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Previous Lectures
 Introduction and Phases of an NLP system

 NLP Applications - Chatting with Alice

 Finite State Automata & Regular Expressions & 
languages

 Morphology: Inflectional & Derivational

 Parsing and Finite State Transducers

 Stemming & Porter Stemmer

 Statistical NLP – Language Modeling 

 N Grams

 Smoothing and NGram: Add-one & Witten-Bell

 Parts of Speech - Arabic Parts of Speech 

 Syntax: Context Free Grammar (CFG) & Parsing

 Parsing: Earley’s Algorithm

 Probabilistic Parsing
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Today's Lecture

 Lexicalized and Probabilistic Parsing

 Administration: Previous Assignments

 Probabilistic CYK (Cocke-Younger-Kasami)

 Dependency Grammar



Administration: Previous 

Assignments

 WebCt visit
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حس صقن ذهب . الفٌروزآبادي ٌستعملونه منبطحة فأعجزتهم أشكى، جذر قصدت خضخض كشًء

.أولً( اختبار)تجرٌب " تجربة" .!Test this "word" please. ضظغ ئع! سؤك؟ إظل غثث ثط طف

 1771 .ئع

 1771 Test

 1771 this

 1771 ضظغ

 1771 غثث

 1771 ثط

 1771 !طف

 1771 (اختبار)

 1771 .أولً

 1771

 1771 تجرٌب

 1771 "word"

 1771 please!.

 1771 " "تجربة

 1771 أشكى،

 1771 جذر

 1771 قصدت

 1771 فأعجزتهم

 1771 الفٌروزآبادي

 1771 ٌستعملونه

 1771 منبطحة

 1771 ذهب

 1771 ؟سؤك

 1771 إظل

 1771 صقن

 1771 خضخض

 1771 .كشًء

 1771 حس

• التعداد الكلمة

• 24794 1

• 1771 ٌستعملونه 2

• 1771 أشكى، 3

• 1771 سؤك 4

• 1771 الفٌروزآبادي 5

• 1771 إظل 6

• 1771 تجرٌب 7

• 1771 اختبار 8

• 1771 حس 9

• 1771 طف 10

• 1771 this 11

• 1771 please 12

• 1771 أولً 13

• 1771 ثط 14

• 1771 غثث 15

• 1771 تجربة 16

• 1771 word 17

• 1771 ضظغ 18

• 1771 خضخض 19

• 1771 قصدت 20

• 1771 Test 21

• 1771 ئع 22

• 1771 صقن 23

• 1771 كشًء 24

• 1771 فأعجزتهم 25

• 1771 منبطحة 26

• 1771 جذر 27

• الفٌروزآبادي 1771

• ٌستعملونه 1771

• منبطحة 1771

• فأعجزتهم 1771

• أشكى، 1771

• جذر 1771

• قصدت 1771

• خضخض 1771

• كشًء 1771

• إظل 1771

• حس 1771

• صقن 1771

• ذهب 1771

• سؤك 1771

• ئع 1771

• غثث 1771

• ثط 1771

• طف 1771

• ضظغ 1771

• this 1771

• Test 1771

• " "تجربة 1771

• "word" 1771

• please 1771

• تجرٌب 1771

• اختبار 1771

• أولً 1771

• 17710

•



What should we do?

 Suggestions

19 March 2008 15



19 March 2008 16

Probabilistic CFGs

 The probabilistic model

 Assigning probabilities to parse trees

 Getting the probabilities for the model

 Parsing with probabilities

 Slight modification to dynamic programming 

approach

 Task is to find the max probability tree for an 

input
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Getting the Probabilities

 From an annotated database (a treebank)

 Learned from a corpus
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Assumptions

 We’re assuming that there is a grammar to be 

used to parse with.

 We’re assuming the existence of a large robust 

dictionary with parts of speech

 We’re assuming the ability to parse (i.e. a parser)

 Given all that… we can parse probabilistically 
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Typical Approach

 Bottom-up dynamic programming approach

 Assign probabilities to constituents as they are 

completed and placed in the table

 Use the max probability for each constituent 

going up
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Max probability

 Say we’re talking about a final part of a parse

 S0  NPiVPj

The probability of the S is…

P(S  NP VP)*P(NP)*P(VP)

The green stuff is already known. We’re doing 

bottom-up parsing
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Max

 The P(NP) is known.

