
Fill Area Algorithms

Jan. 2008



Polygon Fill Algorithm

• Different types of Polygons

– Simple Convex

– Simple Concave

– Non-simple : self-intersecting

– With holes

Convex Concave Self-intersecting



Polygon Fill Algorithm

• A scan-line fill algorithm of a region is 
performed as follows:
1. Determining the intersection positions of the 

boundaries of the fill region with the screen scan 
lines. 

2. Then the fill colors are applied to each section of a 
scan line that lies within the interior of the fill region. 

• The simplest area to fill is a polygon, because 
each scan-line intersection point with a polygon 
boundary is obtained by solving a pair of 
simultaneous linear equations, where the 
equation for the scan line is simply y = constant.



Example

• Consider the following polygon:



Example

• For each scan line that crosses the polygon, the 

edge intersections are sorted from left to right, 

and then the pixel positions between, and 

including, each intersection pair are set to the 

specified fill color. 

• In the previous Figure, the four pixel intersection 

positions with the polygon boundaries define two 

stretches of interior pixels.



Example

• The fill color is applied to the five pixels: 

– from x = 10 to x = 14 

and 

• To the seven pixels 

– from x = 18 to x = 24.



Polygon Fill Algorithm

• However, the scan-line fill algorithm for a 
polygon is not quite as simple 

• Whenever a scan line passes through a 
vertex, it intersects two polygon edges at 
that point. 

• In some cases, this can result in an odd 
number of boundary intersections for a 
scan line.



Polygon Fill Algorithm

• Consider the next Figure. 

• It shows two scan lines that cross a 
polygon fill area and intersect a vertex. 

• Scan line y’ intersects an even number of 
edges, and the two pairs of intersection 
points along this scan line correctly identify 
the interior pixel spans. 

• But scan line y intersects five polygon 
edges.



Polygon Fill Algorithm



Polygon Fill Algorithm

• To identify the interior pixels for scan line 
y, we must count the vertex intersection as 
only one point. 

• Thus, as we process scan lines, we need 
to distinguish between these two cases.



Polygon Fill Algorithm

• We can detect the difference between the 
two cases by noting the position of the 
intersecting edges relative to the scan line. 

• For scan line y, the two edges sharing an 
intersection vertex are on opposite sides 
of the scan line. 

• But for scan line y’, the two intersecting 
edges are both above the scan line.



Polygon Fill Algorithm

• A vertex that has adjoining edges on opposite 

sides of an intersecting scan line should be 

counted as just one boundary intersection point.

• We can identify these vertices by tracing around 

the polygon boundary in either clockwise or 

counterclockwise order and observing the 

relative changes in vertex y coordinates as we 

move from one edge to the next. 



Polygon Fill Algorithm

• If the three endpoint y values of two consecutive 
edges increase or decrease, we need to count 
the shared (middle) vertex as a single 
intersection point for the scan line passing 
through that vertex.

• Otherwise, the shared vertex represents a local 
extremum (minimum or maximum) on the 
polygon boundary, and the two edge 
intersections with the scan line passing through 
that vertex can be added to the intersection list.



Area Fill Algorithm

• An alternative approach for filling an area is to 

start at a point inside the area and “paint” the 

interior, point by point, out to the boundary. 

• This is a particularly useful technique for filling 

areas with irregular borders, such as a design 

created with a paint program. 

• The algorithm makes the following assumptions

– one interior pixel is known, and

– pixels in boundary are known.



Area Fill Algorithm

• If the boundary of some region is specified 
in a single color, we can fill the interior of 
this region, pixel by pixel, until the 
boundary color is encountered. 

• This method, called the boundary-fill 
algorithm, is employed in interactive 
painting packages, where interior points 
are easily selected.



Example

• One can sketch a figure outline, and pick 
an interior point. 

• The figure interior is then painted in the fill 
color as shown in these Figures



Area Fill Algorithm

• Basically, a boundary-fill algorithm starts 
from an interior point (x, y) and sets the 
neighboring points to the desired color.

• This procedure continues until all pixels 
are processed up to the designated 
boundary for the area.



Area Fill Algorithm

• There are two methods for processing 
neighboring pixels from a current point. 

1. Four neighboring points. 

– These are the pixel positions that are right, 

left, above, and below the current pixel.

– Areas filled by this method are called 4-

connected.



Area Fill Algorithm

2. Eight neighboring points. 

– This method is used to fill more complex 

figures. 

– Here the set of neighboring points to be set 

includes the four diagonal pixels, in addition to 

the four points in the first method. 

