A TWO-PHASE REPRODUCTION METHOD FOR Ada TASKING PROGRAMS

Mamdouh M. Nejjar and Tzilla Elrad

Eumputer Science DEPETIEEHt
Illinels Institute of Technology
Chicago, 1llinois blblb

ABRSTRACT language thai supporte ome or both af
these types 18 called the reproduction
Different resulie are produced when teating problem [4. 21]. Reproducing
an Ada tasking program 18 re-executed concurrent programs normally regulres
with the same input due to twe types the reproduction of the twe types of
of nondeterminism. This problem nendeterminism. Global nondeterminizm
exizte 1n ecyclic debugglng of Ada is wsually more diffieult to reproduce
tasking programs. Mondeterminl em than local nondeterminisa. This 1is
reproduction s difficult in Ada due due ta the fact that Zlobal
Lo gome Ada characteristica. Our nondeterminism le diffieult to record.
approach uses a4 preprocessor to extend Recording an execution sequence for
an Ada tasking program P using a path independent events in different tasks
specificatien 5 into P° such that P° is an eXample of recording global
ig a determinisgtic version of P. P nondeterminism. On the other hand,
can then be re-executed as many times local nondeterminism is local to each
az regquired by the debugger to locate task and can easily be recorded and
the source of an error. Each phase replayed. The problem exists in
handles B di fferent type af cyclic debugelng aof econcurrent
nondeterminism. Fhase One creales one Programs .
Ada task controller per task. Each
controller handles the arrival Cyelle debugging §5 n well known
gequence of cntry calle e its pProcess for debugging gequential
azsigned tashk. Phase Two handles programs. It 1 used te locate and
nondeterministic selections by remove errors after they have been
contralling the ealection of uncovered by a test case. This
alternatives within selective wait process 1 well understood far
statemente. One advantage of thie sequential programs but not Bs well
approach 1s that it uges more thah one understood for concurrent programs.
Ada tagk controller for the The same process has been adopted for
reproduction process. This eliminates concurrent programs [17]. Cyclic
the need for a master controller which debugging of Ada tasking programas
can be & bottlensck to a solution. The cannot be achieved without being ahle
twe phases are casy to understand and to reproduce the same results from the
to impleament. zame Input. Locating and removing an

error asually regquires more than one
execution. This requires finning wWaRYySs

1. INTRODUCTION Tfor reproducing the two types of
nondeterminism mentloned earlier.
There are baslcally two types of Solutions for nondeterminism
nondeterminiem that cauvee Ada tasking reproduction Are different for
programs to produce different results different languages because of the
for the same input every time they characteristics of the interprocess
are executed. Global npondetermindsm communications and To the
arfises as 8 result of the relative nopdeterministic control constructs
progress of taske within a program, supported by a language.
and loecal nondéeterminism arises as a
result of am explicit cholcee of a Reproduction of global mondeterminiam
nondeterminlstic contral structure for an Adea program 15 reduced in this
[1q, i8]. Beproducing the BAmEe paper to the reproduction af
regulte from the same Iinput in a rendezvous (ho reproductlion is done

7in Annusl Mational Conferance on Ada Technobogy 1883 157

P
§ F =
1 L

] ﬂ -|1“n]m|, L ; ¥ 1

for shared variables). The
reproductien of local nendeterminiem
le reduced fnto the reproductlion of
nondeterminietic selectione within an
Ada tesk due to & selective waeit
ptatement. :

Reproduetion of a rendesyous
requires that the two partners of &
rendezvous to match. In languages
that support the symmetriec naming
convention, i.e., the called task
knows the pames of its callers andg
vige versa, a construct for matching
the two partners of & repdezvous ix
usually built into these languages or
done eutomatically [14]. Reproduction
of & rendezvous ln such languages is
chviously easier than in thoga
languages thet adopt the ssymmetric
naming conventlon J{the called task
does not know the names of its
callers). We expect that rendezvous
reproduction Io Ada will Be diffieult
for a number of reasons: Ada mdopts
the asymmetric naming convention, Ada
handles entry qQUeues in strictly
filret-in first-out order, and Ade does
not have & mutual control censtruct,
1.8., accepting F] antry call
according to some velue of 1ts passed
parameters.

A solution te the reproduction
problem for Ada transforms an Ads
program P inte P'" such that the
reproductien of the same results of P
requires one execution of P' with an
additional imput of A rendezvous
BEQUenCe which represents the
previous execution of F [21]. The
solution 18 based on the reproduction
of & rendezvous sBequence using a
contraller that controls the arrival
of entry calle to the called task.
Each entry call must first eall a
controller and 1dentify 1ts source
and destination; then the controller
returne the call when the sourece 1s
the other partner af the next
rendezvous Iin the destination task.
The nDext entry ecall to the pext
rendezveus 15 released by the
capntroller when the previous
rendezvous hae started. One dreawbach
of this method 18 that & centralized
controller, which can be & bottleneck
to the program, 1s used.

Bome approaches for debugging
concurrent programs avold the problem
by building = debugger that has the
abllity to discover and locate errore

188 Tth Annual National Conference on Ada Technology 1889

or to record the program‘'s state at
each etage of the execution [1, 9].

Another approach suggests ueing a
nEwW programming construct called
preferonce contraol to weontrol the
race conditions within Ada tasks [B].
Thls method handles only locml
nondetermitlem and does not force &
eelectlon; rather 1t suggeste one.
Other related non-Ada wark is
presented in several references used
Tor this paper [1,17.18,20,22].

This approach basically reproduces a

pProgram's rendezvous EeqUuence by
reproducing all task "B local
rendczvous SEQUENCEE . A local
rendezZvous Baquence 15 assoclated

with A task In an Ada program. This
approach ie partislly based on the
thesretical work Elven in the
following references: [2,b,7.15.1&].
The approach suggests reproducing ecach
local rendezvous sequence independent
of tha other local rendezvous
Boquences to reproduce an original
behavior of a program.

In this ampproach, a contreller is
used to giEpglate o communication
environment for each taek im the
original execution. The selection of a
recorded seguence of nondeterministic
decislons n task has taken Is
enforced. A8 a resgult., & task behaves
in the same way it did in the original
executlion.

The approach 1s divided i1inteo twa
major phases. Fhase ODne, which handles
Elobal nondeterminism, wuses an Ada
Task Contreller ([(ATC)} per task to
control an arrival sequence of entry
calle to A cmlled tesk. It imsures
that the order of entry calle at each
cotry"a queuwe l& in & predetermined
order. The second phese, which handles
local nondetereinism, controls
nondeterministic selections within
individual +taeks. This 1s done by
using a =et of condltions to disable
or enable reodezvous 1n a selective
walt statement. Telng these conditions
one can enable the next rendezvous of
B rendezvous g8quence. These two
phasee distinguleh between the two
types af nondeterminiam mentioned
earlier and handle ench type
separately. Note that esch of these
two phases requires some exiensione to
the Ada Bource program, 1.e., the
addition of some speciml Ade code to

15

the originel program. This extension
proceas is referred to as e¥Xtending a
program.

One advantage of .this approach &
that 1t wuses one aor more ATCe. One
ATC s asslgned to control entry
calls to one or mpore tasks. This
gimplifies the implementantlon of ATCs
and eliminates the need for a master
controller, which can be & bottlenech
to 8 solutien.

The design of an approach that ean
be divided into two smaller phases ls
another advantage of this approach.
Each phase deals with a problem in the
reproduction process, but the two
phases work together %o achleve the
goal. When s problem 1s spotted at the
reproduction process, the mnpature of
the problem guldes us to the phase 1in
fault. Other advantages include better
understanding of the reproduction
process and ease of implementation.

This approach limits handling of
local nondeterminism constructs by
using the selective walt etatement
{the other types of select statement
are not handled) and by assuming that
ne rendezvous nesting occurs Iin 1t.
The COUNT attribute and shared
variables are alse net handled. An
approach for handling these conegtructs
itz given in reference [21].

A discussian of problem of
reproducing an Ahda tasking program
and what special Ada characteristics
may influence the solution 1=
provided In Section £. Outlines af
the reproduction process are glven in
Section 3. Explanations of the two
phases of this approach are preassnted
in Section 4. A complete example 1s
given in Section . 6, and conclusions
are presented in Section 6. Appendices
1 and II 1ist the Ada code for the
example given in Sectlon 5.

#. REPRODUCING ADA TASKEING FROGEAMS

In languages that adopt a symmeiric
naming convention, reandezvous cal he
reproduced easily: the two parinors of
g rendezvous sutomatically match in
Com=unicating Sequential Processes
{cSP) [14]. In €SP, rendezvous match
through an Input and Output commands:
& callier ipsues an Output comsand
gpecifying I1ts destinatlon task, and

the called task lsgues an Input
command epecifying 1t source task
[12]. In Ada, rendezvous ArFre DOoTe
difficult to reproduce because an
entry Iin n destination task (a called
tagk} should rendezvous with the first
call at 1te gueuwe regardless of who 1s
calling 41t, and each entry queus 18
handled i1imn striectly flret-in Tiret-
out arder. Thie implies that a
destination task cannot determine
where each c¢all oarliginates. If the
name of the calling task (source
task) 45 included ag an entry call
parameter, the destinatlon task does
not find out the name of 1ts caller
until the rendezvous hae begun.
Because Ada dosg Dot have a mutual
control comstruct, this restriction
cannot be avolded.

A sutual c¢ontrel econstruct can be
useful for solving the problem of
mismatching the two partners of a
rendezvous 1n Ada. Such n»n solutlion
requires cither slmlating mutusl
coptrol by the existing Ada constructs
or adding such a conetruct to the
language. Hovever, & mutual control
construct 1s not needed if we are able
toe duplicete every entry gueue order
in the reproduction execution. This
can be done by duplicating (replying)
the original arrival sequence of entry
calls to a destination task, and as &
regilt, every entry gueuc sequence 1n
8 the destination task 1e duplicated.
This approach diminishes the need for
a mutual control eonstruct for the
purpose of reproduction of rendezvous
in Ada. Such = construct will still
be useful for expliclt schedullng of
Ada tasks. Thie approach adopts the
ppproach of duplicating the arrival
BEQUENCE of entry calls to B
degtination teask. This is done by
using anx ATC per destination Lask 1o
pontrol 1ts arrival sequence of entry
calls.

4. REPRODUCTION PEROCESS OOTLINE

Flgure 1 presents the general
outline of the approach. A path
gpecification 18 =& get of local
rendezVOuE EEqUEnCEE that were
recorded 1imn a previous execution,
usually one local rendezvous sequence
per tesk. A path specification file
iz = file that contains & local
rendezvous BSQUeDcE for each non-

Tth Annual National Conference on Ada Technology 1888 188

calling task (mn task with at least
One accept atatoment +that produced a
rendezvous in the original execution].
A preprocessor command Tile 1s used to
specify the number of ATCs that will
be Used in a program and to specify
which task 18 controlled by which
controller,. An Ada soures program, A
path gpecification file, and a
preprocessor command file are used as

inputs to - preprocessor. A
preprocessor 1z a pProgram that
extends an Ada source program to
apcommodate new Ada code Tor

reproduction. The new added code
Ineludes the number of ATCs specified
1n the preprocessor command file (ATCs
are explalned later In this =zeetion}.

The cutput of a preproceassor 1s an
extended Ade program that has the
same semantics of the original Ada
program. The differences are the
following: the extended Ada program
ia deterministic, 1t always follows
the same path {specified 1in the path
specilication file}, and it gives the
game rosgults for the same input every
time it is executed. ¥hen the
extended Ada program fs executed, Lhe
resulte of ite execution will bhe
COMpared to elther the expected
results ar the results of the
original execution. Modifications can
then be made to the original Ada
program, if degired., and the whale
process can be repeated until the
desfred results are achisved.

Definition 1:

A local rendezvous sequence for a
task T ifs a totally ordered sequence
of rendezvous accepted by teask T (T is
the destination tagk), where each
rendezvous 18 represented as a three-
entity tuple:

¢ Pendezvous sequence number,
Calling task identity. Entry name 3

& rendezvous Eequence npumber 1s
unigue within 1 local rendezvous
sequence of task T. Note that from
this definition wve can conclude that
a task wlth one oFr more accept
statements whilech produces no
rendezvous in the original execution.
or one with pno accept stmtements at
#ll hag no local rendezvous sequence.
We call such & task a demanding task.

200 Tih Annual National Conference on Ada Technology 1589

FATH BPECIFICATION BT SOURCE PRI

FREFRCCERECR
COMNMAND FILE
EXTENDED ALA

CCWIPLE, Likis, AND
BEECUTE

! COMPARE RESIATS
.

Flgure 1. An outline of thig approach.

4. TWO-PHASE REPRODUCTION FOR _ ADA
BANE

TASKIRG PROG 3

Two phases of program reproduction-
an eniry ealls control phese and a
nondeterministic gelectione econtrol
pPhaze - are discussed in this section,
The extension procedure for cach phase
iz also presented,

The first phase 1§ to use one Adse
tagk controller per task [or a group
of teske) to control the arrival
sequence of entry calls for that task.
An ATC assigns a unigue number, called
entry call seguence number, to entry
calls that are calling the same entry.
Entry celle can then he accepted im
SEquence using an entry family
approach, provided by Ada, and a loop
with an entry family index. A loop 1=
used only If ne loop alresdy exists.
This phase ig explained in more detail
in subsection 4.1, It i1z assumed here
that each task in the program can be
uniquely ldentified. The advantege of
having moke than one ATC 1s
slgnificant in multiprocessor eystems.
For example, having one ATC for each
group of tasks that run on the same
pracessor reduces the amount of
communications between processors.

The second phase iz te control
nondetereinistic eelections inside

[

Adn tasks. This 1s done by extending
each tagk T inta T" such that the
gemantles of T and T' are the same.
Basically, each task Wkeeps track of
its lacal repdezvous sequence and
enables only the rendezvous at the
top of 1ite local rendezvous sequencs
and disables all other alternative
rendezvous, The londex 1o +Lhe local
rendezvous sequonce will then be
updated, and the process Wwill he
repeated again wuntll all rendezvous
pecur. The entry call for the enabled
rendezvous 18 assumed to be avallable
from the firat phase. ITf 1t 18 not,
the task will be blocked until the
appropriate entry cnll arrives. More
details are given iIn subsectlion 4.2.
These twoe phases work together 1To
achleve the reproductlan of Adn
tasking programs.

The separation between Lhe Two
phases of the approach Is necessary
becauss each phase sclyves a separate
problem in the reproduction procees.
The advantages are to s=implify the
implementation of the two phases and
to make each phase easier Lo
underatand. This 15 especially truoe
at the stage where we compare the
results of the programn with the

resulle of ite reproduction. A
failure in the reproductlon of
interprocess communleations most

probalily points te a fallure 1in the
entry cmlls contrel phase,

4,1 FEntry calls conirol

We will first explain Phase One 1in
general and apply it to one entry.
Leter in this sectlon, we willl axplaln
how to expand it to lpclude more than
one entry. An eXample of the two
phases 1= given in sectlom five.

Figure 2 shawe & tagk K that
contains an entry WRITE. It nlso shows
that there are three eotry calls 1o
the WRITE entry: X, ¥. and = {where X
ie at the tep of the entry's queus) -
Note that in this figure, we are uslng
gymbols that are simlilar to the ane
given 1in reference [3]. We are also
temporarily using the calllng's Lagk
identity a& the entry’'s call ldentity.
1.e., we are using ‘the letter ¥ 828 8
task name and as an entiry call
identification (similarly y end 2}.

==

Figure 2. A task with one entry.

The purpose of phase one, in thle
example, 1= to insure that the
WEITE's antry queue i\ in the
predetermined order at the
reproduction execution, which i=
{x,¥.5). Figure 3 depicts how Fhage
One handles this problem. Each entry
call te the WRITE entry is extended
into two calle.

The first call 1s to an ATC that
kandleg task XK. This first call le
called the sign-in ¢all. The purpose
of this ecall 18 to get an entry call
sequence number, which corresponds to
the order of the eall at the WRITE'=s
entry queue. Tasks %X, ¥. and £ can
call the Ade task controller im any
order. but they will always geti the
EAmE entry call segquence number,
e.g., the call 1sesued by task = to
the ATC will return an entry call

sequence number ol three.

RO TASH OOMTROALER AT

Flgure 3. Sign-in calls in phase one.

Tth Annual Nationa! Conferance on Ada Technology 1968 201

The eecond call usea . the entry call
geguence number to call the origlinal
entry using an entry family approach.
Taek = 1sgsues the entry call WRITE(3).
These two entry calls are gimilar to
the two-stage gign-in proceas
suggested for eiplicit schedullng in
reference [12].

To preserve the order of calla, the
WRITE entry accepts one call ant a
time using an entry family and & loop
wlth an entry Family Index {1}, which
ig initislized +to one and incremented
by ane every Time the entry 1&
invelved in a rendezvous. Note, the
calls to WRITE(I) can only be accepted
in the following eorder: WRITE(L),
WRITE{2), and WRITE{3). Thie preserves
the originml {2,v,2) entry ecalls
aequence, A loop 18 required 1f no
loap already exists, and an entry
family index 18 required a5 shown in
Flgure 2. The loop etope when no more
calls are issued to the entry. In
gummary, the number of iterations an
entry goes through 5 equel to the
number of ecalls (rendezvous) in which
the entry 1s invalved.

The ATC that handles task K should
have @an ACCESS to the predetermined
entry calla sequence of the WRITE's
entry. This enables 1t to assign an
entry call EEQuUEnceE npumber to each
cell 1t receives, The ATC recognizes a
call by the identity of the calling
task, which should be passed to the
ATC aeg an input parameter by the slgn-
in call. In the approach, 1t 18 part
of the preprocessor to bulld an entry
calle sequence for esch entry wilthin a
task from the task's, local rendezvous
gequence, 1t 18 also part of the
preprocessor to make these seguences
paccesslble to the approprlate ATC.

Let us hnow assume that there are
two entries in tesk K, a EEAD and a
¥RITE., In this case, two entry call
sequences are bullt from & teask's
local rendezvous sequence, one for
ench entry. We will also wuse tvo
entry family dndices. An ATC in this
CREE treats each E&QUance
independently of the other. The ATC
aEsligne an entry call seguence number
according to the calling's tasd name
and the called's entry neame. These
two names are possed ae parameters by
the sign-in c¢all (refer to the READ
procedure in Appendix 11). This means
that the above discussion regerding

&2 Tth Annual Hatlonal Confersnce on Ada Technology 19808

entry extenszion applies to multiple
entries regardless of the npumber of
entries within & teek. The only
difference 1& that apn ATC has to
control one more entry calle sequence
for aach additional entry. The
conelusion is that each entry 1s
extended into an entry family with an
initial entry family index of one and
a limlt of the number of entry calls
to an entry.

It is cleap Troms the above
digcussion Lthat the original Ads
source program should be extended to
accommodate new Ada code Tor the
purpose of reproduction. A summary of
the extension procedure wuweed 1imn this
phase 1 as follows:

1 Each eniry call 1g extended into
two calls, a slgn-in call mand o
call to the original entry using
an entry family approach.

2. Each &fCEPt 1= ertended o an
entry family, a Jloop [(if
required)., and an entry family
index.

2. An ATC 1% ¢reated for each Cask

{or a group of tasks) to handle
entry calle seguences, which are
provided by the next step of
this 1list.

4. A sequence of entry calle 1s
built from B8 local rendezvous
eegquence ol a8 task for gach
entry it contalns.

These extensione are problem
independent . The approach pssumes
that these extenslons are part of the
preprocessor. Refer to example ohe
for more about theese extensions.

4.2 MNondeterminietic Selections
Conterol

In Phage One, we tried to insure
that entry calls to every task arrive
in a predetermined order. This phase
imsures that | task selects a
predetermined sequence of selections
from AR set of different alternatives
avallable to 1t. We mentioned earlier
that the sgelective wait statement 18
what mnpakes an Ada task selects a
different selectlon from the same set
of alternatives every time it 1is
executed (local nondeterminism). The
approach handles local nondeterminism

I8E

by handling the gelective walt
statement. We A5 EUmE that no
rendezvous neseting exiate within the
gelective walt statement. The ather
types of eelect steatement, namely the
conditlonal entry £all and the timed
entry <«all, are not handled by the
approach. Although an approach similar
to the one given in reference [21] can
be adopted. The approach also does not
handle the COURT attribute and sharad
variabkles. An approach feor handling
these two altributes 18 given in
reference [21].

In this phase, each teask follows
its own local rendezvous Sequence.
Thie 1e done in two stops: Step One
15 Lo extend each task in &an Ada
gource program to include a 1ist af
1te own local rendeZvous EequUence:
Step Two 18 to include n conditlen In
epch eatry's When-clause that matches
its own pame with the entry name at

the top of the task's loeal
repdezvouns BEQUEnCcE to which it
belongs. The tap af a local

rendezvous seguence 1s determined by
using =n rendezvous index which is
initialized to one and incremented by
ore after EVEry rendezvous that
occure within the same loop [refer to
RW task in Appendiz 11).