 What if there are multiple NPs for the span of 

text in question (0 to i)?

 Take the max (Why?)

 Does not mean that other kinds of constituents 

for the same span are ignored (i.e. they might 

be in the solution)
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Probabilistic Parsing

 Probabilistic CYK (Cocke-Younger-Kasami) 

algorithm for parsing PCFG 

 Bottom-up dynamic programming algorithm 

 Assume PCFG is in Chomsky Normal Form 

(production is either A → B C or A → a) 
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Chomsky Normal Form (CNF)

All rules have form:

BCA

Non-Terminal Non-Terminal

aAand

terminal
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Examples:

bA

SAA

aS

ASS









Not Chomsky

Normal Form 

aaA

SAA

AASS

ASS









Chomsky 

Normal Form 
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Observations

 Chomsky normal forms are good for 

parsing and proving theorems

 It is possible to find the Chomsky 

normal form of any context-free 

grammar 



19 March 2008 26

Probabilistic CYK Parsing of PCFGs

 CYK Algorithm: bottom-up parser 

 Input: 
 A Chomsky normal form PCFG, G= (N, Σ, P, S, D) 

Assume that the N non-terminals have indices 1, 2, …, 
|N|, and the start symbol S has index 1 

 n words w1,…, wn

 Data Structure: 
 A dynamic programming array π[i,j,a] holds the 

maximum probability for a constituent with non-terminal 
index a spanning words i..j. 

 Output: 
 The maximum probability parse π[1,n,1] 
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Base Case

 CYK fills out π[i,j,a] by induction 

 Base case 

 Input strings with length = 1 (individual words 

wi) 

 In CNF, the probability of a given non-terminal A 

expanding to a single word wi must come only 

from the rule A → wi i.e., P(A → wi) 
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Probabilistic CYK Algorithm [Corrected]
Function CYK(words, grammar) 

return the most probable parse and its probability 

For i ←1 to num_words

for a ←1 to num_nonterminals

If (A →wi) is in grammar then π[i, i, a] ←P(A →wi)

For span ←2 to num_words

For begin ←1 to num_words – span + 1 

end ←begin + span – 1 

For m ←begin to end – 1 

For a ←1 to num_nonterminals 

For b ←1 to num_nonterminals

For c ←1 to num_nonterminals

prob ←π[begin, m, b] × π[m+1, end, c] × P(A →BC)

If (prob > π[begin, end, a]) then 

π[begin, end, a] = prob 

back[begin, end, a] = {m, b, c}

Return build_tree(back[1, num_words, 1]), π[1, num_words, 1]



19 March 2008 29

The CYK Membership Algorithm

Input:

• Grammar       in Chomsky Normal Form G

• String

Output:

find if )(GLw

w
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The Algorithm

• Grammar     :G

bB

ABB

aA

BBA

ABS











• String     : w aabbb

Input example:
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 a 

 

a b b b 

 aa ab bb bb  

 aab abb bbb   

 aabb abbb    

 aabbb     
 

 

aabbb

All substrings of length 1

All substrings of length 2

All substrings of length 3

All substrings of length 4

All substrings of length 5
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a

A

a

A

b

B

b

B

b

B

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

bB

ABB

aA

BBA

ABS










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a

A

a

A

b

B

b

B

b

B

aa ab

S,B

bb

A

bb

A

aab abb bbb

aabb abbb

aabbb

bB

ABB

aA

BBA

ABS










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a

A

a

A

b

B

b

B

b

B

aa ab

S,B

bb

A

bb

A

aab

S,B

abb

A

bbb

S,B

aabb

A

abbb

S,B

aabbb

S,B

bB

ABB

aA

BBA

ABS











Therefore: )(GLaabbb 
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CYK Algorithm for Parsing CFG

IDEA:  For each substring of a given input x, 

find all variables which can derive the 

substring.  Once these have been found, telling 

which variables generate x becomes a simple 

matter of looking at the grammar, since it’s in 

Chomsky normal form
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CYK Example

 S  NP VP

 VP  V NP

 NP  NP PP

 VP  VP PP

 PP  P NP

 NP  Ahmad | Ali | Hail

 V  called

 P  from

Example: Ahmad     called     Ali    from     Hail
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CYK Example

0 Ahmad  1 called  2 Ali  3 from   4 Hail 5
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: Ahmad Ahmad 

called

Ahmad 

called Ali

Ahmad called 

Ali from

Ahmad called Ali 

from Hail

1: called called Ali called Ali from called Ali from Hail

2: Ali Ali from Ali from Hail

3: from From Hail

4: Hail

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

called Ali called Ali from called Ali from Hail

2: NP
(Ali)

Ali from Ali from Hail

3: P
(From)

From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X
Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

called Ali called Ali from called Ali from Hail

2: NP
(Ali)

Ali from Ali from Hail

3: P
(From)

From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X
Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali called Ali from called Ali from Hail

2: NP
(Ali)

Ali from Ali from Hail

3: P
(From)

From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X
Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali called Ali from called Ali from Hail

2: NP
(Ali)

X
Ali from Ali from Hail

3: P
(From)

From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X
Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali called Ali from called Ali from Hail

2: NP
(Ali)

X
Ali from Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X
Ahmad called

S
Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali called Ali from called Ali from Hail

2: NP
(Ali)

X
Ali from Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP 
called Ali

X
called Ali from

called Ali from Hail

2: NP
(Ali)

X
Ali from

Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP1
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP2

VP1
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from

S
Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP2

VP1
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from

S1
Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP2

VP1
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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0 Ahmad  1 called  2 Ali  3 from   4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from

S1         S2
Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP2

VP1
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)S  NP VP    VP  V NP    NP  NP PP    VP  VP PP    PP  P NP

NP Ahmad | Ali | Hail    V  called    P  from
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Ahmad     called     Ali    from     Hail

S

VP

PP

NP VP

V NP NPP

S  NP VP

VP  V NP

NP  NP PP

VP  VP PP

PP  P NP

NP  Ahmad | Ali | Hail

V  called

P  from

Ahmad   called     Ali         from      Hail

S

PP

NP VP

NP

NP

V
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Same Example: We might see it in different format

NP

P Hail

NP from

V Ali

NP called

Ahmad

S  NP VP

VP  V NP

NP  NP PP

VP  VP PP

PP  P NP

NP Ahmad | Ali | 

Hail

V  called

P  from



19 March 2008 56

Example

S1

S2

VP1

VP2

NP PP NP

X X X P Hail

S VP NP from

X V Ali

NP called

Ahmad
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Problems with PCFGs
 The probability model we’re using is just based on 

the rules in the derivation…
 Doesn’t take into account where in the derivation a rule is 

used

 Doesn’t use the words in any real way

 In PCFGs we make a number of independence 
assumptions.

 Context: Humans make wide use of context
 Context of who we are talking to, where we are, prior context of the 

conversation.

 Prior discourse context

 We need to incorporate these sources of information 
to build better parsers than PCFGs.
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Problems with PCFG

 Lack of sensitivity to words 

 Attachment ambiguity 

 Coordination ambiguity 

 [ [ dogs in houses] and[ cats] ] 

 dogs in [ [ houses ] and [ cats] ] 
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Problems with PCFG

Same set of rules used and hence the same probability 

without considering individual words
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Structural context

 Assumption

 Probabilities are context-free

Ex: P(NP) is independent of where the NP is in the tree

 Pronouns, proper names and definite NPs : Subj

 NPs containing post-head modifiers and subcategorizes nouns : 
Obj

 Need better probabilistic parser!

Expansion % as Subj % as Obj

NP  PRP 13.7% 2.1%

NP  DT NN 5.6% 4.6%

NP  NP PP 5.6% 14.1%
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Lexicalization

 Frequency of common Sub-categorization 

frames

Local tree come take think want

VP  V 9.5% 2.6% 4.6% 5.7%

VP  V NP 1.1% 32.1% 0.2% 13.9%

VP  V PP 34.5% 3.1% 7.1% 0.3%
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Solution

 Add lexical dependencies to the scheme…

 Infiltrate the influence of particular words into the 

probabilities in the derivation

 I.e. Condition on the actual words in the right 

way

 All the words? No, only the right ones.

 Structural Context: Certain types have locational 

preferences in the parse tree.
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Heads

 To do that we’re going to make use of the 

notion of the head of a phrase

 The head of an NP is its noun

 The head of a VP is its verb

 The head of a PP is its preposition

(its really more complicated than that)
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Probabilistic Lexicalized CFGs

 Head child (underlined): 

 S →NP VP

 VP →VBD NP 

 VP →VBD NP PP 

 PP →P NP 

 NP →NNS

 NP →DT NN

 NP →NP PP 
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Example (right): Attribute grammar
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Example (wrong): Attribute grammar
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Attribute grammar

Incorrect
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Probabilities?

 We used to have

 VP  V NP PP p (r |VP)

 That’s the count of this rule VP  V NP PP divided by the 

number of VPs in a treebank

 Now we have

 VP(dumped)  V(dumped) NP(sacks) PP(in)

 p (r |VP ^ dumped is the verb ^ sacks is the head of the 

NP ^ in is the head of the PP)

 Not likely to have significant counts in any treebank
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Sub-categorization

 Condition particular VP rules on their head… so

r:  VP  V NP PP  p (r |VP) 

Becomes

p (r | VP ^ dumped) 

What’s the count?

How many times was this rule used with dump, divided by 

the number of VPs that dump appears in total
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Preferences

 The issue here is the attachment of the PP. So 
the affinities we care about are the ones 
between dumped and into vs. sacks and into.

 So count the places where dumped is the 
head of a constituent that has a PP daughter 
with into as its head and normalize

 Vs. the situation where sacks is a constituent 
with into as the head of a PP daughter.
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So We Can Solve the Dumped Sacks Problem

From the Brown corpus:

p(VP  VBD NP PP | VP, dumped) = .67

p(VP  VBD NP  | VP, dumped) = 0

p(into | PP, dumped) = .22

p(into | PP, sacks) = 0

So, the contribution of this part of the parse to the total scores 

for the two candidates is:

[dumped into] .67  .22 = .147

[sacks into] 0   0 = 0
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Preferences (2)

 Consider the VPs

 Ate spaghetti with gusto ذوق

 Ate spaghetti with marinara صلصة

 The affinity of gusto for eat is much larger 

than its affinity for spaghetti

 On the other hand, the affinity of marinara for 

spaghetti is much higher than its affinity for 

ate
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Preferences (2)

 Note the relationship here is more distant 

and doesn’t involve a headword since gusto 

and marinara aren’t the heads of the PPs.

VP (ate) VP(ate)

VP(ate) PP(with)

PP(with)

NP(spaghetti )

NP
VV

Ate spaghetti with marinaraAte spaghetti with gusto

NP
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Dependency Grammars

 Based purely on 

lexical 

dependency 

(binary relations 

between words) 

 Constituents and 

phrase-structure 

rules have no 

fundamental role 

<ROOT>

main:

GAVE

ADDRESSHIM

I

MY .

subj:

dat:
obj:

attr:
pnct:

Key

Main: beginning of sentence

Subj: syntactic subject

Dat: indirect object

Obj: direct object

Attr: pre-modifying nominal

Pnct: punctuation mark
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Dependency Grammar Example

<Root>

Dumped

Workers              Sacks                    Into

bin

a

Main:

objsubj
loc

pcomp

det

Depen

dency

Description

subj syntactic subject

obj direct object

dat indirect object

tmp temporal adverbials

loc location adverbials

attr Pre-modifying nominal 

(possessives, etc.)

mod nominal post-modifiers 

(prepositional phrases, 

etc.)

pcomp Complement of a 

preposition

comp Predicate nominal
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Grammars Dependency 

Dependency Description

subj syntactic subject

obj direct object

dat indirect object

tmp temporal adverbials

loc location adverbials

attr Pre-modifying nominal (possessives, etc.)

mod nominal post-modifiers (prepositional 

phrases, etc.)

pcomp Complement of a preposition

comp Predicate nominal
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Thank you

السلام علٌكم ورحمة الله


