Lexicalized and
Probabilistic Parsing — Part

2
1CS-482 Nataral -anguage —

Processing

Lecture 15: Lexicalized and Probabilistic
Parsing — Part 2

Husni Al-Muhtaseb

an)l sl) s
ICS 482 Natural Language
Processing

Lecture 15: Lexicalized and Probabilistic
Parsing — Part 2

Husni Al-Muhtaseb

Acknowledgment

These slides were adapted from
presentations of the Authors of the
book

SPEECH and LANGUAGE PROCESSING:

An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition

and some modifications from
presentations found in the WEB by
several scholars including the following

http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html

NLP Credits and
Acknowledgment

If your name is missing please contact me
muhtaseb

At

Kfupm.

Edu.

sa

I ————————

NLP Credits and Acknowledgment

Husni Al-Muhtaseb
James Martin

Jim Martin

Dan Jurafsky

Sandiway Fong

Song young in

Paula Matuszek
Mary-Angela Papalaskari
Dick Crouch

Tracy Kin

L. Venkata Subramaniam
Martin Volk

Bruce R. Maxim

Jan Hajic¢

Srinath Srinivasa

Simeon Ntafos

Paolo Pirjanian

Ricardo Vilalta

Tom Lenaerts

Heshaam Feili
Bjorn Gamback

Christian Korthals
Thomas G. Dietterich
Devika Subramanian
Duminda Wijesekera
Lee McCluskey
David J. Kriegman

Kathleen McKeown
Michael J. Ciaraldi
David Finkel
Min-Yen Kan
Andreas Geyer-Schulz
Franz J. Kurfess
Tim Finin

Nadjet Bouayad
Kathy McCoy

Hans Uszkoreit
Azadeh Maghsoodi

Khurshid Ahmad
Staffan Larsson
Robert Wilensky
Feiyu Xu

Jakub Piskorski
Rohini Srihari
Mark Sanderson
Andrew Elks
Marc Davis

Ray Larson
Jimmy Lin
Marti Hearst

Andrew McCallum

Nick Kushmerick
Mark Craven
Chia-Hui Chang
Diana Maynard
James Allan

Martha Palmer
julia hirschberg
Elaine Rich
Christof Monz
Bonnie J. Dorr
Nizar Habash
Massimo Poesio
David Goss-Grubbs
Thomas K Harris
John Hutchins
Alexandros
Potamianos

Mike Rosner
Latifa Al-Sulaiti
Giorgio Satta

Jerry R. Hobbs
Christopher Manning
Hinrich Schiitze
Alexander Gelbukh
Gina-Anne Levow
Guitao Gao

Qing Ma

Zeynep Altan

-
Previous Lectures

Introduction and Phases of an NLP system
NLP Applications - Chatting with Alice

Finite State Automata & Regular Expressions &
languages

Morphology: Inflectional & Derivational

Parsing and Finite State Transducers

Stemming & Porter Stemmer

Statistical NLP — Language Modeling

N Grams

Smoothing and NGram: Add-one & Witten-Bell
Parts of Speech - Arabic Parts of Speech

Syntax: Context Free Grammar (CFG) & Parsing
Parsing: Earley’s Algorithm

Probabilistic Parsing

19 March 2008 1

O O O

O 0O0000000a0

O

e —————————————————
Today's Lecture

0O Lexicalized and Probabilistic Parsing

Administration: Previous Assignments
Probabilistic CYK (Cocke-Younger-Kasami)

Dependency Grammar

19 March 2008

s du e iy
Assignments

O WebCt visit

19 March 2008

Load corpora files

Folder Location: G:'\DataContainer'\Data'\test1 Browse

List Text Files

Words with 100 appearance or more

[Process] || ||

[Process] || ||

Text File Mame

aypm - Copy (2). tut

dy i - Copy (3). et
au e - Copy (4). txt
&y - Copy (5). txt
ayi - Copy (B8). et
ay e - Copy (7). tut
iy - Copy (8). et

fy i - Copy (9). et

fyme - Copy. tut

ay e et

Total Text Files: 11

Total Tokes: 65527 Total Types: 23

= E =] alial b2 0 [
s

- 8,8l wladsll e wod] o 100 :Uud pd; go

il i dedd | w8 wRlod] ed] Laowl Lol

- 31 sl CPALA]

