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Overview

1. Sequences

2. Summations

3. Cardinality of Infinite Sets

4. Preview: Inductions and Recursions
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Introduction to Sequences

Definition 1 A sequence is a function from a subset of the of

integers (usually either the set {0, 1, 2, . . . } or the set {1, 2, . . . })
to a set S. We use the notation an to denote the image of the

integer n. We call an a term of the sequence.

That is, if f is a function from {0, 1, 2, ...} to S we usually denote

f(i) by ai and we write

{a0, a1, a2, a3, . . .} = {ai}k
i=0 = {ai}k

0

where k is the upper limit (usually ∞).

Note: the sets {0, 1, 2, 3, . . . , k} and {1, 2, 3, 4, . . . , k} are called ini-

tial segments of N.

Example: Using zero-origin indexing, if f(i) = 1
(i+1)

, then the

sequence

f = {1,
1

2
,
1

3
,
1

4
, . . .} = {a0, a1, a2, a3, . . .}

Example: Using one-origin indexing the sequence f becomes

{1

2
,
1

3
,
1

4
, . . .} = {a1, a2, a3, . . .}

Definition 2 A geometric progression is a sequence of the form

a, ar, ar2, ar3, . . . , arn

,where the initial term a and the common ratio r are ∈ R.

Definition 3 An arithmetic progression is a sequence of the form

a, a + d, a + 2d, . . . , a + nd

,where the initial term a and the common difference d are ∈ R.
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Summation Notation

Given a sequence {ai}k
0 we can add together a subset of the sequence

by using the summation and function notation

ag(m) + ag(m+1) + . . . + ag(n) =

n
∑

j=m

ag(j)

The above summation can be written in a more general form as,
∑

m≤j≤n

ag(j) =
∑

j∈S

ag(j)

Example:

r0 + r1 + r2 + r3 + . . . + rn =
n

∑

j=0

rj

1 +
1

2
+

1

3
+

1

4
+ . . . =

∞
∑

i=1

1

i

a2m + a2(m+1) + . . . + a2(n) =

n
∑

j=m

a2j

If S = {2, 5, 7, 10} then

∑

j∈S

aj = a2 + a5 + a7 + a10

Similarly for the product notation:

n
∏

j=m

aj = amam+1 · · · an
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Let K be any finite set of integers. Sum over the elements of K can

be transformed by using the following rules:

(a)
∑

k∈K

cak = c
∑

k∈K

ak, (distributive law)

(b)
∑

k∈K

(ak + bk) =
∑

k∈K

ak +
∑

∈K

bk ,(associative law)

(c)
∑

k∈K

ak =
∑

p(k)∈K

ap(k) ,(commutative law)

(d)
∑

k∈K

ak +
∑

k∈K′

ak =
∑

k∈K∩K′

ak +
∑

k∈K∪K′

ak,

(e)
∑

j

∑

k

aj,k =
∑

P (j,k)

aj,k =
∑

k

∑

j

aj,k, (interchanging the or-

der of summation).

Example:

m
∑

k=1

ak +

n
∑

k=m

ak = am +

n
∑

k=1

ak, 1 ≤ m ≤ n;

Example:
n

∑

k=0

ak = a0 +

n
∑

k=1

ak, n ≥ 0.

Example:

n
∑

j=1

n
∑

k=j

aj,k =
∑

1≤j≤k≤n

aj,k =
n

∑

k=1

k
∑

j=1

aj,k

Example: Let Sn =

n
∑

k=0

ak.

Sn + an+1 =
∑

0≤k≤n+1

ak = a0 +
∑

1≤k≤n+1

ak

= a0 +
∑

1≤k+1≤n+1

ak+1

= a0 +
∑

0≤k≤n

ak+1
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Example: Find the sum of a geometric progression, Sn =

n
∑

k=0

axk.

Sn + axn+1 = ax0 +
∑

0≤k≤n

axk+1

= a + xSn

Sn =
axn+1 − a

x − 1
, x 6= 1.

Example: Let x be a real number with |x| < 1. Find

∞
∑

k=0

xk.

Solution: By prior example, with a = 1 we see that

n
∑

k=0

xk =

xk+1 − 1

x − 1
. Because |x| < 1, xk+1 approaches 0 as k approaches ∞.

It follows that

∞
∑

k=0

xk = lim
x→∞

xk+1 − 1

x − 1
=

1

1 − x

Example:

• Show that the sum to n terms of the series

1

2
+

3

4
+

7

8
+

15

16
+ · · ·

is equal to n − 1 + 2−n.

• Show that

n
∑

k=0

kxk =
x − (n + 1)xn+1 + xnx+2

(1 − x)2
, for x 6= 1

• Find the sum of the series

S = 12 − 22 + 32 − 42 + · · · − 20022 + 20032.
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Cardinality of Infinite Sets

Definition 4 The sets A and B have the same cardinality if and

only if there is a one-to-one correspondence from A to B (a bijec-

tive map f : A → B).

With infinite sets proper subsets can have the same cardinality. This

cannot happen with finite sets.

By definition, |A| ≤ |B| if there is an injection from A to B.

Theorem 1 If A ⊆ B, then |A| ≤ |B|. This can be seen by defining

a function f(x) = x which is clearly an injection from A to B.

Example:

|{1, 2, 5}| ≤ ℵ0.

The injection f : {1, 2, 5} → N defined by f(x) = x is shown in the

figure below.

1

2

5

1

2

3

4

5
6

. . .

Figure 1: Injection from {1, 2, 5} to N.

Lemma 1 Let A, B, and C be sets.

(i) A and A have the same cardinality.

(ii) if |A| = |B|, then |B| = |A|.
(iii) if |A| = |B| and |B| = |C|, then |A| = |C|.I
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Definition 5 Let n ∈ Z. We let N[1, n] denote the set N[1, n] =

{x ∈ N | 1 ≤ x ≤ n}.
Definition 6

(1) A set is finite if it is either the empty set or it has the same

cardinality as N[1, n] for some n ∈ N.

(2) A set is infinite if it is not finite.

(3) A set is countably infinite if it has the same cardinality as N

or Z+.

(4) A set is countable if it is finite or countably infinite.

(5) A set is uncountable if it is not countable.

Example: The set of squares S = {1, 4, 9, 16, . . .} and the set of

natural numbers N have the same cardinality.

There exists the map h : N → S given by h(n) = (n + 1)2 for all

n ∈ N that is a bijective map. That h is bijective follows from the

fact that k : S → N given by k(n) =
√

n − 1 for all n ∈ S is an

inverse map for h.

Example: The set of natural numbers N and the set of integers Z

have the same cardinality.

Let f(n) be a bijective map f : N → Z given by

f(n) =







−n
2

if n is even

n+1
2

if n is odd

Theorem 2

(1) The set N is infinite.

(2) A countably infinite set is infinite.

(3) Let A be a set. Then A is infinite iff it it contains an infinite

subset.

Example: The set of (finite length) strings S over a finite alphabet

A is countably infinite.I
P
u
t
u

D
a
n
u

R
a
h
a
r
j
a

Fall 2007 (Term 071) Information & Computer Science Department, KFUPM

ICS253 Discrete Structure I



Note 08 Sequence, summations, Infinite sets 8 / 10-1

Solution: To show this we assume that

(a) A 6= ∅.
(b) There is an “alphabetical” ordering of the symbols in A.

Continuing the proof, let us list the strings in lexicographic order:

(a) all the strings of zero length,

(b) then all the strings of length 1 in alphabetical order,

(c) then all the strings of length 2 in alphabetical order,

(d) etc.

This implies a bijection from N to the list of strings and hence it is

a countably infinite set.

Example: Let us demonstrate the above example with the set

A = {a, b, c}.

The lexicographic ordering of A is

{ (λ), (a, b, c), (aa, ab, ac, ba, bc, ca, cb, cc),

(aaa, aab, aac, aba, . . .), . . .}
= {f(0), f(1), f(2), f(3), f(4), . . .}

Example: The set of all Java programs is countable.

Solution: Let S be the set of legitimate characters which can ap-

pear in a Java program. A Java compiler will determine if an input

program is a syntactically correct Java program (the program doesn’t

have to do anything useful).

Use the lexicographic ordering of S and feed the strings into the

compiler.

If the compiler says YES, this is a syntactically correct Java pro-

gram, we add the program to the list. Else we move on to the next

string.

In this way we construct a list or an implied bijection from N to the

set of Java programs. Hence, the set of Java programs is countable.I
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Theorem 3 The set of real numbers between 0 and 1 is uncount-

able.

Solution: We assume that it is countable and derive a contradic-

tion. If it is countable we can list them (i.e., there is a bijection

from a subset of N to the set).

We show that no matter what list you produce we can construct a

real number between 0 and 1 which is not in the list. Hence, there

cannot exist a list and therefore the set is not countable.

It’s actually much bigger than countable. It is said to have the

cardinality of the continuum, c.

Represent each real number in the list using its decimal expansion,

e.g
1
3

= .3333333 . . .

1
2

= .5000000 . . .

= .4999999 . . .

If there is more than one expansion for a number, it doesn’t matter

as long as our construction takes this into account.

r1 = .d11d12d13d14d15d16 · · ·
r2 = .d21d22d23d24d25d26 · · ·
r3 = .d31d32d33d34d35d36 · · ·
...

...

Now construct the number x = .x1x2x3x4x5x6x7.... ,where

xi =







3 if dii 6= 3

4 if dii = 3

(Note: choosing 0 and 9 is not a good idea because of the non

uniqueness of decimal expansions.) Then x is not equal to any num-

ber in the list.

Hence, no such list can exist and hence the interval (0, 1) is un-

countable.I
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Example: Show that the set Q+ is countable.

Solution: Display the elements of the set Q+ in a grid as shown

below.
1
1

1
2

1
3

1
4

· · ·

2
1

2
2

2
3

2
4

· · ·

3
1

3
2

3
3

3
4

· · ·

.

..
.
..

.

..
.
..

. . .

Define a function F : Z+ → Q+ by starting to count at 1
1

and

following the arrows as indicated, skipping over any number that

has already been counted.

To be specific: Set F (1) = 1
1
, F (2) = 1

2
, F (3) = 2

1
. Skip 2

2
since

2
2

= 1
1
, which was counted first. Continue in this way, defining

F (n) for each positive integer n.

Note that every positive rational number appears somewhere in the

grid, and the counting procedure is set up so that every point in

the grid is reached eventually. Thus the function F is onto. Also

by skipping numbers that have already been counted, no number is

counted twice. So F is one-to-one. Consequently, F is a function

from Z+ to Q+ that is 1-to-1 and onto, and so Q+ is countably

infinite and hence countable.
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