Pl AL-AZHAR EMOINEERING SECOND
INTERMATIONAL CONFERENCE

December 21-24, 1991

PARALLEL REPLAY OF CONCURRENT FROGRAMS
M.M. MNajjar* and T. Elrad**

*Assistant Prof, Info. and Computer Scienee Dept.
King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabla

"*Ascistant Prof., Computer Science Dept.
liinois Institute of Technology
Chicago, Whnois, .54

ABSTRACT

Fe-executing a concurrent program with the same inpat may result in a
different ounlpul. This is because concurreni programs are
pondeterministic. Re-execuling @ congurrent program many times until 8
desized execulion path is traversed is unlikely to produce execution
replay because the probakdlity of a program traversing the same execution
path is small., Several replay methods bave been designed for specific
programming languages most of which use a centralized approach, We
think that the centralized approach is unnatural and 1neﬂ||:::-i¢nl for the
replay of concurrent programs. We present in this paper a parallel replay
method for message-bazed concurrent programs,

We have designed a specification approach for program replay. named the
locality principle. Locality uses the local paths of processes 1o specify an
execution path, As a result, the course of execution for each process can
be chserved individuaily. This result is then wsed to design our parallel
replay method, The advantages are: eliminating the exhaustive re-
execution of concurrent programs, producing feaer testable execution
paths, and providing paraliel replay of concurrent processes. The method
can be implemented for a number of programming languages ke Ada and
Congeurrent .

KEYWORDS

Concurrent programiming; deterministic execulion: execalion replay;
testing and debugging: paralle] replay,

INTRODUCTION

Testing and debugring techniques for concuarrent Prograns are moch
mare dili-ult than for sequentinl programs. This Is due 1o (he muliiple
interacting threads of dals and control and the nondeterminizim inherent
i concutront programs (1]

A sequeniial program is usually tested by executing it ence wits 5 test
input, the resulls are then compared with the expected resulls. ' case
al an error, the program is usually executed again, with the sam~ tes
input, to collecl Some debugging information abowul the CTFONOUE
execution. The program ia finally executed once again after 1o Is
corrected o check that no new errors were introduced.

This testing and debugging eyele is based on the fact that the replay ol
the erronesus execution of a sequential program is achieved by re-
executing the program with the same test input. In rezting and
debugging concurrent programs the replay of an executlon is a major
problem. The testing and debugging cvele presented ahove can hbe
applied to concurreni programs provided that an exccution can he
replayed.

In the next section we give an overview of concurrent program replay,
Then we present our locality principle and iis application o concurrent
program replay. DBased on this prineciple, we preseni a parallel
deterministic replay method which can be applied to concurrent
languages like Ada [2] and Concurrent € [3]. The Communicating
Sequential Processes (CSP) notation [4] will be used throughowt this
prapeer,

An Overview of Concurrent Programs Replav

Re-execuling a concurrent program with the same input may give
different resulis. This is due to the use of nondeterministic consirucls-
available now in many high-level languages- and the neondeterminism
inherent in the program execution environment., The replay problem [35)
involves execuling a concurrent program with a test input for the purpose
of duplicating a previously exercised execulion path. This problem is
known as the execution replay problem, more on this problem and
different approaches of handling it can be found in (G- 14].

it is important {0 be able to replay an execation of & concurrent Drogram
because errors need to be reproduced for it to be corrected. An error in
i concurrent program may not appear for many executions due (o ils
dependency on some ordering of events which may be nondeierministic
[15). ‘That is why once an emor is detected, we need to reproduce it by

rtp]aé?ing the execution of the program.

There are basically two sources for the nondeterminisiic behavior of A
cencurrent program: one is the wse of explicit nondeterministic
construcls in a concurrent program. This type is under the Profranmer
control and exists lecally within each concurrent process. The other Lype
is the nondeterminism in the execution environment of 2 concurrent
program. This type is outside the scope of the programmer and is

307

imherent In the execution eovironment. An example of the first, is the
use of the Allermative constract in C5P or the Select statement in Ada. An
example of the second. is the nondeterminism imposed by a
multiprocessor scheduler on the set of ready-to-run processes In a
concurrent Drogram.

Thus, thers are basically (wo aspects of the replay problem: (o replay the
actions of the execution environment, and to replay the actions of the
program as imposed by its semantics. Duplicating the actions of an
exseyution environment is hopeless in most cases, This is due to the
massive nomber of nondeterminiatic constraints in parallel systems, maost
of which are sutside the control of a program, However, duplicating the
actions taken by a concurrent program is possible.

There are some difficulties associated with the replay of a concurrent
program: first §s the difficulty to recognize and record actions which
affect the replay process and second. the difficulty to minimize the
degree of the side effect introduced by the replay process.

Brlated Work

Exhaustive re-execution s the most obvious method of replay. In this
method @ concurrent program is executed many times with the same test
input until the destred execution is replayed. This method does not
guarantee error reproduction because the probability of a program
exerciging the same execution when supplied with the same input may be
small. The massive number of possible execution paths makes this
method nefficient and expensive.

Other more efficient replay methods have been suggested based on
handling the problems which arise from the nondeterminism within
concurrent programs [6-8]. Deterministic executlon replay methods have
heen devised to eliminate the need for exhaustive re-execution by first
planning an execution path or collecting. at run-time, some information
about a previously exercised execution. Then, some additional statements
are added te the original program to eliminate the Inherent
nondeterminism. Finally, the extended program is executed and the
desired execulion path (s replayed. Deterministic methods extend the
poneurrent program by adding one or more controdlers for replay. Usually
one of these controllers 15 in charge of the full replay process. This
technique imposes a sequential order on a concurrent program replay
which is wnnatural and Inefficient.

Our Approach

We have made a distinction between two types of concurrent actions at
the level of specifying a concurrent program’s execution. Based on this
distinction we developed a method te specify a program execution path
called the loeality principle, We have developed a parallel replay methiod
based on this principle. The method uses cne controller per process (o
help replay its communications with other processes where each
controller may be executing in parallel. This technique preserves the
eoncurrent structure of the program which may be altered by
conventional replay approaches [8, 10]. The method has a significant

Hoe

il

impact on the time necessary 1o replay a program by reducing the
number of testable paths, and performing the replay in parallel.

[OCALITY

Specifving an exccution path for 8 congurrent program s essential for s
replay. In the space-time view presented in |16] an execution is viewed
as a partially ordered sel of events. The partial erdering is determined hy
these fwo rules: all actions are totally ordered within each process, and
sending a message comes before iis armval. A later work by Fidge [9] uses
partial order for paralle]l program debugging. We have adapted these
approaches in our work,

With respect to program replay, actions are generally classified into two
categories: sequental and concurrent. Obwicusly, the replay of sequential
artions is trivial. However, concurrent actlons are the source of troubie in
the replay process. We have distinguished two types of concurrent
actions: preferred and communication actions. A preferred action Is an
action that has been selected within a nondeterministic construct over
other actions, A communication actlon is either a send or a receive.

A process can be specified In terms of these two types of concurment
actions. Thus, we specily a concurment program’s execulion as a numbers
of totally ordered sequences. Each sequence is associated with a process
and eonsists of a8 lotally ordered sequence of preferred and
communication actions. The sequence of these actions within each
process allows ua to observe the course of execution for each gga
individually. More specifically, we define a process's local path as the
totally ordered sequence of all preferred and communication actiens
within that process with respect to a specific input. In terms of this local
path. another definition is also essential: a program's local history (LH] 15
defined 25 the set of all local paths within that concurrent program with
respect to a specilic input. Thus, the number of local paths within a
program's local history is equsl to the number of processes in thal
program.

Using this representation for replay. the initial execution of a concurrent
program with a specific input produces a local path for each of its
processes which form ils local history for that specific execution. Notice
that 5 different input may result in a different local history.

A set of global paths can be constructed from a local history: for this
purpose we define a program’s global path (GF) with respect to a specilic
input as any possible merge [17] of actions applied to all actions within a
program's local history. The distinction between local histories and
global paths i very important for the replay process, The main difference
is that a program’s local history is a collection of local path sequences,
where as a global path is any merge sequence of all the actions present in
all local paths, i is possible o get more than one possible merge of the
same local history, therefore, a number of global paths can be associated
with one local history, We define two global paths as equivalent if they
define the exact local history with respect to the same inpul, More on
the relationship between global paths and local histories. will be
presented later in the paper,

Lecality in this contexi means using local histories to represent a
ifn_'mgram'a execution path; it's the bases for our parallel replay method.

iere are many advantages for {he locality principle which we will
explore in the rest of this paper.

