Representing Meaning Part 3 ICS 482 Natural Language Processing

Lecture 20: Representing Meaning Part 3
Husni Al-Muhtaseb

بسم الله الرحمن الرحيم

ICS 482 Natural Language Processing

Lecture 20: Representing Meaning Part 3
Husni Al-Muhtaseb

NLP Credits and

Acknowledgment

These slides were adapted from presentations of the Authors of the book

SPEECH and LANGUAGE PROCESSING:

An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

and some modifications from presentations found in the WEB by several scholars including the following

NLP Credits and Acknowledgment

If your name is missing please contact me muhtaseb

At

Kfupm.

Edu.

sa

NLP Credits and Acknowledgment

Husni Al-Muhtaseb

James Martin

Jim Martin

Dan Jurafsky

Sandiway Fong

Song young in

Paula Matuszek

Mary-Angela Papalaskari

Dick Crouch

Tracy Kin

L. Venkata Subramaniam

Martin Volk

Bruce R. Maxim

Jan Hajič

Srinath Srinivasa

Simeon Ntafos

Paolo Pirjanian

Ricardo Vilalta

Tom Lenaerts

Heshaam Feili

Björn Gambäck

Christian Korthals

Thomas G. Dietterich

Devika Subramanian

Duminda Wijesekera

Lee McCluskey David J. Kriegman

Kathleen McKeown

Michael J. Ciaraldi

David Finkel

Min-Yen Kan

Andreas Geyer-Schulz

Franz J. Kurfess

Tim Finin

Nadjet Bouayad

Kathy McCoy

Hans Uszkoreit

Azadeh Maghsoodi

Khurshid Ahmad

Staffan Larsson

Robert Wilensky

Feiyu Xu

Jakub Piskorski

Rohini Srihari

Mark Sanderson

Andrew Elks

Marc Davis

Ray Larson

Jimmy Lin

Marti Hearst

Andrew McCallum

Nick Kushmerick

Mark Craven

Chia-Hui Chang

Diana Maynard

James Allan

Martha Palmer julia hirschberg

Elaine Rich

Christof Monz

Bonnie J. Dorr

Nizar Habash

Massimo Poesio

David Goss-Grubbs

Thomas K Harris

John Hutchins

Alexandros

Potamianos

Mike Rosner

Latifa Al-Sulaiti

Giorgio Satta

Jerry R. Hobbs

Christopher Manning

Hinrich Schütze

Alexander Gelbukh

Gina-Anne Levow

Guitao Gao

Qing Ma

Zeynep Altan

Previous Lectures

- □ Introduction and Phases of an NLP system
- □ NLP Applications Chatting with Alice
- ☐ Finite State Automata & Regular Expressions & languages
- □ Morphology: Inflectional & Derivational
- □ Parsing and Finite State Transducers, Porter Stemmer
- □ Statistical NLP Language Modeling
- □ N Grams, Smoothing
- □ Parts of Speech Arabic Parts of Speech
- □ Syntax: Context Free Grammar (CFG) & Parsing
- □ Parsing: Earley's Algorithm
- □ Probabilistic Parsing
- □ Probabilistic CYK Dependency Grammar
- □ Semantics: Representing meaning
- □ Semantics: FOPC
- □ Lexicons and Morphology invited lecture

Today's Lecture

- □ Administration
 - Return Quiz 3
 - Assignments grading
 - Presentations Schedule
 - Teams for project (2 each)
- □ Lecture
 - Representing Meaning

Quiz 3

- □ Sample solution is on Keys at Course site
- □ View WebCt Statistics
- □ Any comments

Assignment grading notes

- □ Read Please
- □ Bigram for the whole corpus
- □ Text File format
- No updated corpus
- □ Team work without agreement
- □ Report
- □ Results
- ☐ Be creative: Choose where to save results
- □ Limitation view
- □ Late
- No submission

Assignment grading notes

□ Why this is like this?

Presentations Schedule

- □ Presentations at class time
- □ 13th, 15th, 20th, and 22nd May
- □ visit the calendar section of this website
- ☐ Go to the month of May
- □ choose one slot in one of the assigned days for presentations
- □ Add a public entry in the most suitable slot for you
- □ Max 3 students per slot
- □ Presentation time: 25 minutes
 - 20 for presentation
 - 5 for discussions
- □ Put the title of your topic in the entry you are adding

Team

- □ 2-3 Members (alone)
 - Team Name (Your own)
 - Team logo (Your design idea)
 - By next class
- How to choose Team members
 - Similar goal
 - Easiness of communications
 - Consistency, harmony, and relaxation
 - ??
- □ WebCt Discussion list Team Selection
- □ Project Ideas?

NLP Pipeline

Machine Translation

FOPC Syntax

```
Formula \rightarrow AtomicFormula
             | Formula Connective Formula
             | Quantifier Variable ... Formula
             /¬Formula/(Formula)
AtomicFormula \rightarrow Predicate (Term...)
Term \rightarrow Function (Term...) / Constant / Variable
Connective \rightarrow \land / \lor / \Rightarrow
Quantifier \rightarrow \forall / \exists
الكتاب/ Constant → A / VegetarianFood
Variable \rightarrow x/y/...
Predicate \rightarrow Serves / Near / ...
Function \rightarrow LocationOf / CuisineOf / ...
```

Break: What is what?

Identify:

- Connective: ^
- Quantifier: ∃
- Constant: MexicanFood ICSI
- Variable: x
- Predicate: Restaurant Serves Near
- Function: LocationOf
- AtomicFormula: Restaurant
- **■** $Formula: \exists xRestaurant(x) \land Serves(x, MexicanFood) \land Near(LocationOf(x), LocationOf(ICSI))$
- Term: _X ICSI LocationOf
 - $\exists xRestaurant(x) \land Serves(x, MexicanFood) \land Near(LocationOf(x), LocationOf(ICSI))$

Inference

■ Example

Vegetarian Restaurant (Rudys)

 $\forall x \ VegetarianRestaurant(x) \Rightarrow Serve(x, VegetarianFood)$

Serve (Rudys, Vegetarian Food)

Inference

- □ What about this?
- □ If we have

```
\forall x \ VegetarianRestaurant(x) \Rightarrow Serve(x, VegetarianFood)
```

 \square and

□ Can we say that

VegetarianRestaurant (Babakhabbaz)

 \square ??? – No - abduction, plausible reasoning

Knowledge Representation

- □ Some topics that have clear implication of language processing
 - Categories
 - Events
 - Time
 - Beliefs

Knowledge Representation

Representation of Categories

- □ Categories are sets of objects or relations where all members share a set of features
- □ Method 1:
 - Create a unary predicate for each category
 - □ VegetarianRestaurant(Maharani)
 - Problem: Unable to talk about VegetarianRestaurant
 - □ Not a valid FOPC formula:
 - MostPopular(Maharani, VegetarianRestaurant)

Representation of Categories

□ Method 2:

- Reification اعتبره شیئا مادیا: Represent all concepts that we want to make statements about as full-fledged objects
- isa(Maharani, VegetarianRestaurant)
- ako(VegetarianRestaurant, Restaurant)

■ Reification: To regard or treat (an abstraction) as if it had concrete or material existence.

www.dictionary.com

- Not always single predicate
 - I ate
 - I ate a turkey sandwich
 - I ate a turkey sandwich at my desk
 - I ate at my desk
 - I ate lunch
 - I ate a turkey sandwich for lunch
 - I ate a turkey sandwich for lunch at my desk

□ Method 1:

- Create as many *different* eating predicates as are needed to handle all of the ways that eat behaves
- Eating1(Speaker)
- Eating2(Speaker, TurkeySandwich)
- Eating3(Speaker, TurkeySandwich, Desk)
- Eating4(Speaker, Desk)
- Eating5(Speaker, Lunch)
- Eating6(Speaker, TurkeySandwich, Lunch)
- Eating7(Speaker, TurkeySandwich, Lunch, Desk)
- Relate them using meaning postulates:

□ Problems:

- Need too many meaning postulates
- Difficult to scale up

□ Method 2:

Use a single predicate where as many arguments are included in the definition of the predicate as ever appear with it in an input

- \square \exists w, x, y Eating(Speaker, w, x, y)
- \square \exists w, x Eating(Speaker, TurkeySandwich, w, x)
- □ ∃ w Eating(Speaker, TurkeySandwich, w, Desk)
- $\square \exists w, x \ Eating(Speaker, w, x, Desk)$
- $\square \exists w, x \ Eating(Speaker, w, Lunch, x)$
- □ ∃ w Eating(Speaker, TurkeySandwich, Lunch, w)
- □ Eating(Speaker, TurkeySandwich, Lunch, Desk)

□ Problems:

- Make too many commitments
 - Need to commit to all arguments (e.g., every eating event must be associated with a meal, which is not true)
- Unable to refer to individual events
 - □ Event is a predicate, not a term

□ Method 3:

- Use reification to elevate events to objects
- Arguments of an event appear as predicates
- Do not need to commit to arguments (roles) not mentioned in the input
- Meaning postulates not needed

- □ I ate.
 - \blacksquare \exists w *isa(w, Eating) \land Eater(w, Speaker)*
- □ I ate a turkey sandwich.
 - \exists w isa(w, Eating) \ Eater(w, Speaker) \ Eaten(w, TurkeySandwich)
- □ I ate a turkey sandwich for lunch.
 - ∃ w isa(w, Eating) ∧ Eater(w, Speaker) ∧
 Eaten(w, TurkeySandwich) ∧ MealEaten(w,
 Lunch)

Temporal Representations

- □ How do we represent time and temporal relationships between events?
 - Last year Ali was happy but soon he will be sad.
- □ Where do we get temporal information?
 - □ Verb tense
 - □ Temporal expressions
 - □ Sequence of presentation

Thank you