
Graphics Output Primitives

Drawing Line, Circle and Ellipse

Dr. M. Al-Mulhem

Feb. 1, 2008

Objectives

• Introduction to Primitives

• Points & Lines

• Line Drawing Algorithms
– Digital Differential Analyzer (DDA)
– Bresenham’s Algorithm
– Mid-Point Algorithm

• Circle Generating Algorithms
– Properties of Circles
– Bresenham’s Algorithm
– Mid-Point Algorithm

• Ellipse Generating Algorithms
– Properties of Ellipse
– Bresenham’s Algorithm
– Mid-Point Algorithm

• Other Curves
– Conic Sections
– Polynomial Curves
– Spline Curves

Introduction

• For a raster display, a picture is
completely specified by:

• intensity and position of pixels, or/and

• set of complex objects

• Shapes and contours can either be stored
in terms of pixel patterns (bitmaps) or as a
set of basic geometric structures (for
example, line segments).

Introduction

• Output primitives are the basic geometric
structures which facilitate or describe a
scene/picture. Example of these include:

– points, lines, curves (circles, conics etc),

surfaces, fill colour, character string etc.

Points

• A point is shown
by illuminating a
pixel on the
screen

Lines

• A line segment is completely defined in
terms of its two endpoints.

• A line segment is thus defined as:
Line_Seg = { (x1, y1), (x2, y2) }

Lines

• A line is

produced by

means of

illuminating a

set of

intermediary

pixels between

the two

endpoints.
x

y

x1 x2

y1

y2

Lines

• Lines is digitized into a set of discrete
integer positions that approximate the
actual line path.

• Example: A computed line position of
(10.48, 20.51) is converted to pixel
position (10, 21).

Line

• The rounding of coordinate values to
integer causes all but horizonatal and
vertical lines to be displayed with a stair
step appearance “the jaggies”.

Line Drawing Algorithms

• A straight line segment is defined by the
coordinate position for the end points of
the segment.

• Given Points (x1, y1) and (x2, y2)

Line

• All line drawing algorithms make use of
the fundamental equations:

• Line Eqn. y = m.x + b

• Slope m = y2 − y1 / x2 − x1 = ∆y / ∆x

• y-intercept b = y1 − m.x1

• x-interval→∆x = ∆y / m

• y-interval→ ∆y = m ∆x

DDA Algorithm (Digital Differential Analyzer)

• A line algorithm Based on calculating
either ∆y or ∆x using the above equations.

• There are two cases:

– Positive slop

– Negative slop

DDA- Line with positive Slope

If m ≤ 1 then take ∆x = 1

• Compute successive y by
yk+1 = yk + m (1)

• Subscript k takes integer values starting
from 1, for the first point, and increases by
1 until the final end point is reached.

• Since 0.0 < m ≤ 1.0, the calculated y
values must be rounded to the nearest
integer pixel position.

DDA

• If m > 1, reverse the role of x and y and take ∆y

= 1, calculate successive x from

xk+1 = xk + 1/m (2)

• In this case, each computed x value is rounded

to the nearest integer pixel position.

• The above equations are based on the

assumption that lines are to be processed from

left endpoint to right endpoint.

DDA

• In case the line is processed from Right
endpoint to Left endpoint, then

∆x = −1, yk+1 = yk − m for m ≤ 1 (3)

or

∆y = −1, xk+1 = xk −1/m for m > 1 (4)

DDA- Line with negative Slope

• If m < 1,

– use(1) [provided line is calculated from left to

right] and

– use(3) [provided line is calculated from right to

left].

• If m ≥ 1

– use (2) or (4).

Merits + Demerits

• Faster than the direct use of line Eqn.

• It eliminates the multiplication in line Eqn.

• For long line segments, the true line Path
may be mislead due to round off.

• Rounding operations and floating-point
arithmetic are still time consuming.

• The algorithm can still be improved.

• Other algorithms, with better performance
also exist.

Code for DDA Algorithm
Procedure lineDDA(xa,ya,xb,yb:integer);

Var

dx,dy,steps,k:integer

xIncrement,yIncrement,x,y:real;

begin

dx:=xb-xa;

dy:=yb-ya;

if abs(dx)>abs(dy) then steps:=abs(dx)

else steps:=abs(dy);

xIncrement:=dx/steps;

yIncrement:=dy/steps;

x:=xa;

y:=ya;

setPixel(round(x),round(y),1);

for k:=1 to steps do

begin

x:=x+xIncrement;

y:=y+yIncrement;

setPixel(round(x),round(y),1)

end

end; {lineDDA}

Bresenham’s Line Algorithm

• It is an efficient raster line generation
algorithm.