Locality for the Parallel Replay of Coneurrent Programs

We redeline the replay ol an execulion path according (o the locality
principle as: the replay of a giohal execution paath for a concurrent
program P with respect to an input 1 is successful if the re-execution of P
with 1 produces the exact or an equivalent global execution path,

The replay of & global path can further be defined in terms of its local
history as: the replay of a global path 15 successiul if the replay of its
corresponding local history is successhsl, For exampde. lel us assume that
we are willing to replay the global path G1 which has the corresponding
local history L1, aying Gl is equivalent to the replay of LH1.

The replay of a local history is now defined in terms of the local paths it
containg as: a replay of a program’s local histery is successful if the replay
of cach one of its local paths s successful. Obviously. replaying the local
history can only be achieved by the replay of each local path. The only
eondition which 15 required in this case is that the execution path musi
be for a program thet has terminated successfully. For example, the
replay of LHY above 1s equivalent o the replay of all local paths in LH1.

We can conclude from the above discussion the following result: the
replay of a plobal path is suecessful i the réplay produces jis
worresponding local history, This result has a significan impact on ihe
replay process. if many global paths can correspond to the same locai
history then the replay of this local history is equivalent to the replay of
all the eorresponding global paths. More specifically, suppose G, Go. ...,
Gn are globai pathe corresponding to Local_History_1. Then the replay of
Local_History 1 is equivaleni to the replay of Gy, Ga, Gy,

The relationship between iocal histories and global paths is explained
Ihrough an exmmple which uses the CS1° nalations.

Suppose thal there are six processes in a CSP program C, where & uses
the distribaied termination convention and g SEIP slatement has mo
effect.

‘:::F‘]ll]‘ﬂlll-’ﬂ-lll:"‘lllpfr!lpﬁ
Pl PRI 11
P2 PA?A
P3: * P17A - SKIP
Il P2122 - SKIP
|
F4:; PGt ag
P5:: PG5S
PE:: " P4?B --—-»SKIP
N PE?H -—= SKIP

Mo

In the above program, P3 communicates with F1 and P2, and the order of
communications is nondeterministic (similarly for P4, P5, and PG A list
of all the possible local paths for each process is given below, where each
local path contains one or more communication tuples. A
communication tuple is represented by three entities: the name of the
process, the type of command (Input or Output], and the eommunication
parameter.

LFE { (PLO10)

Lir2 i H"Z.LAJ |

LF3a : { (F3.0.A] (P30.221) -- F3 has two possible local paths
LP3DL : [(P3.0.23), (P3.0LA] }

[1* { (P4,0.44))

LPS : [(P50.55))

LPfa | (PG, 44]), (PG.1,.55] | == PG has two possible local paths

LP6b - { (P6.1.55). [P6.1.44])

There are two possible nondeterministic actions in P3 and PG, According
o our definition, this means that there are two possible local paths for P3
(LF3a and LP3b) and for PG [LPGa and LPGh). Using the above list of local
paths, a lst of all possible local histories can be constrocted as follows:

Local History_1 : { LP1, LF2, LP3a, LP4, LPS, LPBa)
Local History 2 : [LP1, LP2, LP3b, LP4, LPS, LPGa)
Local_History_3 : [LPY, LE2, LP3a, LP4, LPS, LP6h)
Local_History_4 : [LF1, LP2, LF3b, LP4, LPS, LPGh)

Note that LP1, LP2, LP4, and LP5S are unchanged in all local histories and
the only between two Jocal histories s in the local paths of P3 and
PG, A oset of global paths is alse assoctated with each one of the above Tocal
histories. Global_Paith_1 and Global_Path_2 correspond to
Local_History_1, om the other hand, Global_Path_3 correspond to
Loeal _History 2.

Global_Path_1 : [(P1,0,11).(P4,0,44)(P2.1,A)1P5,0,55],
{P3,1,A).IP6.1.44).(P6,1.55).(P3,0.22)]

Global_Fath_2 : [[P1.0.11LIF2,1,.4][P4,0_44) (P5,0,55),
[P3.LA)L(PE.T,44),[PE.1,55),(F3.0,22))

Global_Fath_3 : ([F1,0,11),(P4.0,44),[P2.1A}LIF5,0.55],
[F3.0.22).(P6.1.44).(PG.1.55]_[P3.1.A1)

The two global paths Global_Path_1 and Glcbal Path_2 are semantically
equivalent, since both terminate with A=22. B=55. Loecal_History_]
represents the two global exceoutions Global_Path_1 and Global Faih_2.
In this case, Local Hislory_ 1 is sald to be compatible with both
Global_Path_1 and Global Path_ 2. In general, one local history may be
compatible with more than ene global path, but all such global paths are
semantically equivalend.