– Fill methods using this approach are called 8-

connected.



Area Fill Algorithm



Area Fill Algorithm

• Consider the Figure in the next slide.

• An 8-connected boundary-fill algorithm 
would correctly fill the interior of the area 
defined in the Figure.

• But a 4-connected boundary-fill algorithm 
would only fill part of that region.



Area Fill Algorithm



Area Fill Algorithm

• The following procedure illustrates a recursive 

method for painting a 4-connected area with a 

solid color, specified in parameter fillColor, up 

to a boundary color specified with parameter 

borderColor. 

• We can extend this procedure to fill an 8-

connected region by including four additional 

statements to test the diagonal positions (x ± 1, 

y ± 1).



Area Fill Algorithm



Area Fill Algorithm

• Some times we want to fill in (or recolor) 
an area that is not defined within a single 
color boundary. 

• Consider the following Figure.



Area Fill Algorithm

• We can paint such areas by replacing a 
specified interior color instead of searching 
for a particular boundary color. 

• This fill procedure is called a flood-fill 
algorithm.



Area Fill Algorithm

• We start from a specified interior point (x, 
y) and reassign all pixel values that are 
currently set to a given interior color with 
the desired fill color.

• If the area we want to paint has more than 
one interior color, we can first reassign 
pixel values so that all interior points have 
the same color.



Area Fill Algorithm

• Using either a 4-connected or 8-connected 
approach, we then step through pixel 
positions until all interior points have been 
repainted.

• The following procedure flood fills a 4-
connected region recursively, starting from 
the input position.



Area Fill Algorithm



Problems with Fill Algorithm (1)

• Recursive boundary-fill algorithms may not 
fill regions correctly if some interior pixels 
are already displayed in the fill color. 

• This occurs because the algorithm checks 
next pixels both for boundary color and for 
fill color. 



Problems with Fill Algorithm

• To avoid this, we can first change the color 
of any interior pixels that are initially set to 
the fill color before applying the boundary-
fill procedure.

• Encountering a pixel with the fill color can 
cause a recursive branch to terminate, 
leaving other interior pixels unfilled.



Problems with Fill Algorithm (2)

• This procedure requires considerable 
stacking of neighboring points, more 
efficient methods are generally employed. 

• These methods fill horizontal pixel spans 
across scan lines, instead of proceeding to 
4-connected or 8-connected neighboring 
points.



Problems with Fill Algorithm (2)

• Then we need only stack a beginning 
position for each horizontal pixel span, 
instead of stacking all unprocessed 
neighboring positions around the current 
position. 

• Starting from the initial interior point with 
this method, we first fill in the contiguous 
span of pixels on this starting scan line.



Problems with Fill Algorithm (2)

• Then we locate and stack starting 
positions for spans on the adjacent scan 
lines, where spans are defined as the 
contiguous horizontal string of positions 
bounded by pixels displayed in the border 
color. 

• At each subsequent step, we retrieve the 
next start position from the top of the stack 
and repeat the process.



Area Fill Algorithm

The algorithm can be summarized as follows:

1. define seed point,

2. fill scan line containing seed point,

3. for scan lines above and below, define new seed 

points as:
i) first point inside left boundary,

ii) subsequent points within boundary whose left neighbor is 

outside,

4. d) repeat algorithm with the new set of seed points.



Example

• In this example, we first process scan lines 

successively from the start line to the top 

boundary.

• After all upper scan lines are processed, we fill 

in the pixel spans on the remaining scan lines in 

order down to the bottom boundary. 

• The leftmost pixel position for each horizontal 

span is located and stacked, in left to right order 

across successive scan lines.



Example

• In (a) of this figure, the initial span has 
been filled, and starting positions 1 and 2 
for spans on the next scan lines (below 
and above) are stacked.



Example

• In Fig.(b), position 2 has been unstacked
and processed to produce the filled span 
shown, and the starting pixel (position 3) 
for the single span on the next scan line 
has been stacked.



Example

• After position 3 is processed, the filled 
spans and stacked positions are as shown 
in Fig. (c).



Example

• And Fig.(d) shows the filled pixels after 
processing all spans in the upper right of 
the specified area. 



Example

• Position 5 is next processed, and spans 
are filled in the upper left of the region; 
then position 4 is picked up to continue the 
processing for the lower scan lines.



Example

• Finish up the upper scan lines.



Example

• Start the bottom scan lines.



Example

• Finish up the bottom scan lines.



Example

• Finish up the bottom scan lines.


