
1

N-Gram – Part 2

ICS 482 Natural Language

Processing

Lecture 8: N-Gram – Part 2

Husni Al-Muhtaseb

2

بسم الله الرحمن الرحيم

ICS 482 Natural Language

Processing

Lecture 8: N-Gram – Part 2

Husni Al-Muhtaseb

NLP Credits and

Acknowledgment

These slides were adapted from
presentations of the Authors of

the book
SPEECH and LANGUAGE PROCESSING:

An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition

and some modifications from
presentations found in the WEB
by several scholars including the

following

http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html

NLP Credits and

Acknowledgment

If your name is missing please contact me
muhtaseb

At
Kfupm.
Edu.
sa

NLP Credits and Acknowledgment
Husni Al-Muhtaseb

James Martin

Jim Martin

Dan Jurafsky

Sandiway Fong

Song young in

Paula Matuszek

Mary-Angela
Papalaskari

Dick Crouch

Tracy Kin

L. Venkata
Subramaniam

Martin Volk

Bruce R. Maxim

Jan Hajič

Srinath Srinivasa

Simeon Ntafos

Paolo Pirjanian

Ricardo Vilalta

Tom Lenaerts

Heshaam Feili

Björn Gambäck

Christian Korthals
Thomas G.
Dietterich
Devika
Subramanian
Duminda
Wijesekera
Lee McCluskey
David J.
Kriegman

Kathleen
McKeown

Michael J. Ciaraldi

David Finkel

Min-Yen Kan

Andreas Geyer-
Schulz

Franz J. Kurfess

Tim Finin

Nadjet Bouayad

Kathy McCoy

Khurshid Ahmad

Staffan Larsson

Robert Wilensky

Feiyu Xu

Jakub Piskorski

Rohini Srihari

Mark Sanderson

Andrew Elks

Marc Davis

Ray Larson

Jimmy Lin

Marti Hearst

Andrew
McCallum

Nick Kushmerick
Mark Craven
Chia-Hui Chang
Diana Maynard
James Allan

Martha Palmer
julia hirschberg
Elaine Rich
Christof Monz
Bonnie J. Dorr
Nizar Habash
Massimo Poesio
David Goss-
Grubbs
Thomas K Harris
John Hutchins
Alexandros
Potamianos
Mike Rosner
Latifa Al-Sulaiti
Giorgio Satta
Jerry R. Hobbs
Christopher
Manning
Hinrich Schütze
Alexander
Gelbukh
Gina-Anne Levow
Guitao Gao
Qing Ma
Zeynep Altan

6

Previous Lectures

 Pre-start questionnaire
 Introduction and Phases of an NLP system
 NLP Applications - Chatting with Alice
 Finite State Automata & Regular Expressions

& languages
 Deterministic & Non-deterministic FSAs
 Morphology: Inflectional & Derivational
 Parsing and Finite State Transducers
 Stemming & Porter Stemmer
 20 Minute Quiz
 Statistical NLP – Language Modeling
 N Grams

7

Today’s Lecture

 NGrams

 Bigram

 Smoothing and NGram

 Add one smoothing

 Witten-Bell Smoothing

8

Simple N-Grams

 An N-gram model uses the previous N-1
words to predict the next one:

 P(wn | wn -1)

 We'll be dealing with
P(<word> | <some previous words>)

 unigrams: P(dog)

 bigrams: P(dog | big)

 trigrams: P(dog | the big)

 quadrigrams: P(dog | the big dopey)

9

Chain Rule

)()|()(APABPBAP 

)(

)(
)|(

BP

BAP
BAP




)()|()(thePthedogPdogTheP 

conditional probability:

So:

“the dog”:

“the dog bites”:
)|()|()()(dogThebitesPThedogPThePbitesdogTheP 

)()|()(

)()|()(

APABPBAP

and

BPBAPBAP





10

Chain Rule

the probability of a word sequence is the
probability of a conjunctive event.












n

k

k

k

n

n

n

wwP

wwPwwPwwPwPwP

1

1

1

1

1

2

131211

)|(

)|()...|()|()()(

Unfortunately, that’s really not helpful in
general. Why?

11

Markov Assumption

)|()|(1

1

1

1





  n

Nnn

n

n wwPwwP

 P(wn) can be approximated using only N-1
previous words of context

 This lets us collect statistics in practice

 Markov models are the class of
probabilistic models that assume that we
can predict the probability of some future
unit without looking too far into the past

 Order of a Markov model: length of prior
context

12

Language Models and N-grams

 Given a word sequence: w1 w2 w3 ... wn

 Chain rule
 p(w1 w2) = p(w1) p(w2|w1)

 p(w1 w2 w3) = p(w1) p(w2|w1) p(w3|w1w2)

 ...

 p(w1 w2 w3...wn) = p(w1) p(w2|w1) p(w3|w1w2)... p(wn|w1...wn-2 wn-1)

 Note:
 It’s not easy to collect (meaningful) statistics on p(wn|wn-1wn-2...w1)

for all possible word sequences

 Bigram approximation
 just look at the previous word only (not all the proceedings words)

 Markov Assumption: finite length history

 1st order Markov Model

 p(w1 w2 w3..wn) = p(w1) p(w2|w1) p(w3|w1w2) ..p(wn|w1...wn-3wn-2wn-1)

 p(w1 w2 w3..wn)  p(w1) p(w2|w1) p(w3|w2)..p(wn|wn-1)

 Note:
 p(wn|wn-1) is a lot easier to estimate well than p(wn|w1..wn-2 wn-1)

13

Language Models and N-grams

 Given a word sequence: w1 w2 w3 ... wn

 Chain rule
 p(w1 w2) = p(w1) p(w2|w1)

 p(w1 w2 w3) = p(w1) p(w2|w1) p(w3|w1w2)

 ...

 p(w1 w2 w3...wn) = p(w1) p(w2|w1) p(w3|w1w2)... p(wn|w1...wn-2 wn-1)

 Trigram approximation
 2nd order Markov Model

 just look at the preceding two words only

 p(w1 w2 w3 w4...wn) = p(w1) p(w2|w1) p(w3|w1w2)
p(w4|w1w2w3)...p(wn|w1...wn-3wn-2wn-1)

 p(w1 w2 w3...wn)  p(w1) p(w2|w1) p(w3|w1w2)p(w4|w2w3)...p(wn |wn-2

wn-1)

 Note:
 p(wn|wn-2wn-1) is a lot easier to estimate well than p(wn|w1...wn-2 wn-1)

but harder than p(wn|wn-1)

14

Corpora

 Corpora are (generally online) collections
of text and speech

 e.g.

 Brown Corpus (1M words)

 Wall Street Journal and AP News corpora

 ATIS, Broadcast News (speech)

 TDT (text and speech)

 Switchboard, Call Home (speech)

 TRAINS, FM Radio (speech)

15

Sample Word frequency (count)Data
(The Text REtrieval Conference) - (from B. Croft, UMass)

16

Counting Words in Corpora

 Probabilities are based on counting things, so
….

 What should we count?
 Words, word classes, word senses, speech

acts …?

 What is a word?
 e.g., are cat and cats the same word?
 September and Sept?
 zero and oh?
 Is seventy-two one word or two? AT&T?

 Where do we find the things to count?

17

Terminology

 Sentence: unit of written language

 Utterance: unit of spoken language

 Wordform: the inflected form that
appears in the corpus

 Lemma: lexical forms having the same
stem, part of speech, and word sense

 Types: number of distinct words in a
corpus (vocabulary size)

 Tokens: total number of words

18

Training and Testing
 Probabilities come from a training corpus,

which is used to design the model.

 narrow corpus: probabilities don't generalize

 general corpus: probabilities don't reflect task
or domain

 A separate test corpus is used to evaluate
the model

19

Simple N-Grams

 An N-gram model uses the previous N-1
words to predict the next one:

 P(wn | wn -1)

 We'll be dealing with
P(<word> | <some prefix>)

 unigrams: P(dog)

 bigrams: P(dog | big)

 trigrams: P(dog | the big)

 quadrigrams: P(dog | the big red)

20

Using N-Grams

 Recall that

 P(wn | w1..n-1)  P(wn | wn-N+1..n-1)

 For a bigram grammar

 P(sentence) can be approximated by
multiplying all the bigram probabilities in
the sequence

 P(I want to eat Chinese food) = P(I |
<start>) P(want | I) P(to | want) P(eat | to)
P(Chinese | eat) P(food | Chinese)
P(<end>|food)

21

Chain Rule

 Recall the definition
of conditional
probabilities

 Rewriting

 Or…

 Or…

)(

)^(
)|(

BP

BAP
BAP 

)()|()^(BPBAPBAP 

)()|()(thePthebigPbigTheP 

)|()()(thebigPthePbigTheP 

22

Example

The big red dog

 P(The)*P(big|the)*P(red|the big)*P(dog|the
big red)

 Better P(The| <Beginning of sentence>)
written as P(The | <S>)

 Also <end> for end of sentence

23

General Case

 The word sequence from position 1 to n is

 So the probability of a sequence is

nw
1

)|()(

)|()...|()|()()(

1

12
1

1

1

2

131211











k
k

n

k

n
n

n

wwPwP

wwPwwPwwPwPwP

24

Unfortunately

 That doesn’t help since its unlikely we’ll
ever gather the right statistics for the
prefixes.

25

Markov Assumption

 Assume that the entire prefix history isn’t
necessary.

 In other words, an event doesn’t depend
on all of its history, just a fixed length
near history

26

Markov Assumption

 So for each component in the product
replace each with its approximation
(assuming a prefix (Previous words) of N)

)|()|(1

1

1

1





  n

Nnn
n

n wwPwwP

27

N-Grams

The big red dog

 Unigrams: P(dog)

 Bigrams: P(dog|red)

 Trigrams: P(dog|big red)

 Four-grams:P(dog|the big red)

In general, we’ll be dealing with

P(Word| Some fixed prefix)

Note: prefix is Previous words

28

N-gram models can be trained by
counting and normalization

)(

)(
)|(

1

1
1




 

n

nn
nn

wC

wwC
wwP

)(

)(
)|(

1
1

1
11

1 





 
n
Nn

n
n
Nnn

Nnn
wC

wwC
wwP

Bigram:

Ngram:

29

An example
 <s> I am Sam <\s>

 <s> Sam I am <\s>

 <s> I do not like green eggs and meet <\s>
2

(|) 0.67
3

1
(|) 0.33

3

2
(|) 0.67

3

1
(\ |) 0.5

2

1
(|) 0.5

2

1
(|) 0.5

2

1
(|) 1.0

1

P I s

P Sam s

P am I

P s Sam

P s Sam

P Sam am

P do I

   

   

 

   

   

 

 

30

BERP Bigram Counts
BErkeley Restaurant Project (speech)

I Want To Eat Chinese Food lunch

I 8 1087 0 13 0 0 0

Want 3 0 786 0 6 8 6

To 3 0 10 860 3 0 12

Eat 0 0 2 0 19 2 52

Chinese 2 0 0 0 0 120 1

Food 19 0 17 0 0 0 0

Lunch 4 0 0 0 0 1 0

31

BERP Bigram Probabilities

 Normalization: divide each row's counts by
appropriate unigram counts

 Computing the probability of I I

 C(I|I)/C(all I)

 p = 8 / 3437 = .0023

 A bigram grammar is an NxN matrix of probabilities,
where N is the vocabulary size

I Want To Eat Chinese Food Lunch

3437 1215 3256 938 213 1506 459

32

A Bigram Grammar Fragment from

BERP

Eat on .16 Eat Thai .03

Eat some .06 Eat breakfast .03

Eat lunch .06 Eat in .02

Eat dinner .05 Eat Chinese .02

Eat at .04 Eat Mexican .02

Eat a .04 Eat tomorrow .01

Eat Indian .04 Eat dessert .007

Eat today .03 Eat British .001

33

<start> I .25 Want some .04

<start> I’d .06 Want Thai .01

<start> Tell .04 To eat .26

<start> I’m .02 To have .14

I want .32 To spend .09

I would .29 To be .02

I don’t .08 British food .60

I have .04 British restaurant .15

Want to .65 British cuisine .01

Want a .05 British lunch .01

34

Language Models and N-grams

 Example:

unigram

frequencies

wn-1wn bigram

frequencies

bigram probabilities

sparse matrix

zeros probabilities unusable

(we’ll need to do smoothing)

wn-1

wn

35

 P(I want to eat British food) =
P(I|<start>) P(want|I) P(to|want)
P(eat|to) P(British|eat) P(food|British)
= .25*.32*.65*.26*.001*.60 =
0.0000081 (different from textbook)

 vs. I want to eat Chinese food = .00015

Example

36

Note on Example

 Probabilities seem to capture “syntactic”
facts, “world knowledge”

 eat is often followed by a NP

 British food is not too popular

37

What do we learn about the

language?

 What's being captured with ...

 P(want | I) = .32

 P(to | want) = .65

 P(eat | to) = .26

 P(food | Chinese) = .56

 P(lunch | eat) = .055

38

Some Observations

 P(I | I)

 P(want | I)

 P(I | food)

 I I I want

 I want I want to

 The food I want is

39

What about

 P(I | I) = .0023 I I I I want

 P(I | want) = .0025 I want I want

 P(I | food) = .013 the kind of food I
want is ...

40

To avoid underflow use Logs

 You don’t really do all those multiplies.
The numbers are too small and lead to
underflows

 Convert the probabilities to logs and then
do additions.

 To get the real probability (if you need it)
go back to the antilog.

41

Generation

 Choose N-Grams according to their
probabilities and string them together

42

BERP

 I want

want to

to eat

eat Chinese

Chinese food

food .

43

Some Useful Observations

 A small number of events occur with high
frequency

 You can collect reliable statistics on these
events with relatively small samples

 A large number of events occur with
small frequency

 You might have to wait a long time to gather
statistics on the low frequency events

44

Some Useful Observations

 Some zeroes are really zeroes

 Meaning that they represent events that can’t
or shouldn’t occur

 On the other hand, some zeroes aren’t
really zeroes

 They represent low frequency events that
simply didn’t occur in the corpus

45

Problem

 Let’s assume we’re using N-grams

 How can we assign a probability to a
sequence where one of the component n-
grams has a value of zero

 Assume all the words are known and have
been seen
 Go to a lower order n-gram

 Back off from bigrams to unigrams

 Replace the zero with something else

46

Add-One

 Make the zero counts 1.

 Justification: They’re just events you
haven’t seen yet. If you had seen them
you would only have seen them once. so
make the count equal to 1.

47

Add-one: Example

 I want to eat Chinese food lunch … Total (N)

I 8 1087 0 13 0 0 0 3437

want 3 0 786 0 6 8 6 1215

to 3 0 10 860 3 0 12 3256

eat 0 0 2 0 19 2 52 938

Chinese 2 0 0 0 0 120 1 213

food 19 0 17 0 0 0 0 1506

lunch 4 0 0 0 0 1 0 459

…

unsmoothed bigram counts:

 I want to eat Chinese food lunch … Total

I .0023

(8/3437)

.32 0 .0038

(13/3437)

0 0 0 1

want .0025 0 .65 0 .0049 .0066 .0049 1

to .00092 0 .0031 .26 .00092 0 .0037 1

eat 0 0 .0021 0 .020 .0021 .055 1

Chinese .0094 0 0 0 0 .56 .0047 1

food .013 0 .011 0 0 0 0 1

lunch .0087 0 0 0 0 .0022 0 1

…

unsmoothed normalized bigram probabilities:

1s
t
w

or
d

2nd word

48

Add-one: Example (con’t)

 I want to eat Chinese food lunch … Total (N+V)

I 8 9 1087

1088

1 14 1 1 1 3437

5053

want 3 4 1 787 1 7 9 7 2831

to 4 1 11 861 4 1 13 4872

eat 1 1 23 1 20 3 53 2554

Chinese 3 1 1 1 1 121 2 1829

food 20 1 18 1 1 1 1 3122

lunch 5 1 1 1 1 2 1 2075

add-one smoothed bigram counts:

 I want to eat Chinese food lunch … Total

I .0018

(9/5053)

.22 .0002 .0028

(14/5053)

.0002 .0002 .0002 1

want .0014 .00035 .28 .00035 .0025 .0032 .0025 1

to .00082 .00021 .0023 .18 .00082 .00021 .0027 1

eat .00039 .00039 .0012 .00039 .0078 .0012 .021 1

Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011 1

food .0064 .00032 .0058 .00032 .00032 .00032 .00032 1

lunch .0024 .00048 .00048 .00048 .00048 .0022 .00048 1

add-one normalized bigram probabilities:

49

The example again

 I want to eat Chinese food lunch … Total (N)

I 8 1087 0 13 0 0 0 3437

want 3 0 786 0 6 8 6 1215

to 3 0 10 860 3 0 12 3256

eat 0 0 2 0 19 2 52 938

Chinese 2 0 0 0 0 120 1 213

food 19 0 17 0 0 0 0 1506

lunch 4 0 0 0 0 1 0 459

unsmoothed bigram counts:
V= 1616 word types

V= 1616

Smoothed P(I eat)
= (C(I eat) + 1) / (nb bigrams starting with “I” + nb of possible bigrams starting with
“I”)
= (13 + 1) / (3437 + 1616)
= 0.0028

50

Smoothing and N-grams
 Add-One Smoothing

 add 1 to all frequency counts

 Bigram
 p(wn|wn-1) = (C(wn-1wn)+1)/(C(wn-1)+V)

 (C(wn-1 wn)+1)* C(wn-1) /(C(wn-1)+V)
 Frequencies

Remarks:

add-one causes large

changes in some

frequencies due to

relative size of V (1616)

want to: 786  338

= (786 + 1) * 1215 / (1215 + 1616)

VN
Nci


 






 1

I want to eat Chinese food lunch

I 8 1087 0 13 0 0 0

want 3 0 786 0 6 8 6

to 3 0 10 860 3 0 12

eat 0 0 2 0 19 2 52

Chinese 2 0 0 0 0 120 1

food 19 0 17 0 0 0 0

lunch 4 0 0 0 0 1 0

I want to eat Chinese food lunch

I 6.12 740.05 0.68 9.52 0.68 0.68 0.68

want 1.72 0.43 337.76 0.43 3.00 3.86 3.00

to 2.67 0.67 7.35 575.41 2.67 0.67 8.69

eat 0.37 0.37 1.10 0.37 7.35 1.10 19.47

Chinese 0.35 0.12 0.12 0.12 0.12 14.09 0.23

food 9.65 0.48 8.68 0.48 0.48 0.48 0.48

lunch 1.11 0.22 0.22 0.22 0.22 0.44 0.22

51

Problem with add-one smoothing

 bigrams starting with Chinese are boosted by a factor of 8 ! (1829 / 213)

 I want to eat Chinese food lunch … Total (N)

I 8 1087 0 13 0 0 0 3437

want 3 0 786 0 6 8 6 1215

to 3 0 10 860 3 0 12 3256

eat 0 0 2 0 19 2 52 938

Chinese 2 0 0 0 0 120 1 213

food 19 0 17 0 0 0 0 1506

lunch 4 0 0 0 0 1 0 459

 I want to eat Chinese food lunch … Total (N+V)

I 9 1088 1 14 1 1 1 5053

want 4 1 787 1 7 9 7 2831

to 4 1 11 861 4 1 13 4872

eat 1 1 23 1 20 3 53 2554

Chinese 3 1 1 1 1 121 2 1829

food 20 1 18 1 1 1 1 3122

lunch 5 1 1 1 1 2 1 2075

unsmoothed bigram counts:

add-one smoothed bigram counts:

1s
t
w

or
d

1s
t
w

or
d

52

Problem with add-one smoothing (con’t)
 Data from the AP from (Church and Gale, 1991)

 Corpus of 22,000,000 bigrams

 Vocabulary of 273,266 words (i.e. 74,674,306,756 possible bigrams)

 74,671,100,000 bigrams were unseen

 And each unseen bigram was given a frequency of 0.000295

fMLE fempirical fadd-one

0 0.000027 0.000295

1 0.448 0.000274

2 1.25 0.000411

3 2.24 0.000548

4 3.23 0.000685

5 4.21 0.000822

too high

too low

Freq. from
training data

Freq. from
held-out data

Add-one
smoothed freq.

 Total probability mass given to unseen bigrams =
(74,671,100,000 x 0.000295) / 22,000,000 ~99.96 !!!!

53

Smoothing and N-grams

 Witten-Bell Smoothing
 equate zero frequency items with frequency 1 items

 use frequency of things seen once to estimate frequency
of things we haven’t seen yet

 smaller impact than Add-One

 Unigram
 a zero frequency word (unigram) is “an event that

hasn’t happened yet”

 count the number of words (T) we’ve observed in the
corpus (Number of types)

 p(w) = T/(Z*(N+T))
 w is a word with zero frequency

 Z = number of zero frequency words

 N = size of corpus

54

Distributing

 The amount to be
distributed is

 The number of events
with count zero

 So distributing evenly
gets us

TN

T

Z 

1

Z

TN

T



55

Smoothing and N-grams

 Bigram
 p(wn|wn-1) = C(wn-1wn)/C(wn-1) (original)
 p(wn|wn-1) = T(wn-1)/(Z(wn-1)*(T(wn-1)+N))

for zero bigrams (after Witten-Bell)
 T(wn-1) = number of bigrams beginning with wn-1

 Z(wn-1) = number of unseen bigrams beginning with wn-1

 Z(wn-1) = total number of possible bigrams beginning with
wn-1 minus the ones we’ve seen

 Z(wn-1) = V - T(wn-1)

 T(wn-1)/ Z(wn-1) * C(wn-1)/(C(wn-1)+ T(wn-1))
 estimated zero bigram frequency

 p(wn|wn-1) = C(wn-1wn)/(C(wn-1)+T(wn-1))
 for non-zero bigrams (after Witten-Bell)

56

Smoothing and N-grams
 Witten-Bell Smoothing

 use frequency (count) of things seen once to estimate frequency (count) of things we haven’t
seen yet

 Bigram
 T(wn-1)/ Z(wn-1) * C(wn-1)/(C(wn-1)+ T(wn-1)) estimated zero bigram frequency (count)

 T(wn-1) = number of bigrams beginning with wn-1

 Z(wn-1) = number of unseen bigrams beginning with wn-1

I want to eat Chinese food lunch

I 7.785 1057.763 0.061 12.650 0.061 0.061 0.061

want 2.823 0.046 739.729 0.046 5.647 7.529 5.647

to 2.885 0.084 9.616 826.982 2.885 0.084 11.539

eat 0.073 0.073 1.766 0.073 16.782 1.766 45.928

Chinese 1.828 0.011 0.011 0.011 0.011 109.700 0.914

food 18.019 0.051 16.122 0.051 0.051 0.051 0.051

lunch 3.643 0.026 0.026 0.026 0.026 0.911 0.026

I want to eat Chinese food lunch

I 8 1087 0 13 0 0 0

want 3 0 786 0 6 8 6

to 3 0 10 860 3 0 12

eat 0 0 2 0 19 2 52

Chinese 2 0 0 0 0 120 1

food 19 0 17 0 0 0 0

lunch 4 0 0 0 0 1 0

Remark:

smaller changes

57

Distributing Among the Zeros

 If a bigram “wx wi” has a zero count

)()(

)(

)(

1
)|(

xx

x

x

xi

wTwN

wT

wZ
wwP




Number of bigrams
starting with wx that
were not seen

Actual frequency
(count)of bigrams
beginning with wx

Number of bigram types
starting with wx

58

Thank you

السلام عليكم ورحمة الله