• It can be adapted to display circles and
other curves.

• The algorithm

– After plotting a pixel position (xk, yk) , what is

the next pixel to plot?

• Consider lines with positive slope.

Bresenham’s Line

• For a positive slope, 0 < m < 1 and line is
starting from left to right.

• After plotting a pixel position (xk, yk) we
have two choices for next pixel:

– (xk +1, yk)

– (xk +1, yk+1)

Bresenham’s Line

• At position xk +1, we
pay attention to the
intersection of the
vertical pixel and the
mathematical line
path.

Bresenham’s Line

• At position xk +1,
we label vertical
pixel separations
from the
mathematical line
path as

dlower , dupper.

Bresenham’s Line

• The y coordinate on the mathematical line
at xk+1 is calculated as

y = m(xk +1)+ b

then

dlower = y − yk

= m (xk +1) + b − yk

and

dupper =(yk +1) − y

= yk +1− m(xk +1)− b

Bresenham’s Line

• To determine which of the two pixels is closest to the line
path, we set an efficient test based on the difference
between the two pixel separations

dlower - dupper = 2m (xk +1) − 2yk + 2b - 1

= 2 (∆y / ∆x) (xk +1) − 2yk + 2b - 1

• Consider a decision parameter pk such that

pk = ∆x (dlower - dupper)
= 2∆y.xk − 2∆x.yk + c

• where

c = 2∆y + ∆x(2b −1)

Bresenham’s Line

• Since ∆x > 0, Comparing (dlower and dupper),

would tell which pixel is closer to the line path;

is it yk or yk + 1

• If (dlower < dupper)

– Then pk is negative

• Hence plot lower pixel.

– Otherwise

• Plot the upper pixel.

Bresenham’s Line

• We can obtain the values of successive
decision parameter as follows:

pk = 2∆y.xk − 2∆x.yk + c

pk+1=2∆y.xk+1−2∆x.yk+1+c

• Subtracting these two equations

pk+1− pk = 2∆y (xk+1 − xk) − 2∆x (yk+1

− yk)

• But xk+1 − xk = 1, Therefore

pk+1 = pk +2∆y − 2∆x (yk+1 − yk)

Bresenham’s Line

• (yk+1 − yk) is either 0 or 1, depending on
the sign of pk (plotting lower or upper
pixel).

• The recursive calculation of pk is
performed at integer x position, starting at
the left endpoint.

• p0 can be evaluated as:

p0 = 2∆y − ∆x

Bresenham’s Line-Drawing

Algorithm for m < 1
1. Input the two line end points and store the left end point

in (x0 , y0).
2. Load (x0 , y0) into the frame buffer; that is, plot the first

point.
3. Calculate the constants ∆x, ∆y, 2∆y, and 2∆y − 2∆x,

and obtain the starting value for the decision parameter
as

p0 = 2∆y − ∆x

4. At each xk along the line, starting at k = 0 , perform the
following test: If pk < 0,the next point to plot is (xk +1, yk
and

pk+1=pk+2∆y

Otherwise, the next point to plot is (xk +1, yk +1) and
pk+1=pk+2∆y−2∆x

5. Repeat step 4, ∆x−1 times.

Summary

• The constants 2∆y and 2∆y − 2∆x are
calculated once for each line to be scan
converted.

• Hence the arithmetic involves only integer
addition and subtraction of these two
constants.

Example

• To illustrate the algorithm, we digitize the line
with endpoints (20,10) and (30,18). This line has
slope of 0.8, with

∆x = 10

∆y =8

• The initial decision parameter has the value

p0 = 2∆y − ∆x = 6

• and the increments for calculating successive
decision parameters are

2 ∆y = 16

2 ∆y - 2 ∆x = -4

Example
• We plot the initial point (x0 , y0)=(20,10) and

determine successive pixel positions along the line

path from the decision parameter as

(30,18)109(25,14)104

(29,17)148(24,13)143

(28,16)-27(23,12)-22

(27,16)26(22,12)21

(26,15)65(21,11)60

(xk +1, yk +1)pkK(xk +1, yk +1)pkK

Example

Circle Generating Algorithms

• A circle is defined as the set of points that are all at a
given distance r from a center point (xc, yc).