3 24794 1A
1771 Ui g Lo T
1771 P Il s
1771 . .
1771 Sall;3 i 5
1771 | s

il 1771 o : 7

oz Analyzer =N | EoR(ExE

Path: 3:\DataContainer \Data'\testl | Browse |

Mumber of files: 11/11 Tokens: 43538 Types: 28

overslProgress:
oot

Result:

Analyze

a Zount Word

Be y

’ Show Text Files]

Find Folder

There ars

Find the mast 100

files in the corpora

words used in the corpora

Word

Lk g g

Browse For Felder

BE Desktop
- B Admingg
» . Public
> (M Computer
- ¥ Network
> Control Panel
£ Recycle Bin
> My Eluetooth Places

= o) MNew Folder

Make Mew Folder | [Ok

] | Cancel

R Jla o oS [adiad Gaal s o SET agh jacl dadayie 45 dlaxion (53Ul) 5 il
sl (OLial) sl " aiTest this "word" please!. " . adaua Jeak L ciie (b Sl 5

O WYy .

o VWYY Test s s e il 1YY
o 1771 this : Yevas ! . Golewig YY)
o 1771 b . v < shenluny ¥ . dakaie VYV
O YYYY O dde . VYA (Sl v . H_:);c\ﬁ VYV
O WYY L . VY)Y B ¢ . (S YYYY
O IVYY 1k . IYYY @l 3 5l ° . BTN VYY)
O YVYYY (JIA.S.A\) . VYYD Jh) b . Cadal YY)
o vy . 1YY Cyyad y . Uadad YY)
o VYV . 1YV sl A . p YYYY
o YWV s . 1YY e q :) 'YW
o 1;;; “\;vord"' . VYYD il Y. * o= : zz:
o I . :

0 1771 i T s H LD
0 WYY S : 177 please 12 T YV
O WYY e . 1771 oy w . o VYV
O VYV R . VYV pA \K3 . Gl 1YY
O YWYY agisacls . YYD e Vo . L3 1YV
o YY) el sl . AR RSP R . il VYV
o IVVY 4 glasia . YY) word 17 . ian YYYY
O YVYY dsdaia . 1771 o YA . this 1771
o YVYYY el . 122 adiad V4 . Test 1771
o WYY s . VYY) G Y. . Mo YY)
o WYYk] vy Test . e word" 1771
O WYY (e . 1771 & vy . please 1771
o YY) v . Tvvs G o . _uﬁ_, VYY)
s o m o

o= . 1YV aeiacls Yo . -7 NVVISS
. YY) daliie Y1

. 1YY s \

e
What should we do?

O Suggestions

19 March 2008

e
Probabilistic CFGs

O The probabilistic model

Assigning probabilities to parse trees

0 Getting the probabilities for the model
O Parsing with probabilities

Slight modification to dynamic programming
approach

Task 1s to find the max probability tree for an
input

19 March 2008

e ————————————————
Getting the Probabilities

0 From an annotated database (a treebank)

0O Learned from a corpus

19 March 2008

e ——————————————————————————
Assumptions

0 We’re assuming that there 1s a grammar to be
used to parse with.

O We’re assuming the existence of a large robust
dictionary with parts of speech

O We’re assuming the ability to parse (1.e. a parser)

0O Given all that... we can parse probabilistically

19 March 2008

I ————————

Typical Approach

O Bottom-up dynamic programming approach

O Assign probabilities to constituents as they are
completed and placed 1n the table

0 Use the max probability for each constituent
going up

19 March 2008

e ————————————————
Max probability

O Say we’re talking about a final part of a parse
So=> NP, VP,

The probability of the S 1s...
P(S - NP VP)*P(NP)*P(VP)

The green stuff 1s already known. We’re doing
bottom-up parsing

19 March 2008

-
Max

O The P(NP) 1s known.

