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Objectives

• Introduction to Primitives

• Points & Lines

• Line Drawing Algorithms
– Digital Differential Analyzer (DDA)
– Bresenham’s Algorithm
– Mid-Point Algorithm

• Circle Generating Algorithms
– Properties of Circles
– Bresenham’s Algorithm
– Mid-Point Algorithm

• Ellipse Generating Algorithms
– Properties of Ellipse
– Bresenham’s Algorithm
– Mid-Point Algorithm

• Other Curves
– Conic Sections
– Polynomial Curves
– Spline Curves



Introduction

• For a raster display, a picture is 
completely specified by:

• intensity and position of pixels, or/and

• set of complex objects

• Shapes and contours can either be stored 
in terms of pixel patterns (bitmaps) or as a 
set of basic geometric structures (for 
example, line segments).



Introduction

• Output primitives are the basic geometric 
structures which facilitate or describe a 
scene/picture. Example of these include:

– points, lines, curves (circles, conics etc), 

surfaces, fill colour, character string etc.



Points

• A point is shown 
by illuminating a 
pixel on the 
screen 



Lines

• A line segment is completely defined in 
terms of its two endpoints.

• A line segment is thus defined as:
Line_Seg = { (x1, y1), (x2, y2) }



Lines

• A line is 

produced by 

means of 

illuminating a 

set of 

intermediary 

pixels between 

the two 

endpoints.
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Lines

• Lines is digitized into a set of discrete 
integer positions that approximate the 
actual line path.

• Example: A computed line position of 
(10.48, 20.51) is converted to pixel 
position (10, 21).



Line 

• The rounding of coordinate values to 
integer causes all but horizonatal and 
vertical lines to be displayed with a stair 
step appearance “the jaggies”.



Line Drawing Algorithms

• A straight line segment is defined by the 
coordinate position for the end points of 
the segment.

• Given Points (x1, y1) and (x2, y2) 



Line

• All line drawing algorithms make use of 
the fundamental equations:

• Line Eqn. y = m.x + b

• Slope m = y2 − y1 / x2 − x1 = ∆y / ∆x

• y-intercept b = y1 − m.x1

• x-interval→∆x = ∆y / m

• y-interval→ ∆y = m ∆x



DDA Algorithm (Digital Differential Analyzer)

• A line algorithm Based on calculating 
either ∆y or ∆x using the above equations.

• There are two cases:

– Positive slop

– Negative slop



DDA- Line with positive Slope

If  m ≤ 1 then take ∆x = 1

• Compute successive y by
yk+1 = yk + m (1)

• Subscript k takes integer values starting 
from 1, for the first point, and increases by 
1 until the final end point is reached.

• Since 0.0 < m ≤ 1.0, the calculated y 
values must be rounded to the nearest 
integer pixel position.



DDA

• If  m > 1, reverse the role of x and y and take ∆y

= 1, calculate successive x from

xk+1 = xk + 1/m (2)

• In this case, each computed x value is rounded 

to the nearest integer pixel position.

• The above equations are based on the 

assumption that lines are to be processed from 

left endpoint to right endpoint.



DDA

• In case the line is processed from Right 
endpoint  to Left endpoint, then

∆x = −1, yk+1 = yk − m for m ≤ 1 (3)

or

∆y = −1, xk+1 = xk −1/m for m > 1 (4)



DDA- Line with negative Slope

• If  m < 1, 

– use(1) [provided line is calculated from left to 

right] and

– use(3) [provided line is calculated from right to 

left].

• If  m ≥ 1

– use (2) or (4).



Merits + Demerits

• Faster than the direct use of line Eqn.

• It eliminates the multiplication in line Eqn.

• For long line segments, the true line Path 
may be mislead due to round off.

• Rounding operations and floating-point 
arithmetic are still time consuming.

• The algorithm can still be improved.

• Other algorithms, with better performance 
also exist.



Code for DDA Algorithm
Procedure lineDDA(xa,ya,xb,yb:integer);

Var

dx,dy,steps,k:integer

xIncrement,yIncrement,x,y:real;

begin

dx:=xb-xa;

dy:=yb-ya;

if abs(dx)>abs(dy) then steps:=abs(dx)

else steps:=abs(dy);

xIncrement:=dx/steps;

yIncrement:=dy/steps;

x:=xa;

y:=ya;

setPixel(round(x),round(y),1);

for k:=1 to steps do

begin

x:=x+xIncrement;

y:=y+yIncrement;

setPixel(round(x),round(y),1)

end

end; {lineDDA}



Bresenham’s Line Algorithm

• It is an efficient raster line generation 
algorithm. 

• It can be adapted to display circles and 
other curves.