A global path and a local history are said 10 be compatible if and only if the
global path preserves the order of actions within each local path of the

m

local history. Two actions are said to be independent if any total ordering
of them preserves the same local history.

Il a global path and a local history are compatible, then they are
semantically equivalent, Obwieusly. changing the order of independent
actions preserves the semantics of a program.

The above discussu . suggests that all visible glabal concurrent program
paths can be partitsoned inte their corresponding local histories, with the
result that all global paths within one group are semantically eguivalent,
This result is important, because it reduces the number of testable plohal
paths to the number of a local histories which belong to the program. If
two global paths define the same local history. then it is enough to replay
their local history once. because the two are semantically equivalent.

Another advantage of the distinction between global paths and local paths
is that a program has many fewer local histories than global paths. Thus,
significantly fewer test cases depend on local histories than global paths.
Note that no global test cases are lost, but rather those that are
semantically equivalent are eliminoted. The reduction of the number of

beatl cases may have a significant impact on the time needed to test a
concirrenl program.

Paralle]l Replay of Concurrent Programs

The first step in replaying a concurrent program’s path is to determine
itz local history. The next step is to replay each local path within that
local history.

The replay of a giobal path encourages the use of a centralized controller
because & sequential list of actions Is replaved. The controller stores a list
of all giohal actions and contrels communication actions among processes.
Preferred actions are stored and replayed locally within each process. In
this method, the case where two or more communication actions start
simultancously is exciuded because only one communication action s
permitted to start at any one time, On the other hand, if all local paths
are o be replayed in parallel, then simultaneous replay of preferred and
communication actions is not excluded,

The Paraliel replay method presented here uses a set of controllers, and
each controller is associzted with a process. Each contrabler helps a
process replay 1ts communication actions, The controller simulales the
communication environment of a process and makes sure that the
sequence of calls coming to a process Is in the predetermined order

specilied by the local path: preferred actions are replayed by the process
itseif,

This parallel replay method can be implemented using a two-phase
approach similar to the one presented in [6] as showm in Fig. 1. The two
phases are: a local path construction phase (CON). and a local path replay
phase [REF. The purpose of the CON phase is to construct a local path
for each process in a concurrent program. Constructing a local path is
based on recording preferred and communication actons while a process
5 executing. The output of the CON phase plus the input lo the

3z

"

foncurrent program becomes (he input to the REP phase.

In the REP phasze there are Iwo major sleps: ihe Preparation of each
Process for ils re-execution (extension stepl. and the actual re-executlion
of the program [replay step), ‘The exlension steép transforms a
nondeterministic program into 4 deterministic one according to its Jocal
history. This enables g debugger to re-execute an cxtended program as
mamy limes as reguired. The re-ceecution is done at the replay step,
where resulis are also compared with the expecied resuits of tha
Program.

Frocesses [ollow the sequence of aclions in {heir local paths by means of
allowing only those actisns al the beginning of their local paths to Le
selected at any one time. If an action al the beginning of a process's local
path is not possible at some point of the execution, the process blocks
itsell wuntil the action gecurs. Specific details of how actions
lcommunication and preforred) can be blocked depends on the language
used,

The application of lecality principle for Frogram replay is useful beecause |
partitions the replay problem into the replay of individual Processes. Oiye
has to consider the concurrent characteristics of a programming language
before appiying ibis parallel method, Three main characteristics are
identified: symmetric versus ASYMMELTIc naming conventions,
synchronous versus asynchronous communications, and the control gver
nondelerminism within a process. We are currently working an applying
this method on Ada and tncurrent C and a number of other CORCLUTTEn]
languages.

CONCLUSIONS

In thiz papsr we bave preecnted a method for the use of Joeal processes'
Jpal'.]‘r.'?. as the method of speciiying a concurrent Program’s execution puath
or ihe purpose of replay, Exerution paths were represented i terms of
their local histories and local paths. Based on this, a parailel replay
method was presented which uses one controlier per process for
Progrim replay. Contrallers help processes 1o repiay their
vommuniciation actions. This eliminates the need for 8 centralized
controller which can be a bottleneck to the replay process. The
advantages are: reducing the number of i_:stal:;?: execulion paths,
eliminating the need for exhaustive re-execution | making the replay
process much easier to understand and to implement, and rlorming
the replay in parallel. We think that this method is mare ellicient amd
more natural for the replay of coneurrent progrems, The implementation
of this method on programming languages that has concurrent {acilities
like Ada and Coneurrent ¢ may differ slightly because of the difference in
the concurrent facilities provided by these two languages.

Al iEME

The first author acknowledges the support of King Fahd University of
Petroleum and Minerals in presenting this paper.

313

REFERENCES

1-

LL-

12-

13-

14-

FRANCEE, F., and HOARE, C.AR. et al. {1979). Semantics of
Mondeterminism, Concurrency, and Communicailon. Journal of
Compater and Syatem Sciences, 19; 280-308.

U.5.Dep, of Defence, (1983). The Ada Programming Language
Heference Manual, ANSIAMILSTER 18I5A Document, US
Government Printimg Office.

GEHANI, M.H.. and ROOME, W0, (198G, Concurrent . Soltware-
Practice and Experence, Vol 16(9): 821-844.

HOARE, C.A.R. [19TB). Communicating Sequential Processes.
Communications of the ACM, Vol. 21{8): 666-677,

HANSEM, P., (1978). Reproductble Testing of Monitors. Scliware-
Practice and Experlence, Val, 8; T21-7249.

NALIAR, MM, =nd ELRAD. T. {1289]. A Two-Fhase Feproduction
Methoxd for Ada Tasking Programs. Proe. of the Tth Anoual Mational
Conference on Ada Technology. 197 -208,

Tal, K-C., CARVER. RH., and OBAID, E.E., (1921]). Dcbugging
Concurrent Ada Programs by Deterministic execution, IEEE
Transactons on Software Engineering, Vol. 17(1): 43-63.

CARVER, R.H., and TAL K-C., (1991]. Replay and Testing for
Concurrent Programs, IEEE Software, Vol 82k 66-74.

FIDGE, ©C.. [19839]. Partial Orders for Parallel Debugging.
Proceedings of the Workshop en Parallel and Distribuied Debugging,
SIGPLAN Notices, Vol, 24(1): 183-194.

LEBLANC, T.).. and MELLOR-CRUMMEY, J.M. (1987). Debugding
Farallel Programs with Instant Replay, 1EEE Trans. on Computers.
Wol, C-36(4): 471-482.

FIDGE, C., (1987]). Reproducible Testing in CSP. The Australan
Compuiter Journal, Vol 19{2); 92-98,

PAN. D7, and LINTON, M.A. [1983), Supparting Reverse Execution
of Parallel Programs. Proceedings of the Workshop on Parallel and
Distributed Debugging. SIGPLAN Notices, Vol 24(1): 124-128.

GOLDSZMIDT, ©.5.. and YEMINEL 5. [1990). High-ievel Language
Debugging for Concurrent Programs. ACM Transaclions on
Computer Systems, Vol. 8{4): 311-336.

GORDON, AL, and FINKEL, BA, (1988). Handling Timing Errors in

Distributed Programs. [EEE Transactions on Soltware Engineering.
Waol, 14[10]: 1525-1535.

g

T —

r—-

15 LAMPONT, L [197BL Time. Clocks, and the Ordering of Events in a
Hatribuoed System, Coman. of the ACM, Vol 2171 558-565

16- ALFORD, M.W., ANSART. J.P. et al, (1%B5). Distributed Systems:
Methods and Tools for Specification. An Advanced Course, Lecture
Kotes in Computer Science. No. 190.Springer- Verlag, Berlin,
Heidelberg.

17- PNUELL A. 11851). The Temporal Semanties of Concurrent
Programs. Theoretical Computer Seience, Vol 13: 45-60

KOMENCLATURE

L : loez! path

LH : local history

GF ; global path

CON - consiruction phase
REF : replay phase

Corsirulliod Plets

Construct a locz! palh for each process

local | history

rEpley Phese
T | PP B U M Ferl
Eulemed @ nehdelermInislic HagEram IRte &
i SelSrEinslie dne i Conicyrs el
Praoram
Fesizg [T pintaisorroe e vetdih of L

i-.':-_:.'a..T.

S P

Fig. 1 Implementation of the Farallel Rujslay Method

5