Conditions BETVE s guards tTo

entries [14]. In the set af
conditions, only one ¢ondition 18
alvays frue. The true condltlon

allowas the rendezvous at the top of
the local rendezvous sequence to
aceur. The false condlitione prevent
any other rendezvous to occur. The
When-clauge always signals the entry
that the task should be lovelved in
next. The oilher partner of the
repdezvous, which Is viewed as an
entry ecall by the destination task,
ig provided by Phase One of the
approach., After each rendezvous, an
index that points Lo the mnext
rendezvous In the locel rendezvouls
sequence ig incremented by one.

Toe see how the itwo phases work
together, assume theat a task Is usged
with two entries, READ and WRITE. A
local repdezvous sequence of this
tagk is { 1., ,BEAD>, «2.¥.WRITE>
48,5, READ?). This three-rendezvous
11t containe three sub-ligte. Each
gubliset represents a rendezvous. Each
sublist conteins three entities: &
repdezvous sequence number, a name of

&8 calling task, and & called entry
neme. Assume also that the entry
calle coming from taske xI. ¥, and =
arrive in a predetersined order by
Phoase One. The task has = loop that
iterate three times and invelwes in
three rendezvous then terminates (aee
Flgure 4.

When executing task 6 (Filgure 4)
and during the firset i1teration, the
RELD and WRITE alternatives are
evellable. The READ's VWhen-clause
becomes true because 1t was involved
in the first rendezvous. The WRITE'E
When-clause becomes false. So the
READ entry Is selected [Tor ithe Ciret
rendegvous. The other partner of the
rendezvous 1s tnsk x. By assumption,
the entry call from teask x to the
READ entry ls at the top of the REEAD"s
entry gqueue, The twoe partnérs of the
first rendezvous now match and the
rendezvous CROuT - The two other
rendezvous are reproduced inm the same
VAY -

This phaze reguires eome extensions
to an Ada source program. The irat
extension ig to meke cach task In a
program ROCEES it= OWn local
rendezvous BEEQUETCE . A local
rendezvous sequence 18 represented as
an array of entry names. A rendezvous
index 1& needed to peoint to the next
rendezvous 1n the seguence. The last
rendezvous QCCUTS at the lagt
iteration afl the selective walt
gtatement.

Figure 4. A task with two entrles.

The second extension 1 to inciude
in cach entry’ s Vhen-clause a
condition that matches the entry’s
own name wWith the name of the entiry
at the top of the tesk's local
rendezvous sequence. The approach
agpumee that these two eXtenslone are
part of the preprocesscr,. The nelt

Tih Annusl Mational Conference on Ada Technology 1989 203

[§ = 34

section cIiplains the reproduction
Process of an eXtendad Ada Program,

E. A COMPLETE EXAMPLE

AT Ada program is lleted 1ip
Appendix I [12]. The program Is a
controller for a shared regsources that
mllows multiple readers at the zame
tlme and only oene vriter at a time.
In this example, we plan an executiap
Bcenario aof the program and then
determine how this gceEnario i
Epecified. We gleo eXplain the needed
e¥tensions to the original program.

EXAMPLE 1

Ualng the Ada oode in Appendix I,
BEsume that there ares Fayp demanding
taske Cl, C2, €3, and C4d thet use the
RESOURCE package. Further asgume that
Cl and C2 called BW for reading the
Fesource where €1 called before C2,
Taek €3 called for writing while Ci
and C2 were still in the Procees of
reading. Task C4 ealled for reading
after C2 had fipished welting, Because
task RW ha=z an infinite loop, assume
here that the number of readers and
Writers are finite and It will
terminate.

To specify the above gcénario, we
need to determine a Jocal rendezyous
Eequence that represents the ahove
path. One posslble lacal rendezvous
Eequetce {g;

LEE] S
€2,C1,END_READ>,
«4,C2,END_READS
¢6,C3,END_WRITE>,
¢8.C4 ,END_READ>)

€1,C1,.STARET READ>,
(3,C2,5TART_READ:,
¢b,C8,ETART WRITE>,
<7.C4,5TART_READ:,

Recall that each rendezvous is

Fepresented am:

tRendezvous sequence number, Calling
task Identity, Entey names.,

Eendezvous 2 and 2 can hbe exchanged
Lo get another local rendezvous
Efquence that gril] repregents the
Bame paih. The above locel rendezveus
Eequence 18 o path specification for
the program in Appendixy I with the
gxecutlion ecenaric explained above.
LES51 18 the content of the path
Epecification file (zee Figure 1}.
Note that taske Ci1, C2, C3, and C4 are

204 Tih Annusl Mational Contfarense on Ada Technology 1989

assumed to be demanding tasks (refer
to the end of Section 3 for the
definitiaon af g demanding task), and
BE A result, no local rendegvous
fequences are specified for them.,

When this path gpecification 1{g
read by the preprocessor, it bullds &
sequence of entry calls for each
entry in the RW task. The preprocessor
builds the following entry calls
Enquences,

START_READ SEQ := {(C1, C2, Ca)
END_READ SE0 := (C1, CgZ2, Cd)
START_WRITE_SEQ :- (C3)
END_WRITE_SEQ := (C2)

This set of entry¥ calls sequences
are thenm bullt into an ATC for tagk BW
(refer to BW C task 1in Appendiz TI1).
The preprocessor creates the BW_C as
an Ada task controller for BW task and
adds 1t to the original Ada source
program. MNaote that 1t should he
Epecifled that an ATC be ®Built Tor the
EW task 1in the Preprocessocr command
Tlle, The preproceszssr also extends an
Ada program according to the extensien
procedures of the two phases Elven im
subsectlone 4.1 and 4.2, Appendix II
liets the program after it has been
extended by the preprocessor,

There are two packages in Appendix
I1: the RESOURCE package and &
COMTROLLER package, The REEQURCE
Package 15 extended to accommodate
new Ada code. A aymbol at the end of
8 line Indicates how much a line i=s
extended. The symbol #-—_g= indicates
that the 1line is added completely to
the originel program. The &ymhal "--
&= indicates that aome extension
occurred in the line. Note that the
CONTREOLLER package is completely
added Bo there I8 no need for using
any e¥mbole.

Fote how each call to the EW task 1s
eXtended 1n the READ and WRITE
brocedures & & result of the entry
calle eontrol phase. The slgn-1in call
te the controller (R¥ _C} Includes the
ealler identification, the regquested
entiry name, and 8 dummy paramcter to
return an entry sequence gpumber. The
original call iz extended to include
the entry call ECQUense number
(ENTRY_CALL_SEQ_NO). Note alse how
each entry 1s ertended In the §W
task. Each entry 15 extended to a
family of entries and hag 1ts own

18

LA

family of entry Index., These extension than one contreller eliminates Lthe
are part of Phase One; the rest of the need for a master controller that can
extenslons in the RV task are part of be & bottleneck to the reproduction
Phase two. However, the CONTROLLER Process. Local nondetermini em i=
package iz @ result of the extenglons handled By restricting the number of
in Phase One. open alternatives in A selective wailt
Btatement using & When-clause as g
Note also How each entry*s wWhen- guard to each aliternative. The method
clause wae extended 4o inelude an Is EREY to underetand and to
additional condition and how tihe implement.
while loop keep track of the number
of rendezvous for reproduction using APPERDIX T
the rendezvous index (NEXT R). Note
alao how the local rendezvous package body RESOURCE 1s
BEQUERCE [LOCAL_REND SEQ) i= 5 1 BHARED_DATA := -- The shared data
represented. These extensions are a
result of the nondeterministle tagk BW 1g
selections control phase, entry ETART_READ;
entry END READ;
As B result of these extenslons, entry START WRITE:
the specification of the RESOURCE entry END _WRITE;
Package, and the BW tesk were end BW;:
extended. The progeam Eiven in
Appendix 11 is a deterministic task body BW iz
verslon of the original program in NO_READERS: NATURAL := 0
Appendixz T, and It will alwayse WRITER_PRESENT: BOODLEAN := FALSE:
follows the same path {specified by begin
LES1) every time it 1 executed. loap
select
vheh not WRITER_PREZSENT =i
- CONCLUSTONS accept START _READ;
KO_READERS := NO_READERS + 1;
RBeproductian of Ada tagking or
programs 4= a problem thet must be accept END_READ;
dealt with in eyclic debugging of Ada KO_READERS := NO_READERS - 1
programe. The method of avoliding the or
problem by bullding & debugger that when not WRITER_PRESEKT AKD
has the ability to discaver and NO_READERS = 0 =3
locate errors is 1nadequate because accept START WRITE;
1hisz method mixes the testing and WRITER_PRESEKT := TRUE;
debugging phases, 18 coEplex, and 1s o
gxpensive. The method of extending & acceplt END WRITE:
nondeterministic program into a WRITER_PRESENT := FALSE:
deterministic one 1z adeguate because end select;
it 3= eaey to understand and to end loop:
lsplement: however, the problem 13 end BW:
diffieult 1in Ada because of the
asymmetrlc naming convention to the procedure EEAD {X:out SHARED DATA} is
way Ada handles entry queues. The beglin
approach distingulshes betwesn two RW.S5TART_READ;
types of nondeterkElnlsm: global X i= 5;
nondeterminism and local R¥.EKD_READ;:
nondeterminism. It handles each type end BEAD;
separately. The approach extends a
nendeterminietic Ada tesking program procedure WRITE{X : in SHARED DATA} is
Into a deterministic one. This is done Begln
In twa phascs: Phase fne handles RW.S5TART WRITE;
global nondeterminism,. and Phase Two 5 :m Xi
handles 1leenl nondeterminism. Global RW.END WRITE:
nondetérminiem 1s handled by using end WRITE;
one Ads task contreller per task to ond RESDURCE:

control the arrival sequence of calls
tc a destipation task. Having more

Tth Annual National Conference on Ade Technology 1986 208

18

APFEHDI; 1] ar

when LOCAL_REND_SEQ(NEXT R)e

with CONTROLLER: --8 ENT WRITE ™ o» --0
Package RESQURCE 1g accept END _WRITE({EW): -k
use CONTROLLER; - -8 WRITER_PRESENT :-"FALSE:
L¥pe SHARED DATA ia . ,.- EW = EW 4 1: -5
Procedure READ{CALLER ID:ip end select;
CALLER NAME.: - NEXT R := NEXT R + 1: -8
X : out SHARED DATA). oend Toap;
end BW:
Procedures HHITE{CALLER_ID P dm
CALLER KAME: - Procedure READ(CALLER_ID :1n
X : In SHARED DATA): CALLER_NAME: X :out SHARED _DATA) is
begin
end RESOURCE: BW_C.SIGN_IN(CALLER ID,
START READ,ENTRY CA LL_SEQ NO); --g
pPackage body RESOURCE ig BW.START_READ(
8 i SHARED DATA tre .. The shared data ENTRY CALL_SEQ No); --4
L i= 5;
task BW ig BW_C.SIGN_IN({CALLER 1D, END_READ,
entry START_READ(REND INDEX]: -k ENTRY _CALL SEQ KO); g
entry END_READ(REND TRDEX): -8 nw.nnn__nmn{EHTRr_r:ALL_sEu_,w}; —-&
entry START WRITE(REND_INDEX), —& end READ:
entry END_WRITE(REND IWDEX): --&
end BW; procodure WRITE{ CALLER_ID r1m
CALLER_NAME; X :1in SHARED DATA) is
task body RW ig begin
LOCAL_REND SEQ:RENDEZVONS LIST; .__g RW_C.SIGN_IN(CALLER 1D, START_WRITE,
NEXT_ R : REWD Inpgx t=1: -8 ENTRY_CALL_SEQ ND); --@&
SR.ER,SW,EW:REND_INDEX :- 1; -0 EW.START _WRITE(
LOCAL REND_SE@ (1 .. 8) :a ENTRY_CALL_SEQ NO); --&
{START READ END_READ, - 8 1= X;
START_READ, ENT READ, --0 RW_C.SIGN_IN(CALLER ID, END_WRITE,
START _WRITE, ENT wRITE, --8 i ENTRY CALL SEQ NO); --g@
START READ, END_READ); --0 EW.END_WRITE(ENTRY CALL_SEQ NO): _-g
NO_READERS: NATTRAL :e 0 end WRITE;
WRITER_PRESENT: BOOLEAN :u FALSE; end RESOURCE:
begin package CONTREOLLEER ig
while KEAT R :=
RW_REND_INDEX_LIMIT -.g type ENTEY NAME 18 (START READ,
loop END_READ,START WRITE, END_WRITE):
Eelect
When not WRITER PRESENT angd RW_REND_INDEX_LIMIT : constant -
LDtAL_REND_SEQ{NEIT_R} -
START_READ : w3 --8 t¥pe REND_INDEX {s POSITIVE;
Accept START_READ(SR): ==&
NO_READERS := NO_READERS + 1; type RENDEZVOUS LIST g array
BE = BB + 1, --@ REND_INDEX)} of ENTRY NAME:
or
when LDC}.I._EEHD_EEI:II[HEIT_R]I - t¥pe CALLER_NAME ig (C1, cg, £a. ca}y
END_READ-%accept END READ(ER); --&
NO_READERS :- NO_READERS - 1; type ENTRY_OUEUE is array(REND_INDEX)
ER := ER 4+ 1; --a of CALLERE_NAME:
ar
when not WRITER FEESENT mnd procedure SEARCH(SEQUENCE : in out
NO_REABERS = 0 ang ENTRY OUEUE;
LOCAL REND SEQ{NEXT E) = ID i in CALLER _NAME;
START_WRITE - - --0 QUT_NO : out REND_INDEX)}:
accept START _WRITE(SW): -k end CONTROLLER:
WRITER_PRESENT := TRUE:
EW = BW . 13 -

208 Tth Annusl National Conference on Ada Technology 1988

package body CONTROLLER is

tagk R¥W C i=
entry SIGN_IN (CALLEE_ID : in
CALLER_NAME;
ENTRY _REQ : in ENTRY FAME ;
CALL_: EFQ KO : out HEhﬂ IHDEI],

end EW E1
task body BW C is

CALL INDEX INTEGER := [
sTART _READ_SEQ, END REau EEQ
ENIRF QUEUE;
START WRITE_SEO, END_WRITE_SEQ :
ENTRY OUEUE;
3y:=l{C1,C2,080;:
= {Ei Cz,C4);

START READ SEO (1 ..
END READ SE0 (1 .. 3
sTAET WRITE SEG (1)
END WRITE_SEQ (1) := {EE}
begin
loop
when CALL_INDEX <=
EW_RERD_ IhDEI LIMIT =2
accept SIGN_IN (CALLER IO : imn
CALLER_NAME:;
ENTRY_REQ : in ENTRY_NAME;
CALL_SE0_NO : out REND_INDEX} do
case ENTEY_REOD is
when START_READ =3
SEARCH{START_READ SEQ;
CALLEE_ID:
CALL_SEQ_NO};
when END READ =3
SEARCH{ END_READ_SED;
CALLER ID.
cALL_sEo _Fo):
when START _WRITE =
SEARCH(START_WRITE_SEOD:
CALLER ID;
CALL_SEQO_R0):
when END_WRITE =:
SEARCH{END WRITE SED;

CALLEE 1D
CALL_SEQ_KO};
when others =3 pull;
end case;
end SIGH _IN;
CALL_INDEX := CALL_INDEK + 1;
end loop:
end BW C;
procedure SEARCH(SEQUENCE : 1n out
ENTRY QUEUE;

ID ¢ im CALLEE_MAME;
OUT_NO : out REND_IKDEX) 1s
begin
INDEX 1= 13
while IEDNEXI <= SEQOUENCE'LENGTH
loop
if SEQUENCE({INDEX) = ID then
OUT_WO := INDEX;
SEQUENCE(INDEX) := null;

exit;
elae
INDEK
end 1if:
end loop;

i= INDEK + 1;

end SEARCH:
end CONTROLLER:

(1]

[2]

[3]

[a]

[5]

[&]

[71

[&]

(9]

REFERENCES
F. Balardi, N.D. Francesco , G.
Vaglini, "Development af a
Debugger for & Concurrent
Language , " 1EEE Trane. o

Software Engilneering, VOL. SE-12,
HO. 4, April 198&, pp. 547=863.