• For any circle point (x, y), this distance is expressed by the

Equation

(x − xc)
2 + (y − yc)

2 = r 2

• We calculate the points by stepping along the x-axis in unit

steps from xc-r to xc+r and calculate y values as

Circle Generating Algorithms

• There are some problems with this approach:

1. Considerable computation at each step.

2. Non-uniform spacing between plotted pixels as in this
Figure.

Circle Generating Algorithms

• Problem 2 can be removed using the polar
form:

x = xc + r cos θ

y = yc + r sin θ

• using a fixed angular step size, a circle is
plotted with equally spaced points along
the circumference.

Circle Generating Algorithms

• Problem 1 can be overcome by considering the
symmetry of circles as in Figure 3.

• But it still requires a good deal of computation time.

• Efficient Solutions

– Midpoint Circle Algorithm

Mid point Circle Algorithm

• To apply the midpoint method, we define a
circle function:

• Any point (x,y) on the boundary of the
circle with radius r satisfies the equation
fcircle(x, y)= 0.

Mid point Circle Algorithm

• If the points is in the interior of the circle,
the circle function is negative.

• If the point is outside the circle, the circle
function is positive.

• To summarize, the relative position of any
point (x,y) can be determined by checking
the sign of the circle function:

Mid point Circle Algorithm

• The circle function tests in (3) are performed for the mid
positions between pixels near the circle path at each
sampling step. Thus, the circle function is the decision
parameter in the midpoint algorithm, and we can set up
incremental calculations for this function as we did in the

line algorithm.

Mid point Circle Algorithm

• Figure 4 shows the midpoint between the two candidate
pixels at sampling position xk +1. Assuming we have just

plotted the pixel at (xk , yk), we next need to determine

whether the pixel at position (xk +1, yk) or the one at
position (xk +1, yk −1) is closer to the circle.

Mid point Circle Algorithm

• Our decision parameter is the circle
function (2) evaluated at the midpoint
between these two pixels:

Mid point Circle Algorithm

• If pk < 0, this midpoint is inside the circle
and the pixel on scan line yk is closer to
the circle boundary.

• Otherwise, the midpoint is outside or on
the circle boundary, and we select the
pixel on scan line yk −1.

• Successive decision parameters are
obtained using incremental calculations.

Mid point Circle Algorithm

• We obtain a recursive expression for the next decision parameter by
evaluating the circle function at sampling position xk+1 +1 = xk + 2

• where yk+1 is either yk or yk-1,depending on the sign of pk.

Mid point Circle Algorithm

• Increments for obtaining pk+1 are either

– 2xk+1 +1 (if pk is negative) or

– 2xk+1 +1− 2yk+1 (if pk is positive)

• Evaluation of the terms 2xk+1 and 2yk+1

can also be done incrementally as:

Mid point Circle Algorithm

• At the start position (0, r), these two terms
(2x, 2y) have the values 0 and 2r,
respectively.

• Each successive value is obtained by
adding 2 to the previous value of 2x and
subtracting 2 from the previous value of
2y.

Mid point Circle Algorithm

• The initial decision parameter is obtained
by evaluating the circle function at the start
position (x0 , y0)=(0, r):

Mid point Circle Algorithm

• If the radius r is specified as an integer, we
can simply round p0 to

• since all increments are integers.

Summary of the Algorithm

• As in Bresenham’s line algorithm, the
midpoint method calculates pixel positions
along the circumference of a circle using
integer additions and subtractions,
assuming that the circle parameters are
specified in screen coordinates. We can
summarize the steps in the midpoint circle
algorithm as follows.

Algorithm

Example

• Given a circle radius r = 10, we
demonstrate the midpoint circle algorithm
by determining positions along the circle
octant in the first quadrant from x = 0 to x

= y . The initial value of the decision
parameter is

Example

• For the circle centered on the coordinate origin,
the initial point is (x0 , y0) =(0,10), and initial
increment terms for calculating the decision
parameters are

• Successive decision parameter values and
positions along the circle path are calculated
using the midpoint method as shown in the table.

Example

Example

• A plot of the generated pixel positions in
the first quadrant is shown in Figure 5.

Midpoint Ellipse Algorithm

• Ellipse equations are greatly simplified if
the major and minor axes are oriented to
align with the coordinate axes.

• In Fig. 3-22, we show an ellipse in
“standard position” with major and minor
axes oriented parallel to the x and y axes.

• Parameter rx for this example labels the
semimajor axis, and parameter ry labels
the semiminor axis.

Midpoint Ellipse Algorithm

• The equation for the ellipse shown in Fig.
3-22 can be written in terms of the ellipse
center coordinates and parameters rx and
ry as

Midpoint Ellipse Algorithm

• Using polar coordinates r and θ, we can
also describe the ellipse in standard
position with the parametric equations

Midpoint Ellipse Algorithm

• The midpoint ellipse method
is applied throughout the first
quadrant in two parts.

• Figure 3-25 shows the
division of the first quadrant
according to the slope of an
ellipse with rx < ry.

Midpoint Ellipse Algorithm

• Regions 1 and 2 (Fig. 3-25) can be processed in
various ways.

• We can start at position (0, ry) and step
clockwise along the elliptical path in the first
quadrant, shifting from unit steps in x to unit
steps in y when the slope becomes less than
−1.0.

• Alternatively, we could start at (rx, 0) and select
points in a counterclockwise order, shifting from
unit steps in y to unit steps in x when the slope
becomes greater than −1.0.

Midpoint Ellipse Algorithm

• We define an ellipse function from Eq. 3-
37 with (xc , yc) = (0, 0) as

• which has the following properties:

Midpoint Ellipse Algorithm

• Starting at (0, ry), we take unit steps in the
x direction until we reach the boundary
between region 1 and region 2 (Fig. 3-25).

• Then we switch to unit steps in the y

direction over the remainder of the curve
in the first quadrant.

• At each step we need to test the value of
the slope of the curve.

Midpoint Ellipse Algorithm

• The ellipse slope is calculated from Eq. 3-39 as

• At the boundary between region 1 and region 2,
dy/dx = −1.0 and

• Therefore, we move out of region 1 whenever

Midpoint Ellipse Algorithm

• Figure 3-26 shows the midpoint between the two
candidate pixels at sampling position xk +1 in the
first region.

• Assuming position (xk , yk) has been selected in
the previous step, we determine the next
position along the ellipse path by evaluating the
decision parameter (that is, the ellipse function
3-39) at this midpoint:

Midpoint Ellipse Algorithm

• If p1k < 0, the midpoint is inside the ellipse
and the pixel on scan line yk is closer to
the ellipse boundary.

• Otherwise, the midposition is outside or on
the ellipse boundary, and we select the
pixel on scan line yk − 1.

Midpoint Ellipse Algorithm

• At the next sampling position (xk+1 + 1 =
xk + 2), the decision parameter for region 1
is evaluated as

Midpoint Ellipse Algorithm

• Decision parameters are incremented by
the following amounts:

Midpoint Ellipse Algorithm

• At the initial position (0, ry), these two terms evaluate to

• As x and y are incremented, updated values are
obtained by adding 2r 2y to the current value of the
increment term in Eq. 3-45 and subtracting 2r 2x from the
current value of the increment term in Eq. 3-46.

• The updated increment values are compared at each
step, and we move from region 1 to region 2 when
condition 3-42 is satisfied.

Midpoint Ellipse Algorithm

• In region 1, the initial value of the decision
parameter is obtained by evaluating the
ellipse function at the start position (x0, y0)

= (0, ry):

Midpoint Ellipse Algorithm

• Over region 2, we sample at unit intervals
in the negative y direction, and the
midpoint is now taken between horizontal
pixels at each step (Fig. 3-27).

• For this region, the decision parameter is
evaluated as

Midpoint Ellipse Algorithm

• If p2k > 0, the midposition is outside the
ellipse boundary, and we select the pixel
at xk.

• If p2k <= 0, the midpoint is inside or on the
ellipse boundary, and we select

• pixel position xk+1.

Midpoint Ellipse Algorithm

• To determine the relationship between
successive decision parameters in region
2,we evaluate the ellipse function at the
next sampling step yk+1 −1 = yk −2:

Midpoint Ellipse Algorithm

• When we enter region 2, the initial position
(x0, y0) is taken as the last position
selected in region 1 and the initial decision
parameter in region 2 is then

Algorithm

Example

• Given input ellipse parameters rx =8 and ry

= 6, we illustrate the steps in the midpoint
ellipse algorithm by determining raster
positions along the ellipse path in the first
quadrant.

• Initial values and increments for the
decision parameter calculations are

Example

• For region 1, the initial point for the ellipse
centered on the origin is (x0, y0) = (0, 6),
and the initial decision parameter value is

• Successive midpoint decision parameter
values and the pixel positions along the
ellipse are listed in the following table.

Example

Example

• We now move out of region 1, since

2r 2 y x > 2r 2 x y.

• For region 2, the initial point is

(x0, y0) = (7, 3)

• and the initial decision parameter is

Example

• The remaining positions along the ellipse
path in the first quadrant are then
calculated as

Example

• A plot of the calculated positions for the
ellipse within the first quadrant is shown
bellow:

