Lab# 3 LOOP & BRANCH INSTRUCTIONS

Instructor: | Putu Danu Raharja.

Objectives:

Learn to implement loops and conditional expressions in assembly language programs.
Method:

Translate an algorithm from pseudo-code into assembly language.

Preparation:
Read the chapter 2 of lecture textbook.

3.1 DEVELOP THE ALGORITHM IN PSEUDOCODE
Obviously most of you have been familiar to develop algorithms using Java construct

such as the following:
if(condition){

this block of code executed if condition is true

}else {

this block of code executed if condition is false
}

The key to making MIPS assembly language programming easy is to initially develop
the algorithm using a high-level pseudo-code notation with which we are already
familiar. Then in the final phase we translate these high-level pseudo-code expressions
into MIPS assembly language. In other words, in the final phase we are performing the
similar function that a compiler performs, which is to translate high-level code into the

equivalent assembly language.

3.2 CONDITIONAL AND UNCONDITIONAL BRANCH INSTRUCTIONS

Instructions Description
bgez rs, L if(rs>0)gotolL,;
bgtz s, L if(rs>0)gotolL;
blez rs, L if(rs<0)gotol,;
bltz s, L if(rs<0)gotol;
bne rs, rt, L if (rs!=rt)gotolL;
beq rs, rt, L if(rs==rt)gotol,
slt rd, rs, rt if (rs<rt)rd=1; else rd=0;
rs and rt are signed integers.

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 1

Instructions

Description

sltu rd, rs, rt Same as slt except rs and rt are unsigned integers.
slti rt, rs, immediate if (rs <signed immediate) rd=1; else rd=0;

sltiu rt, rs, immediate if (rs <unsigned immediate) rd=1; else rd=0;

] L gotoL

3.3 EXAMPLES

A. Example 1:

Write a MIPS assembly language program that calculates the sum of all positive

integers less than or equal to N and displays the result in the monitor. Assume that N is

stored in the register $t0.

Algorithm Assembly Language
$t0 « N; li $t0, N
$tl « 1, li $t1, 1
$a0 « 0; add $a0, $zero, $zero
loop: if ($t1 > $t0) go to print; | loop: sltu $t2, $to, $t1
$a0 « $a0 + $t1; bgtz $t2, print
$tl « $t1 + 1; addu $a0, $a0, $t1
go to loop; addi $t1, $t1,1
print: display $a0; j loop
exit; print:
B. Example 2:
Write a MIPS assembly language program that displays all the first N Fibonacci
numbers.
Algorithm Assembly Language
$t0«— N-1;
$tl « 1;
$a0 « 1;
display $a0;
loop: display $ao0;
$t0 « $t0 - 1;
if ($t0 == 0) stop;
$a0 « $al + $t1;
$tl « $al — $t1;
go to loop;
stop:

ICS-233 Computer Architecture & Assembly Lang. (Term 071)

3.4 LAB EXERCISES:
1. Write the complete code of example 1 and 2. Try running the program with both

the run command and the step command.
2. What is the hexadecimal representation of the instruction bgtz $t2, print?

3. Write a complete MIPS program to display all ODD positive integers less than
1000.

4. Write a complete MIPS program to display the following pattern using loops.

Run-time example:

1
2 3
4 5 6

ICS-233 Computer Architecture & Assembly Lang. (Term 071) 3

	Loop & Branch Instructions
	Develop The Algorithm in Pseudocode
	Conditional and Unconditional Branch Instructions
	Examples
	Example 1:
	Example 2:

	LAB EXERCISES:

