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Previous Lectures

 Pre-start questionnaire
 Introduction and Phases of an NLP system
 NLP Applications - Chatting with Alice
 Finite State Automata & Regular Expressions 

& languages
 Deterministic & Non-deterministic FSAs
 Morphology: Inflectional & Derivational
 Parsing and Finite State Transducers
 Stemming & Porter Stemmer
 20 Minute Quiz 
 Statistical NLP – Language Modeling 
 N Grams
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Today’s Lecture

 NGrams

 Bigram

 Smoothing and NGram

 Add one smoothing

 Witten-Bell Smoothing
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Simple N-Grams

 An N-gram model uses the previous N-1 
words to predict the next one:

 P(wn | wn -1)

 We'll be dealing with 
P(<word> | <some previous words>)

 unigrams: P(dog)

 bigrams:  P(dog | big)

 trigrams: P(dog | the big)

 quadrigrams: P(dog | the big dopey)



9

Chain Rule
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Chain Rule

the probability of a word sequence is the 
probability of a conjunctive event.
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Unfortunately, that’s really not helpful in 
general. Why?
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Markov Assumption

)|()|( 1

1

1

1





  n

Nnn

n

n wwPwwP

 P(wn) can be approximated using only N-1 
previous words of context

 This lets us collect statistics in practice

 Markov models are the class of 
probabilistic models that assume that we 
can predict the probability of some future 
unit without looking too far into the past

 Order of a Markov model: length of prior 
context
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Language Models and N-grams

 Given a word sequence: w1 w2 w3 ... wn

 Chain rule
 p(w1 w2) = p(w1) p(w2|w1) 

 p(w1 w2 w3) = p(w1) p(w2|w1) p(w3|w1w2) 

 ...

 p(w1 w2 w3...wn) = p(w1) p(w2|w1) p(w3|w1w2)... p(wn|w1...wn-2 wn-1) 

 Note:
 It’s not easy to collect (meaningful) statistics on p(wn|wn-1wn-2...w1) 

for all possible word sequences

 Bigram approximation
 just look at the previous word only (not all the proceedings words) 

 Markov Assumption: finite length history

 1st order Markov Model

 p(w1 w2 w3..wn) = p(w1) p(w2|w1) p(w3|w1w2) ..p(wn|w1...wn-3wn-2wn-1)

 p(w1 w2 w3..wn)  p(w1) p(w2|w1) p(w3|w2)..p(wn|wn-1)

 Note:
 p(wn|wn-1) is a lot easier to estimate well than p(wn|w1..wn-2 wn-1) 
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Language Models and N-grams

 Given a word sequence: w1 w2 w3 ... wn

 Chain rule
 p(w1 w2) = p(w1) p(w2|w1) 

 p(w1 w2 w3) = p(w1) p(w2|w1) p(w3|w1w2) 

 ...

 p(w1 w2 w3...wn) = p(w1) p(w2|w1) p(w3|w1w2)... p(wn|w1...wn-2 wn-1) 

 Trigram approximation 
 2nd order Markov Model

 just look at the preceding two words only

 p(w1 w2 w3 w4...wn) = p(w1) p(w2|w1) p(w3|w1w2) 
p(w4|w1w2w3)...p(wn|w1...wn-3wn-2wn-1)

 p(w1 w2 w3...wn)  p(w1) p(w2|w1) p(w3|w1w2)p(w4|w2w3)...p(wn |wn-2

wn-1)

 Note:
 p(wn|wn-2wn-1) is a lot easier to estimate well than p(wn|w1...wn-2 wn-1) 

but harder than p(wn|wn-1 ) 
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Corpora

 Corpora are (generally online) collections 
of text and speech

 e.g.

 Brown Corpus (1M words)

 Wall Street Journal and AP News corpora

 ATIS, Broadcast News (speech)

 TDT (text and speech)

 Switchboard, Call Home (speech)

 TRAINS, FM Radio (speech)
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Sample Word frequency (count)Data
(The Text REtrieval Conference) - (from B. Croft, UMass)
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Counting Words in Corpora

 Probabilities are based on counting things, so 
….

 What should we count?
 Words, word classes, word senses, speech 

acts …?

 What is a word? 
 e.g., are cat and cats the same word?
 September and Sept?
 zero and oh?
 Is seventy-two one word or two?  AT&T?

 Where do we find the things to count?
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Terminology

 Sentence:  unit of written language

 Utterance:  unit of spoken language

 Wordform:  the inflected form that 
appears in the corpus

 Lemma:  lexical forms having the same 
stem, part of speech, and word sense

 Types:  number of distinct words in a 
corpus (vocabulary size)

 Tokens:  total number of words
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Training and Testing
 Probabilities come from a training corpus, 

which is used to design the model.

 narrow corpus: probabilities don't generalize

 general corpus:  probabilities don't reflect task 
or domain

 A separate test corpus is used to evaluate
the model
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Simple N-Grams

 An N-gram model uses the previous N-1 
words to predict the next one:

 P(wn | wn -1)

 We'll be dealing with 
P(<word> | <some prefix>)

 unigrams: P(dog)

 bigrams:  P(dog | big)

 trigrams: P(dog | the big)

 quadrigrams: P(dog | the big red)
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Using N-Grams

 Recall that

 P(wn | w1..n-1)  P(wn | wn-N+1..n-1) 

 For a bigram grammar

 P(sentence) can be approximated by 
multiplying all the bigram probabilities in 
the sequence

 P(I want to eat Chinese food) = P(I | 
<start>) P(want | I) P(to | want) P(eat | to) 
P(Chinese | eat) P(food | Chinese) 
P(<end>|food)
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Chain Rule

 Recall the definition 
of conditional 
probabilities

 Rewriting

 Or…

 Or… 

)(

)^(
)|(

BP

BAP
BAP 

)()|()^( BPBAPBAP 

)()|()( thePthebigPbigTheP 

)|()()( thebigPthePbigTheP 
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Example

The big red dog

 P(The)*P(big|the)*P(red|the big)*P(dog|the 
big red)

 Better P(The| <Beginning of sentence>) 
written as P(The | <S>)

 Also <end> for end of sentence
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General Case

 The word sequence from position 1 to n is

 So the probability of a sequence is

nw
1
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)|()...|()|()()(
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Unfortunately

 That doesn’t help since its unlikely we’ll 
ever gather the right statistics for the 
prefixes.
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Markov Assumption

 Assume that the entire prefix history isn’t 
necessary.

 In other words, an event doesn’t depend 
on all of its history, just a fixed length 
near history
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Markov Assumption

 So for each component in the product 
replace each with its approximation 
(assuming a prefix (Previous words) of N)

)|()|( 1

1

1

1





  n

Nnn
n

n wwPwwP
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N-Grams

The big red dog

 Unigrams: P(dog)

 Bigrams: P(dog|red)

 Trigrams: P(dog|big red)

 Four-grams:P(dog|the big red)

In general, we’ll be dealing with

P(Word| Some fixed prefix)

Note: prefix is Previous words
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N-gram models can be trained by 
counting and normalization
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An example
 <s> I am Sam <\s>

 <s> Sam I am <\s>

 <s> I do not like green eggs and meet <\s>
2

( | ) 0.67
3

1
( | ) 0.33

3

2
( | ) 0.67

3

1
( \ | ) 0.5

2

1
( | ) 0.5

2

1
( | ) 0.5

2

1
( | ) 1.0

1

P I s

P Sam s

P am I

P s Sam

P s Sam

P Sam am

P do I

   

   

 

   

   

 

 
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BERP Bigram Counts
BErkeley Restaurant Project (speech)

I Want To Eat Chinese Food lunch

I 8 1087 0 13 0 0 0

Want 3 0 786 0 6 8 6

To 3 0 10 860 3 0 12

Eat 0 0 2 0 19 2 52

Chinese 2 0 0 0 0 120 1

Food 19 0 17 0 0 0 0

Lunch 4 0 0 0 0 1 0
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BERP Bigram Probabilities

 Normalization:  divide each row's counts by 
appropriate unigram counts

 Computing the probability of I I

 C(I|I)/C(all I)

 p = 8 / 3437 = .0023

 A bigram grammar is an NxN matrix of probabilities, 
where N is the vocabulary size

I Want To Eat Chinese Food Lunch

3437 1215 3256 938 213 1506 459
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A Bigram Grammar Fragment from 

BERP

Eat on .16 Eat Thai .03

Eat some .06 Eat breakfast .03

Eat lunch .06 Eat in .02

Eat dinner .05 Eat Chinese .02

Eat at .04 Eat Mexican .02

Eat a .04 Eat tomorrow .01

Eat Indian .04 Eat dessert .007

Eat today .03 Eat British .001
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<start> I .25 Want some .04

<start> I’d .06 Want Thai .01

<start> Tell .04 To eat .26

<start> I’m .02 To have .14

I want .32 To spend .09

I would .29 To be .02

I don’t .08 British food .60

I have .04 British restaurant .15

Want to .65 British cuisine .01

Want a .05 British lunch .01
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Language Models and N-grams

 Example:

unigram 

frequencies

wn-1wn bigram 

frequencies

bigram probabilities

sparse matrix

zeros probabilities unusable

(we’ll need to do smoothing)

wn-1

wn
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 P(I want to eat British food) = 
P(I|<start>) P(want|I) P(to|want) 
P(eat|to) P(British|eat) P(food|British) 
= .25*.32*.65*.26*.001*.60 = 
0.0000081 (different from textbook)

 vs. I want to eat Chinese food = .00015

Example
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Note on Example

 Probabilities seem to capture “syntactic” 
facts, “world knowledge” 

 eat is often followed by a NP

 British food is not too popular
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What do we learn about the 

language?

 What's being captured with ...

 P(want | I) = .32 

 P(to | want) = .65

 P(eat | to) = .26 

 P(food | Chinese) = .56

 P(lunch | eat) = .055
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Some Observations

 P(I | I)

 P(want | I)

 P(I | food)

 I I I want

 I want I want to

 The food I want is
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What about

 P(I | I) = .0023 I I I I want

 P(I | want) = .0025 I want I want

 P(I | food) = .013 the kind of food I 
want is ...
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To avoid underflow use Logs

 You don’t really do all those multiplies. 
The numbers are too small and lead to 
underflows

 Convert the probabilities to logs and then 
do additions.

 To get the real probability (if you need it) 
go back to the antilog.
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Generation

 Choose N-Grams according to their 
probabilities and string them together
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BERP

 I want

want to

to eat

eat Chinese

Chinese food

food .
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Some Useful Observations

 A small number of events occur with high 
frequency

 You can collect reliable statistics on these 
events with relatively small samples

 A large number of events occur with 
small frequency

 You might have to wait a long time to gather 
statistics on the low frequency events
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Some Useful Observations

 Some zeroes are really zeroes

 Meaning that they represent events that can’t 
or shouldn’t occur

 On the other hand, some zeroes aren’t 
really zeroes

 They represent low frequency events that 
simply didn’t occur in the corpus
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Problem

 Let’s assume we’re using N-grams

 How can we assign a probability to a 
sequence where one of the component n-
grams has a value of zero

 Assume all the words are known and have 
been seen
 Go to a lower order n-gram

 Back off from bigrams to unigrams

 Replace the zero with something else
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Add-One

 Make the zero counts 1.

 Justification: They’re just events you 
haven’t seen yet. If you had seen them 
you would only have seen them once. so 
make the count equal to 1.
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Add-one: Example

 I want to eat Chinese food lunch … Total (N) 

I 8 1087 0 13 0 0 0  3437 

want 3 0 786 0 6 8 6  1215 

to 3 0 10 860 3 0 12  3256 

eat 0 0 2 0 19 2 52  938 

Chinese 2 0 0 0 0 120 1  213 

food 19 0 17 0 0 0 0  1506 

lunch 4 0 0 0 0 1 0  459 

…          
 

 

unsmoothed bigram counts:

 I want to eat Chinese food lunch … Total 

I .0023 

(8/3437) 

.32 0 .0038 

(13/3437) 

0 0 0  1 

want .0025 0 .65 0 .0049 .0066 .0049  1 

to .00092 0 .0031 .26 .00092 0 .0037  1 

eat 0 0 .0021 0 .020 .0021 .055  1 

Chinese .0094 0 0 0 0 .56 .0047  1 

food .013 0 .011 0 0 0 0  1 

lunch .0087 0 0 0 0 .0022 0  1 

…          

 

 

unsmoothed normalized bigram probabilities:

1s
t
w

or
d

2nd word
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Add-one: Example (con’t)

 I want to eat Chinese food lunch … Total (N+V) 

I 8   9 1087  

1088 

1 14 1 1 1  3437   

5053 

want 3  4 1 787 1 7 9 7  2831 

to 4 1 11 861 4 1 13  4872 

eat 1 1 23 1 20 3 53  2554 

Chinese 3 1 1 1 1 121 2  1829 

food 20 1 18 1 1 1 1  3122 

lunch 5 1 1 1 1 2 1  2075 

 

add-one smoothed bigram counts:

 I want to eat Chinese food lunch … Total 

I .0018 

(9/5053) 

.22 .0002 .0028 

(14/5053) 

.0002 .0002 .0002  1 

want .0014 .00035 .28 .00035 .0025 .0032 .0025  1 

to .00082 .00021 .0023 .18 .00082 .00021 .0027  1 

eat .00039 .00039 .0012 .00039 .0078 .0012 .021  1 

Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011  1 

food .0064 .00032 .0058 .00032 .00032 .00032 .00032  1 

lunch .0024 .00048 .00048 .00048 .00048 .0022 .00048  1 

 

 

add-one normalized bigram probabilities:
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The example again

 I want to eat Chinese food lunch … Total (N) 

I 8 1087 0 13 0 0 0  3437 

want 3 0 786 0 6 8 6  1215 

to 3 0 10 860 3 0 12  3256 

eat 0 0 2 0 19 2 52  938 

Chinese 2 0 0 0 0 120 1  213 

food 19 0 17 0 0 0 0  1506 

lunch 4 0 0 0 0 1 0  459 
 

 

unsmoothed bigram counts:
V= 1616 word types

V= 1616

Smoothed P(I eat) 
= (C(I eat) + 1) / (nb bigrams starting with “I” + nb of possible bigrams starting with 
“I”)
= (13 + 1) / (3437 + 1616)
= 0.0028
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Smoothing and N-grams
 Add-One Smoothing

 add 1 to all frequency counts

 Bigram
 p(wn|wn-1) = (C(wn-1wn)+1)/(C(wn-1)+V)

 (C(wn-1 wn)+1)* C(wn-1) /(C(wn-1)+V)
 Frequencies

Remarks:

add-one causes large

changes in some

frequencies due to 

relative size of V (1616) 

want to: 786  338

= (786 + 1) * 1215 / (1215 + 1616)

VN
Nci


 






 1

I want to eat Chinese food lunch

I 8 1087 0 13 0 0 0

want 3 0 786 0 6 8 6

to 3 0 10 860 3 0 12

eat 0 0 2 0 19 2 52

Chinese 2 0 0 0 0 120 1

food 19 0 17 0 0 0 0

lunch 4 0 0 0 0 1 0

I want to eat Chinese food lunch

I 6.12 740.05 0.68 9.52 0.68 0.68 0.68

want 1.72 0.43 337.76 0.43 3.00 3.86 3.00

to 2.67 0.67 7.35 575.41 2.67 0.67 8.69

eat 0.37 0.37 1.10 0.37 7.35 1.10 19.47

Chinese 0.35 0.12 0.12 0.12 0.12 14.09 0.23

food 9.65 0.48 8.68 0.48 0.48 0.48 0.48

lunch 1.11 0.22 0.22 0.22 0.22 0.44 0.22
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Problem with add-one smoothing

 bigrams starting with Chinese are boosted by a factor of 8 ! (1829 / 213)

 I want to eat Chinese food lunch … Total (N) 

I 8 1087 0 13 0 0 0  3437 

want 3 0 786 0 6 8 6  1215 

to 3 0 10 860 3 0 12  3256 

eat 0 0 2 0 19 2 52  938 

Chinese 2 0 0 0 0 120 1  213 

food 19 0 17 0 0 0 0  1506 

lunch 4 0 0 0 0 1 0  459 
 

 

 I want to eat Chinese food lunch … Total (N+V) 

I 9 1088 1 14 1 1 1  5053 

want 4 1 787 1 7 9 7  2831 

to 4 1 11 861 4 1 13  4872 

eat 1 1 23 1 20 3 53  2554 

Chinese 3 1 1 1 1 121 2  1829 

food 20 1 18 1 1 1 1  3122 

lunch 5 1 1 1 1 2 1  2075 

 

unsmoothed bigram counts:

add-one smoothed bigram counts:

1s
t
w

or
d

1s
t
w

or
d
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Problem with add-one smoothing (con’t)
 Data from the AP from (Church and Gale, 1991)

 Corpus of 22,000,000 bigrams

 Vocabulary of 273,266 words (i.e. 74,674,306,756 possible bigrams)

 74,671,100,000 bigrams were unseen

 And each unseen bigram was given a frequency of 0.000295

fMLE fempirical fadd-one

0 0.000027 0.000295

1 0.448 0.000274

2 1.25 0.000411

3 2.24 0.000548

4 3.23 0.000685

5 4.21 0.000822

too high

too low

Freq. from 
training data

Freq. from 
held-out data

Add-one 
smoothed freq.

 Total probability mass given to unseen bigrams = 
(74,671,100,000 x  0.000295) / 22,000,000 ~99.96 !!!!
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Smoothing and N-grams

 Witten-Bell Smoothing
 equate zero frequency items with frequency 1 items

 use frequency of things seen once to estimate frequency 
of things we haven’t seen yet

 smaller impact than Add-One

 Unigram
 a zero frequency word (unigram) is “an event that 

hasn’t happened yet”

 count the number of words (T) we’ve observed in the 
corpus (Number of types)

 p(w) = T/(Z*(N+T))
 w is a word with zero frequency

 Z = number of zero frequency words 

 N = size of corpus
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Distributing

 The amount to be 
distributed is

 The number of events 
with count zero

 So distributing evenly 
gets us

TN

T

Z 

1

Z

TN

T


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Smoothing and N-grams

 Bigram
 p(wn|wn-1) = C(wn-1wn)/C(wn-1) (original)
 p(wn|wn-1) = T(wn-1)/(Z(wn-1)*(T(wn-1)+N))

for zero bigrams (after Witten-Bell) 
 T(wn-1) = number of bigrams beginning with wn-1

 Z(wn-1) = number of unseen bigrams beginning with wn-1

 Z(wn-1) = total number of possible bigrams beginning with 
wn-1 minus the ones we’ve seen

 Z(wn-1) = V - T(wn-1) 

 T(wn-1)/ Z(wn-1) * C(wn-1)/(C(wn-1)+ T(wn-1))
 estimated zero bigram frequency

 p(wn|wn-1) = C(wn-1wn)/(C(wn-1)+T(wn-1))
 for non-zero bigrams (after Witten-Bell)
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Smoothing and N-grams
 Witten-Bell Smoothing

 use frequency (count) of things seen once to estimate frequency (count) of things we haven’t 
seen yet

 Bigram
 T(wn-1)/ Z(wn-1) * C(wn-1)/(C(wn-1)+ T(wn-1))    estimated zero bigram frequency (count)

 T(wn-1) = number of bigrams beginning with wn-1

 Z(wn-1) = number of unseen bigrams beginning with wn-1

I want to eat Chinese food lunch

I 7.785 1057.763 0.061 12.650 0.061 0.061 0.061

want 2.823 0.046 739.729 0.046 5.647 7.529 5.647

to 2.885 0.084 9.616 826.982 2.885 0.084 11.539

eat 0.073 0.073 1.766 0.073 16.782 1.766 45.928

Chinese 1.828 0.011 0.011 0.011 0.011 109.700 0.914

food 18.019 0.051 16.122 0.051 0.051 0.051 0.051

lunch 3.643 0.026 0.026 0.026 0.026 0.911 0.026

I want to eat Chinese food lunch

I 8 1087 0 13 0 0 0

want 3 0 786 0 6 8 6

to 3 0 10 860 3 0 12

eat 0 0 2 0 19 2 52

Chinese 2 0 0 0 0 120 1

food 19 0 17 0 0 0 0

lunch 4 0 0 0 0 1 0

Remark:

smaller changes
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Distributing Among the Zeros

 If a bigram “wx wi” has a zero count

)()(

)(

)(

1
)|(

xx

x

x

xi

wTwN

wT

wZ
wwP




Number of bigrams 
starting with wx that 
were not seen

Actual frequency 
(count)of bigrams 
beginning with wx

Number of bigram types 
starting with wx
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Thank you

السلام عليكم ورحمة الله