• The algorithm

– After plotting a pixel position (xk, yk) , what is 

the next pixel to plot?

• Consider lines with positive slope.



Bresenham’s Line

• For a positive slope, 0 < m < 1 and line is 
starting from left to right.

• After plotting a pixel position (xk, yk) we 
have two choices for next pixel:

– (xk +1, yk)

– (xk +1, yk+1)



Bresenham’s Line

• At position xk +1, we 
pay attention to the 
intersection of the 
vertical pixel and the 
mathematical line 
path.



Bresenham’s Line

• At position xk +1, 
we label vertical 
pixel separations 
from the 
mathematical line 
path as 

dlower ,  dupper.



Bresenham’s Line

• The  y coordinate on the mathematical line 
at xk+1 is calculated as

y = m(xk +1)+ b

then

dlower = y − yk

= m (xk +1) + b − yk

and 

dupper =(yk +1) − y 

= yk +1− m(xk +1)− b



Bresenham’s Line

• To determine which of the two pixels is closest to the line 
path, we set an efficient test based on the difference 
between the two pixel separations

dlower - dupper = 2m (xk +1) − 2yk + 2b - 1

= 2 (∆y / ∆x) (xk +1) − 2yk + 2b - 1 

• Consider a decision parameter pk such that

pk = ∆x (dlower - dupper )
= 2∆y.xk − 2∆x.yk + c

• where

c = 2∆y + ∆x(2b −1)



Bresenham’s Line

• Since ∆x > 0, Comparing (dlower and  dupper ), 

would tell which pixel is closer to the line path;  

is it yk or yk + 1 

• If (dlower < dupper ) 

– Then pk is negative

• Hence plot lower pixel.

– Otherwise

• Plot the upper pixel.



Bresenham’s Line

• We can obtain the values of successive 
decision parameter as follows:

pk = 2∆y.xk − 2∆x.yk + c

pk+1=2∆y.xk+1−2∆x.yk+1+c

• Subtracting these two equations

pk+1− pk = 2∆y (xk+1 − xk) − 2∆x ( yk+1

− yk)

• But xk+1 − xk = 1, Therefore

pk+1 = pk +2∆y − 2∆x (yk+1 − yk)



Bresenham’s Line

• ( yk+1 − yk) is either 0 or 1, depending on 
the sign of pk (plotting lower or upper 
pixel).

• The recursive calculation of pk is 
performed at integer x position, starting at 
the left endpoint.

• p0 can be evaluated as:

p0 = 2∆y − ∆x



Bresenham’s Line-Drawing 

Algorithm for m < 1
1. Input the two line end points and store the left end point 

in (x0 , y0 ).
2. Load (x0 , y0 ) into the frame buffer; that is, plot the first 

point.
3. Calculate the constants ∆x, ∆y, 2∆y, and 2∆y − 2∆x, 

and obtain the starting value for the decision parameter 
as

p0 = 2∆y − ∆x

4. At each xk along the line, starting at k = 0 , perform the 
following test: If pk < 0,the next point to plot is (xk +1, yk
and

pk+1=pk+2∆y

Otherwise, the next point to plot is (xk +1, yk +1) and
pk+1=pk+2∆y−2∆x

5. Repeat step 4, ∆x−1 times.



Summary

• The constants 2∆y and 2∆y − 2∆x are 
calculated once for each line to be scan 
converted. 

• Hence the arithmetic involves only integer 
addition and subtraction of these two 
constants.



Example

• To illustrate the algorithm, we digitize the line 
with endpoints (20,10) and (30,18). This line has 
slope of 0.8, with

∆x = 10

∆y =8

• The initial decision parameter has the value

p0 = 2∆y − ∆x = 6

• and the increments for calculating successive 
decision parameters are

2 ∆y = 16

2 ∆y - 2 ∆x = -4



Example
• We plot the initial point (x0 , y0)=(20,10) and 

determine successive pixel positions along the line 

path from the decision parameter as

(30,18)109(25,14)104

(29,17)148(24,13)143

(28,16)-27(23,12)-22

(27,16)26(22,12)21

(26,15)65(21,11)60

(xk +1, yk +1)pkK(xk +1, yk +1)pkK



Example



Circle Generating Algorithms

• A circle is defined as the set of points that are all at a 
given distance r from a center point (xc, yc).

• For any circle point (x, y), this distance is expressed by the 

Equation 

(x − xc)
2 + (y − yc)

2 = r 2

• We calculate the points by stepping along the x-axis in unit 

steps from xc-r to xc+r and calculate y values as 



Circle Generating Algorithms

• There are some problems with this approach:

1. Considerable computation at each step.

2. Non-uniform spacing between plotted pixels as in this 
Figure.



Circle Generating Algorithms

• Problem 2 can be removed using the polar 
form:

x = xc + r cos θ

y = yc + r sin θ

• using a fixed angular step size, a circle is 
plotted with equally spaced points along 
the circumference.



Circle Generating Algorithms

• Problem 1 can be overcome by considering the 
symmetry of circles as in Figure 3. 

• But it still requires a good deal of computation time.

• Efficient Solutions

– Midpoint Circle Algorithm



Mid point Circle Algorithm

• To apply the midpoint method, we define a 
circle function:

• Any point (x,y) on the boundary of the 
circle with radius r satisfies the equation 
fcircle(x, y)= 0. 



Mid point Circle Algorithm

• If the points is in the interior of the circle, 
the circle function is negative.

• If the point is outside the circle, the circle 
function is positive. 

• To summarize, the relative position of any 
point (x,y) can be determined by checking 
the sign of the circle function:



Mid point Circle Algorithm

• The circle function tests in (3) are performed for the mid 
positions between pixels near the circle path at each 
sampling step. Thus, the circle function is the decision 
parameter in the midpoint algorithm, and we can set up 
incremental calculations for this function as we did in the 

line algorithm.



Mid point Circle Algorithm

• Figure 4 shows the midpoint between the two candidate 
pixels at sampling position xk +1. Assuming we have just 

plotted the pixel at (xk , yk), we next need to determine 

whether the pixel at position (xk +1, yk) or the one at 
position (xk +1, yk −1) is closer to the circle.



Mid point Circle Algorithm

• Our decision parameter is the circle 
function (2) evaluated at the midpoint 
between these two pixels:



Mid point Circle Algorithm

• If pk < 0, this midpoint is inside the circle 
and the pixel on scan line yk is closer to 
the circle boundary. 

• Otherwise, the midpoint is outside or on 
the circle boundary, and we select the 
pixel on scan line  yk −1.

• Successive decision parameters are 
obtained using incremental calculations.



Mid point Circle Algorithm

• We obtain a recursive expression for the next decision parameter by 
evaluating the circle function at sampling position  xk+1 +1 = xk + 2

• where yk+1 is either yk or yk-1,depending on the sign of pk.



Mid point Circle Algorithm

• Increments for obtaining pk+1 are either 

– 2xk+1 +1 (if pk is negative) or 

– 2xk+1 +1− 2yk+1 (if pk is positive) 

• Evaluation of the terms 2xk+1 and 2yk+1 

can also be done incrementally as:



Mid point Circle Algorithm

• At the start position (0, r), these two terms 
(2x, 2y) have the values 0 and 2r, 
respectively. 

• Each successive value is obtained by 
adding 2 to the previous value of 2x and 
subtracting 2 from the previous value of 
2y.



Mid point Circle Algorithm

• The initial decision parameter is obtained 
by evaluating the circle function at the start 
position (x0 , y0)=(0, r):



Mid point Circle Algorithm

• If the radius r is specified as an integer, we 
can simply round p0 to

• since all increments are integers.



Summary of the Algorithm

• As in Bresenham’s line algorithm, the 
midpoint method calculates pixel positions 
along the circumference of a circle using 
integer additions and subtractions, 
assuming that the circle parameters are 
specified in screen coordinates. We can 
summarize the steps in the midpoint circle 
algorithm as follows.



Algorithm



Example

• Given a circle radius r = 10, we 
demonstrate the midpoint circle algorithm 
by determining positions along the circle 
octant in the first quadrant from x = 0 to x 

= y . The initial value of the decision 
parameter is



Example

• For the circle centered on the coordinate origin, 
the initial point is (x0 , y0) =(0,10), and initial 
increment terms for calculating the decision 
parameters are

• Successive decision parameter values and 
positions along the circle path are calculated 
using the midpoint method as shown in the table.



Example



Example

• A plot of the generated pixel positions in 
the first quadrant is shown in Figure 5.



Midpoint Ellipse Algorithm

• Ellipse equations are greatly simplified if 
the major and minor axes are oriented to 
align with the coordinate axes. 

• In Fig. 3-22, we show an ellipse in 
“standard position” with major and minor 
axes oriented parallel to the x and y axes.

• Parameter rx for this example labels the 
semimajor axis, and parameter ry labels 
the semiminor axis.



Midpoint Ellipse Algorithm

• The equation for the ellipse shown in Fig. 
3-22 can be written in terms of the ellipse 
center coordinates and parameters rx and 
ry as



Midpoint Ellipse Algorithm

• Using polar coordinates r and θ, we can 
also describe the ellipse in standard 
position with the parametric equations



Midpoint Ellipse Algorithm

• The midpoint ellipse method 
is applied throughout the first 
quadrant in two parts. 

• Figure 3-25 shows the 
division of the first quadrant 
according to the slope of an 
ellipse with rx < ry. 



Midpoint Ellipse Algorithm

• Regions 1 and 2 (Fig. 3-25) can be processed in 
various ways. 

• We can start at position (0, ry) and step 
clockwise along the elliptical path in the first 
quadrant, shifting from unit steps in x to unit 
steps in y when the slope becomes less than 
−1.0.

• Alternatively, we could start at (rx, 0) and select 
points in a counterclockwise order, shifting from 
unit steps in y to unit steps in x when the slope 
becomes greater than −1.0.



Midpoint Ellipse Algorithm

• We define an ellipse function from Eq. 3-
37 with (xc , yc) = (0, 0) as

• which has the following properties:



Midpoint Ellipse Algorithm

• Starting at (0, ry), we take unit steps in the 
x direction until we reach the boundary 
between region 1 and region 2 (Fig. 3-25). 

• Then we switch to unit steps in the y 

direction over the remainder of the curve 
in the first quadrant.

• At each step we need to test the value of 
the slope of the curve. 



Midpoint Ellipse Algorithm

• The ellipse slope is calculated from Eq. 3-39 as

• At the boundary between region 1 and region 2, 
dy/dx = −1.0 and

• Therefore, we move out of region 1 whenever



Midpoint Ellipse Algorithm

• Figure 3-26 shows the midpoint between the two 
candidate pixels at sampling position xk +1 in the 
first region. 

• Assuming position (xk , yk) has been selected in 
the previous step, we determine the next 
position along the ellipse path by evaluating the 
decision parameter (that is, the ellipse function 
3-39) at this midpoint:



Midpoint Ellipse Algorithm

• If p1k < 0, the midpoint is inside the ellipse 
and the pixel on scan line yk is closer to 
the ellipse boundary. 

• Otherwise, the midposition is outside or on 
the ellipse boundary, and we select the 
pixel on scan line yk − 1.



Midpoint Ellipse Algorithm

• At the next sampling position (xk+1 + 1 = 
xk + 2), the decision parameter for region 1 
is evaluated as



Midpoint Ellipse Algorithm

• Decision parameters are incremented by 
the following amounts:



Midpoint Ellipse Algorithm

• At the initial position (0, ry), these two terms evaluate to

• As x and y are incremented, updated values are 
obtained by adding 2r 2y to the current value of the 
increment term in Eq. 3-45 and subtracting 2r 2x from the 
current value of the increment term in Eq. 3-46. 

• The updated increment values are compared at each 
step, and we move from region 1 to region 2 when 
condition 3-42 is satisfied.



Midpoint Ellipse Algorithm

• In region 1, the initial value of the decision 
parameter is obtained by evaluating the 
ellipse function at the start position (x0, y0) 

= (0, ry):



Midpoint Ellipse Algorithm

• Over region 2, we sample at unit intervals 
in the negative y direction, and the 
midpoint is now taken between horizontal 
pixels at each step (Fig. 3-27). 

• For this region, the decision parameter is 
evaluated as



Midpoint Ellipse Algorithm

• If p2k > 0, the midposition is outside the 
ellipse boundary, and we select the pixel 
at xk. 

• If p2k <= 0, the midpoint is inside or on the 
ellipse boundary, and we select

• pixel position xk+1.



Midpoint Ellipse Algorithm

• To determine the relationship between 
successive decision parameters in region 
2,we evaluate the ellipse function at the 
next sampling step yk+1 −1 = yk −2:



Midpoint Ellipse Algorithm

• When we enter region 2, the initial position 
(x0, y0) is taken as the last position 
selected in region 1 and the initial decision 
parameter in region 2 is then



Algorithm



Example

• Given input ellipse parameters rx =8 and ry

= 6, we illustrate the steps in the midpoint 
ellipse algorithm by determining raster 
positions along the ellipse path in the first 
quadrant. 

• Initial values and increments for the 
decision parameter calculations are



Example

• For region 1, the initial point for the ellipse 
centered on the origin is (x0, y0) = (0, 6), 
and the initial decision parameter value is

• Successive midpoint decision parameter 
values and the pixel positions along the 
ellipse are listed in the following table.



Example



Example

• We now move out of region 1, since 

2r 2 y x  > 2r 2 x y.

• For region 2, the initial point is 

(x0, y0) = (7, 3)

• and the initial decision parameter is



Example

• The remaining positions along the ellipse 
path in the first quadrant are then 
calculated as



Example

• A plot of the calculated positions for the 
ellipse within the first quadrant is shown 
bellow:


