are the first measurements of a medium-scale
GpH symbolic and irregularly parallel program using a substantial set of real
input data. We hope that future work will show that the principles established
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above hold for a class of irregularly parallel programs. Further investigation
may resolve some of the questions raised by the experiments, for example why
does increased communication latency reduce the difference between average
parallelism and speedup?
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