O What 1if there are multiple NPs for the span of
text in question (0to 1)?

O Take the max (Why?)

O Does not mean that other kinds of constituents
for the same span are 1gnored (1.€. they might
be 1n the solution)

19 March 2008

e
Probabilistic Parsing

O Probabilistic CYK (Cocke-Younger-Kasami)
algorithm for parsing PCFG

O Bottom-up dynamic programming algorithm

0 Assume PCFG 1s in Chomsky Normal Form
(production is either A — B C or A — a)

19 March 2008

Chomsky Normal Form (CNF)

All rules have form:

A— BC and A—>a

/N |

Non-Terminal Non-Termina terminal

Examples:

S — AS 5 —> AS
S—>a S —(44S
A — SA A— 54
A—>b A—aa
Chomsky Not Chomsky

Normal Form Normal Form

e
Observations

Chomsky normal forms are good for
parsing and proving theorems

It 1s possible to find the Chomsky
normal form of any context-free
grammar

19 March 2008

———————————————————————
Probabilistic CYK Parsing of PCFGs

0 CYK Algorithm: bottom-up parser

O Input:

A Chomsky normal form PCFG, G= (N, X, P, S, D)
Assume that the N non-terminals have indices 1, 2, ...,
IN|, and the start symbol S has index 1

nwords w,,..., w

O Data Structure:

A dynamic programming array 7t/1,7,a/holds the
maximum probability for a constituent with non-terminal
index a spanning words 1..;.

O Output:
The maximum probability parse n//,n,1]

19 March 2008 AR

-
Base Case

0 CYK fills out n/1,7,a/by induction

O Base case

19 March 2008

Input strings with length = 1 (1individual words
W)
In CNF, the probability of a given non-terminal A

expanding to a single word w; must come only
from the rule A — w.ie., P(A — w)

e
Probabilistic CYK Algorithm

Function CYK(words, grammar)
return the most probable parse and its probability
For i <1 to num words
for a <1 to num nonterminals
If (A —-w) 1s in grammar then 7z/1, 1, a/ —P(A —w))
For span <2 to num words
For begin <1 to num words— span+ 1
end «—begin+ span— 1
For m «—beginto end— 1
For a <1 to num nonterminals
For b <1 to num nonterminals
For ¢ 1 to num nonterminals
prob «—zufbegin, m, b] X 7fm+1, end, c] X P(A —BC)
If (prob > nfbegin, end, a]) then
nfbegin, end, a] = prob
back[begin, end, a] = {m, b, ¢}
Return build tree(back/1, num words, 1]), nf1, num words, 1]

19 March 2008 YA

I ————————
The CYK Membership Algorithm

Input:

» Grammar G in Chomsky Normal Form

- String w

Output:

findif we L(G)

The Algorithm

Input example:
» Grammar G

S —> AB
A— BB
A—a
B — AB
B—b

- String : w aabbb

19 March 2008

aabbb

All substrings of length 1

All substrings of length 2

All substrings of length 3

All substrings of length 4

All substrings of length 5

19 March 2008

aa

aab

aabb

aabbb

a b
ab bb
abb bbb
abbb

bb

AR

S —> AB a a b b b
A4 —> BB A A B B B
A—>a aa ab bb bb
B —> AB

aab abb bbb
B—>b

aabb abbb

aabbb

I ————————

S — AB
A A B B B
A—>a aa ab bb bb
B — A4B SB A A
aab abb bbb
B—>b

aabb abbb

aabbb

19 March 2008

S —> AB
A— BB
A—>a
B— AB
B—b

19 March 2008

a a b b b
A A B B B
aa ab bb bb
SB A A
aab abb bbb
SB A SB
aabb abbb
A SB
aabbb
(S8 aabbb € L(G)

I ————————

CYK Algorithm for Parsing CFG

IDEA: For each substring of a given input x,
find all variables which can derive the
substring. Once these have been found, telling
which variables generate x becomes a simple
matter of looking at the grammar, since 1t’s 1n
Chomsky normal form

19 March 2008

e ————————————————
CYK Example

S 2> NP VP

VP - V NP

NP - NP PP

VP - VP PP

PP 2> P NP

NP = Ahmad | Ali | Hail

V = called

P = from

Example: Ahmad called Ali from Hail

O O O O O O O 0O

19 March 2008

e ————————————————
CYK Example

o Ahmad | called , Ali ; from , Hail .

19 March 2008

I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4: 5:

start at

0: Ahmad Ahmad Ahmad Ahmad called Ahmad called Ali
called called Ali Ali from from Hail

1: called called Ali | called Ali from | called Ali from Hail

2: Ali Ali from Ali from Hail

3: from From Hail

4. Hail

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 YA

I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4: 5:
start at
0: NP
(Ahmad) Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
1: \Y
called Ali called Ali from called Ali from Hail
(Called)
D% NP
(Ah) Ali from Ali from Hail
3 P
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¥4

I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP X
(Ahmad) Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
1: \Y
(Called) called Ali called Ali from called Ali from Hail
2: NP
(Ah) Ali from Ali from Hail
: P
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 €

I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP X
(Ahmad) Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
I: V «—+—VP
(Called) called Ali called Ali from called Ali from Hail
v
2: NP
(Ah) Ali from Ali from Hail
: P
(From) From Hail
4: NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¢y

I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP X
(Ahmad) Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
I: V «—+—VP
(Called) called Ali called Ali from called Ali from Hail
v
2: NP X
(Ah) Ali from Ali from Hail
3: P
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¢y

I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4 5
start at
0: NP X
(Ahmad) Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
= V «<1—VP
(Called) called Ali called Ali from called Ali from Hail
v
Z NP X
(Ah) Ali from Ali from Hail
3: P « PP
(From) rom Hail
\ 4
4: NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¢y

I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4 5
start at
0: NP < X S
(Ahmad) Ahmad called Ahﬂ:}jd called Ali Ahmad called Ali from Ahmad called Ali from Hail
1: V VP
(Called) called Ali called Ali from called Ali from Hail
Z NP X
(Ah) Ali from Ali from Hail
3: P PP
(From) From Hail
4: NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 $¢

I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP < X S
(Ahmad) Ahﬂ:}jd called Ali Ahmad called Ali from Ahmad called Ali from Hail
1 ; V v\]P X called Ali from Hail
(Called) called Ali called Ali from
2: NP X Ali from Hail
(Ah) Ali from
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¢o

I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP - X S
(Ahmad) Ahﬂ:}jd called Ali Ahmad called Ali from Ahmad called Ali from Hail
1 ; V v\]P X called Ali from Hail
(Called) called Ali called Ali from
2: NP ° X NP
(Ah) Ali from A“i from Hail
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP
NP > Ahmad | Ali | Hail

19 March 2008

NP> NPPP VP-> VPPP PP—-> PNP
V = called P = from

1

I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP X S X
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
1 ; V VP X called Ali from Hail
(Called) called Ali called Ali from
2: NP X NP
(Ah) Ali from Ali from Hail
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¢y

I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4 5
start at
0: NP X S X
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
¢ \4 VP - X VP
(Called) called Ali called Ali from called Ali from Hail
Z NP X NP
(Ah) Ali from Ali from Hail
> P PP
(From) From Hail
4. NP
(Hail)

S=>NPVP VP-> VNP
NP = Ahmad | Ali | Hail

19 March 2008

NP> NPPP VP-> VPPP PP—-> PNP
V = called P = from

¢A

I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4 5
start at
0: NP X S X
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
; v VP - X VP,
(Called) called Ali called Ali from called Ali from Hail
(Ah) Ali from Ali from Hail
3: P PP
(From) From Hail
4. NP
(Hail)

S=>NPVP VP-> VNP
NP = Ahmad | Ali | Hail

19 March 2008

NP> NPPP VP-> VPPP PP—-> PNP
V = called P = from

€9

I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2- 2 4 5
start at
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
l: \V4 VP X VP,
C 11 d called Ali called Ali from
(Called) Ve,
2: NP X NP |
(Ali) Ali from Ali from Hail
3: p PP
(From) From Hail
4. NP
S>NPVP VP->IVNP NP-NPPP VP> VPPP PP —=>PNP (Hai

NP = Ahmad | Ali | Hail

19 March 2008

V = called P = from

I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2- 2 4 5
start at
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmadjcalled Ali from Hail
C 11 d called Ali called Ali from v
(Called) vp,
2: NP X NP
(Ali) Ali from Ali from Hail
3: p PP
(From) From Hail
4: NP
S>NPVP VP->VNP NP-INPPP VP> VPPP PP PNP (Hai

NP = Ahmad | Ali | Hail

19 March 2008

V = called P = from

o)

I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP X S X S,
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmadjcalled Ali from Hail
I \% VP X VP,
(Called) called Ali called Ali from VVPI
2 NP X NP
(Ali) Ali from Ali from Hail
(From) From Hail
4: NP
S2NPVP VP2>IVNP NPANPPP VP> VPPP PP PNP (Hai

NP > Ahmad | Ali | Hail

19 March 2008

V = called P = from

oy

I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4: 5:
start at
0: NP X S X S, S,
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
1 v VP X vP,"
(Called) called Ali called Ali from VPI
called Ali from Hail
2: NP X NP
(Ah) Ali from Ali from Hail
3: P PP
(From) From Hail
4: NP
S=>NPVP VP-> VINP NP> NPPP VP> VRPP PP->PNP (Hail)
NP - Ahmad | Ali | Hail V = called P - from

19 March 2008

oy

S > NPVP

VP 2> V NP

NP - NP PP

VP - VP PP

PP > P NP

NP - Ahmad | Ali | Hail
V - called

P - from

o¢

N
N e

RN
Vo NP

Ahmad called

P
Ali from

S

NP/\ VP

v
Ahmad called

Ali

\

AN

NP
Hail

NP
NP/ N PP

from

Hail

Same Example: We might see it in different format

NP

Hail

NP

from

v

Al

NP

called

Ahmad

19 March 2008

S > NP VP

VP > V NP

NP - NP PP

VP > VP PP

PP > P NP

NP - Ahmad | Ali |
Hail

V - called

P - from

Example
S, VP, NP PP NP
S, VP,
X X X P Hail
S VP NP from
X Vv Ali
NP called
Ahmad

19 March 2008

e
Problems with PCFGs

O The probability model we’re using 1s just based on
the rules 1n the derivation...

Doesn’t take into account where 1n the derivation a rule is
used

Doesn’t use the words 1n any real way

O In PCFGs we make a number of independence
assumptions.

0O Context: Humans make wide use of context

Context of who we are talking to, where we are, prior context of the
conversation.

Prior discourse context
O We need to incorporate these sources of information
to build better parsers than PCFGs.

19 March 2008 oy

I ————————

Problems with PCFG

O Lack of sensitivity to words

O Attachment ambiguity

O Coordination ambiguity

| [dogs in houses] and| cats] |
dogs in | | houses | and | cats]]

19 March 2008

e
Problems with PCFG

(a) NP (b)
/
NP C(}hf’ /\
NP/\PP and Noun Noum Prep/\NP
Noun Pﬂ{\NP cats dogs iL N,P//Ehf’
dogs iI|] Noun Noun and Noun
houses houses cats

Same set of rules used and hence the same probability
without considering individual words

19 March 2008 o4

R RO =
Structural context

O Assumption

Probabilities are context-free
Ex: P(NP) 1s independent of where the NP 1s in the tree

Expansion % as Sub;j % as Obj
NP — PRP 13.7% 2.1%
NP —-> DT NN 5.6% 4.6%
NP —-> NPPP 5.6% 14.1%

Pronouns, proper names and definite NPs : Subj

NPs containing post-head modifiers and subcategorizes nouns :
Obj

Need better probabilistic parser!

19 March 2008 T

-
[exicalization

O Frequency of common Sub-categorization

frames
Local tree come take think want
VP>V 9.5% 2.6% 4.6% 5.7%
VP> VNP 1.1% 32.1% 0.2% 13.9%
VP> VPP 34.5% 3.1% 7.1% 0.3%

19 March 2008

e —
Solution

0 Add lexical dependencies to the scheme...

Infiltrate the influence of particular words into the
probabilities 1n the derivation

[.e. Condition on the actual words 1n the right
way
All the words? No, only the right ones.

O Structural Context: Certain types have locational
preferences in the parse tree.

19 March 2008 1y

Heads

O To do that we’re going to make use of the
notion of the head of a phrase

m The head of an NP 1s its noun

m The head of a VP 1s its verb

m The head of a PP 1s 1its preposition

(its really more complicated than that)

19 March 2008 1y

e —
Probabilistic Lexicalized CFGs

Head child (underlined):
S —NP VP

L
L]
| Tag Description Example | Tag Description Example |
VP VBD NP CC Coordin. Conjunction and, but, or SYM Symbol +.%, &
D H CD Cardimal number one, two, three || TO “to” fo
- DT Determiner a, the UH Interjection ah, oops
EX Existential ‘there’ there VB Verb, base form eat
D VP HVBD NP PP FW Foreign word mea culpa VBD Verb, past tense ate
—_— IN Preposition/sub-conj of; in, by VBG Verb, gerund eating
I Adjective vellow VBN Verb, past participle eaten
JTR Ad)., comparative bigger VBP Verb, non-3sg pres ear
D PP HP NP JIS Adj., superlative wildest VBZ Verb, 3sg pres eats
—_— LS List item marker 1, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, who
NP NN S NN Noun, sing. ormass [llama WP$ Possessive wh- whose
D —> NNS Noun, plural Hamas WRB Wh-adverb how, where
- NNP Proper noun, singular JBM b Dollar sign $
NNPS Proper noun, plural ~ Carolinas # Pound sign #
D NP _)DT NN PDT Predeterminer all, both “ Left quote (‘for)
- POS Possessive ending s " Right quote (Cor™
PP Personal pronoun I vou, he (Left parenthesis (LG{.
PP$ Possessive pronoun your, one’s) Right parenthesis ~ (].). }. >)
D NP —)NP PP RB Adverb quickly, never | . Comma :
_— RBR Adverb, comparative fasfer . Sentence-final punc (. ! 7)
RBS Adverb, superlative fastest : Mid-sentence punc (: ;... — =)
RP Particle up, off

19 March 2008 T¢

e ————————————————
Example (right): Attribute grammar

S(dumped)
/\

NP(workers) VP(dumped)

/\

NNS(workers) VBD(dumped) NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)
/\

DT(a) NN(bin)

workers dumped sacks into a bin

19 March 2008

———————————————————————
tribute grammar

Example (wrong): A

S(dumped)
/\
NP(workers) VP(dumped)
/\
NNS(workers) VBD(dumped) NP(sacks)
NP(sacks) PP(into)
/\
NNS(sacks) P(into) NP(bin)
DT(a) NN(bin)
workers dumped sacks into zla blln

19 March 2008

———————————————————————
Attribute grammar

S(dumped)
NP(workers)

NNS(w!orkers) VBD(dumped)

workers

dumped

S(dumped)
NP(workers) VP(dumped)
NNS(vsl'orkers) VBD(dumped) NP(sacks) PP(into)
NNS(sacks) P(into) NP(bin)
DT(a) NN(bin)
workers dumped sacks into a bln
vrteed) Incorrect
NP(sacks)
NP(sacks) PP(into)
NNS(Lacks) P(into) NP(bin)
DT(a) NN(bin)
sacks into a blln

19 March 2008

1y

Probabilities?