H. Barringer. I. Mearns, “"A Proof
SysLeE for Ade Tagks." The
Computer Journal, Vol. 29, KD. &,
1984, pp. 404-415.

G. Booch, ®Software Englneerlng
with Ada ™ The Eenjamin/
Cum=ings Company . Californla,
1983,

Per Brinch Hansen, "Reproducible
Teating of Monltors," Software-
Practice and Exper.. WYVol. B8,
1978, pp. T2L-TZ49.

=3 Practical Software
pevelopment for Dynamle Testing
of Distribputed Programsa ,”
Frocecdings of the 1984
International Conference on
Parallel Processing. Auguset
19&4 ,

T. Elred,.

T. Elrad, "hata
Within Distributed Frograms "™
Proceedings of the Hawaid
International Conferonce on
System Sclences, Japuary £, 19BG.

Dependenclies

Francez,
Digtributed

T. Elrad and M.
"Neconpoeition af

Programs Into Communication-
closed Layers . " Sclence of
Computer Programming &, North-

Bolland, 1932, pp- 1B6- 173,

T Elrad, F. Maymir-Ducharme,
"Race Contrel for the Validation
and verification of hdn
Multitaskling Programs,"
Proceedings of the Sixth Annual
National Conference on Ada
Technology. May 14-17, 1988.

E. G. Falnter and T.E:
Lindguist,"Debugglng Tasked Ada

71 Annual Matlonal Conference on Ada Technotogy 1888 207

L

[10]

[11]

[12]

[15]

[14]

[15]

[16]

[17]

[18]

[1%]

208 Tih Annual Mational Conlerance on Ada Technology 1980

Programs * Froceedings of the Ada

Applications for the NASA Spaco
Station Confeorence, im N 450 e
Bown{ed.), June 1986, PP
B.1.1.1-2%, 7

N. Francez, C.A.F. Hoare, b. J,
Lehmann , W. P. DE Roever,
"Semantice of Kondeterminism,

Concurrency, and Commutication,”
dournal of Computer and Syetem
Belences 19, 1979, Pp. 290-308,

H. Garcia-Molina, F. Germano, W,
Kohler, "Debugging a NDistributed
Computing System,” IEEE Trane. on
Softwars Engineering, Vol. SE-10,
No. 2, March 1984, Pp. Bl0-219.

N. Gehani ,
programming, "
Jarsey, 1954,

“Ada Concurrent
Prentice-Hall, Kew

b. Helmbold, n, Luekham,
"Debugging Ada Taeking Programsz®
TEEE Software, March 1986, pp.
47-57.

C.AR, Hoare, "Communicating
Sequential Processeg , v CACM,
Ol. 21, KNO. 8, August 1975, pp.

bb&E-HTT .

&. Eatz, D, Peled, "Interleaving
Set Temporal Logic,"Proc. of the

Sixth Annual ACM Eymposium oo
Principles of Distributed
Computing, Auguat 1487, PP
178-190.

L. Lemport, *“Time, Clocke, and
the Ordering of Events in a
Metributed System,® Comm. of

ACM, VOL. 21, No,
Pp. GBEB=585,

7. July 1975,

T.d. Leblanc, J.M. Mellor-
Crumsey, "Debugging Paralle]
Programe with Tnstant Replay. ¥
IEEE Trans. on Computers, VOL.
C-36, NO. 4, April 1987, pp.

471 -4B2 .,

B.P. Miller, "A Mechanism faor
Efficient Debugaing of Parallel
Programs," SIGPLAN NOTICES, VoL.

24, Ko, 7. July 1988, pp.
13h=144.

A, Foueli, "The Temparal
Semantics of Concurrent
Programs,” Theoretical Computer
Sclence, ¥ol. 13, 1%8l1, gpp.

[zo]

[21]

[22]

45-60,

Jd.M. Stene, "Debugeing Concurrent
Processee: A Cage Etudy,”™ SIGPLAN

NOTICEE, VOL. 23, NO. 7. July
1988, pp.146-163,

K.C: Tei, E:E. Obmid,
"Reproducible Testing of Ada
Tasking Programs," Proc. TEEE-CS

Conf. oh Ads
Environments

Secand Inter.
Applications and
[19B&), pp. &69-79,

K.C. Tai, =. Ahujs, "Beproducible
Testing of Communlcatiaen
Software," Proc, of IEEE COMPSAC
87, Oct. 1987, pp. 331-337.

Mamdouh
Fecelved the E.S5.
and M.5. degrees
in CoOmputer
Ecience from King
Fahd Dniversity of
Petroleum and
Minerals, Dhahran,
Saud! Arabim, in
1982 and 1986,
respectively.

Najjar

He 1& currently & full-time Ph.D.
student Bt I1lineis Institute of
Technology, Chicags, I1linois. His
research interests inelude,
COnNCUrrent programming, distributed
8¥yetems, and distributed testing and
debugging.

BEhe
campu
of Te
in
langu
real-
Ada
chair
Bddre

Tzilla Elrad
received an M.5.
degres ip coEputer
Bclence T'rom
Syracuss inivers
glty, N.¥. and a
Fh.D. imn computer

g#clence from the
Technion im
Ierael, in 1978
and 1981 ,

respectively.

lz an assistant professor of
ter science &t Illinois Institute
chnology. Her main interests are
concurrent and dietributed
BEES, COnCUrrent programsing for
time applications and the use of
for such eystems. She s the
of chicago S5IGAda, Her BITNET
5 It CSELEADOIITVAX.

L