O We used to have

= VP> VNPPP p(r|VP)

o That’s the count of this rule VP = V NP PP divided by the
number of VPs 1n a treebank

0O Now we have

= VP(dumped) 2 V(dumped) NP(sacks) PP(in)

m p(r|VP " dumped is the verb * sacks 1s the head of the
NP * 1n 1s the head of the PP)

m Not likely to have significant counts in any treebank

19 March 2008 TA

e ——————————————————————————
Sub-categorization

0 Condition particular VP rules on their head... so
. VP> VNPPP p(r|VP)

Becomes
p (r| VP * dumped)

What’s the count?

How many times was this rule used with dump, divided by
the number of VPs that dump appears 1n total

19 March 2008 14

-
Preferences

O The 1ssue here 1s the attachment of the PP. So
the affinities we care about are the ones
between dumped and 1nto vs. sacks and into.

O So count the places where dumped 1s the
head of a constituent that has a PP daughter
with 1nto as 1ts head and normalize

O Vs. the situation where sacks 1s a constituent
with 1nto as the head of a PP daughter.

19 March 2008

=
S0 We Can Solve the Dumped Sacks Problem

From the Brown corpus:
p(VP — VBD NP PP | VP, dumped) = .67
p(VP — VBD NP | VP, dumped) =0
p(into | PP, dumped) = .22
p(into | PP, sacks) =0

So, the contribution of this part of the parse to the total scores
for the two candidates is:

[dumped 1nto] 67 x .22 =.147
[sacks into] 0x O =0

19 March 2008 2

e ————————————————
Preferences (2)

O Consider the VPs
Ate spaghett1 with gusto ..

Ate spaghetti with marinara .

0 The affinity of gusto for eat 1s much larger
than 1ts affinity for spaghetti

O On the other hand, the affinity of marinara for
spaghetti 1s much higher than its affinity for
ate

19 March 2008

Preferences (2)

O Note the relationship here 1s more distant
and doesn’t involve a headword since gusto
and marinara aren’t the heads of the PPs.

VP (ate)
ygte) PR(with)
V NP \

. .
Ate spaghetti with gusto ~ Ate spaghetti with marinara

19 March 2008

e
Dependency Grammars

O Based purely on

lexical <ROOT>
dependency \mam:
(binary relations GAVE

between words)

O Constituents and
phrase-structure HIM ADDRESS
rules have no
fundamental role

pnct:
Key attr:
Main. beginning of sentence
Subj. syntactic subject
Dat: indirect object MY
Oby: direct object
Attr: pre-moditying nominal

Pnct: punctuation mark
19 March 2008 Ve

Dependency Grammar Example

<Root>
Main:
Durﬁ’ped
subj obj
Workers Sacks

19 March 2008

loc

Depen | Description

dency

subj syntactic subject

obj direct object

dat indirect object

tmp temporal adverbials

loc location adverbials

attr Pre-modifying nominal
(possessives, etc.)

mod nominal post-modifiers
(prepositional phrases,
etc.)

pcomp | Complement of a

preposition

comp

Predicate nominal

e
Grammars Dependency

Dependency | Description

subj syntactic subject

obj direct object

dat indirect object

tmp temporal adverbials

loc location adverbials

attr Pre-modifying nominal (possessives, etc.)

mod nominal post-modifiers (prepositional
phrases, etc.)

pcomp Complement of a preposition

comp Predicate nominal

19 March 2008 va

Thank you

ADSJ\Z\.AAJjengLeM\D

