
1

Lexicalized and

Probabilistic Parsing – Part

2

ICS 482 Natural Language

Processing
Lecture 15: Lexicalized and Probabilistic

Parsing – Part 2

Husni Al-Muhtaseb

2

بسم الله الرحمن الرحٌم

ICS 482 Natural Language

Processing

Lecture 15: Lexicalized and Probabilistic

Parsing – Part 2

Husni Al-Muhtaseb

NLP Credits and

Acknowledgment

These slides were adapted from
presentations of the Authors of the
book
SPEECH and LANGUAGE PROCESSING:

An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition

and some modifications from
presentations found in the WEB by
several scholars including the following

http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html

NLP Credits and

Acknowledgment

If your name is missing please contact me

muhtaseb

At

Kfupm.

Edu.

sa

NLP Credits and Acknowledgment

Husni Al-Muhtaseb

James Martin

Jim Martin

Dan Jurafsky

Sandiway Fong

Song young in

Paula Matuszek

Mary-Angela Papalaskari

Dick Crouch

Tracy Kin

L. Venkata Subramaniam

Martin Volk

Bruce R. Maxim

Jan Hajič

Srinath Srinivasa

Simeon Ntafos

Paolo Pirjanian

Ricardo Vilalta

Tom Lenaerts

Heshaam Feili

Björn Gambäck

Christian Korthals
Thomas G. Dietterich
Devika Subramanian
Duminda Wijesekera
Lee McCluskey
David J. Kriegman

Kathleen McKeown

Michael J. Ciaraldi

David Finkel

Min-Yen Kan

Andreas Geyer-Schulz

Franz J. Kurfess

Tim Finin

Nadjet Bouayad

Kathy McCoy

Hans Uszkoreit

Azadeh Maghsoodi

Khurshid Ahmad

Staffan Larsson

Robert Wilensky

Feiyu Xu

Jakub Piskorski

Rohini Srihari

Mark Sanderson

Andrew Elks

Marc Davis

Ray Larson

Jimmy Lin

Marti Hearst

Andrew McCallum

Nick Kushmerick

Mark Craven

Chia-Hui Chang

Diana Maynard

James Allan

Martha Palmer
julia hirschberg
Elaine Rich
Christof Monz
Bonnie J. Dorr
Nizar Habash
Massimo Poesio
David Goss-Grubbs
Thomas K Harris
John Hutchins
Alexandros
Potamianos
Mike Rosner
Latifa Al-Sulaiti
Giorgio Satta
Jerry R. Hobbs
Christopher Manning
Hinrich Schütze
Alexander Gelbukh
Gina-Anne Levow
Guitao Gao
Qing Ma
Zeynep Altan

19 March 2008 6

Previous Lectures
 Introduction and Phases of an NLP system

 NLP Applications - Chatting with Alice

 Finite State Automata & Regular Expressions &
languages

 Morphology: Inflectional & Derivational

 Parsing and Finite State Transducers

 Stemming & Porter Stemmer

 Statistical NLP – Language Modeling

 N Grams

 Smoothing and NGram: Add-one & Witten-Bell

 Parts of Speech - Arabic Parts of Speech

 Syntax: Context Free Grammar (CFG) & Parsing

 Parsing: Earley’s Algorithm

 Probabilistic Parsing

19 March 2008 7

Today's Lecture

 Lexicalized and Probabilistic Parsing

 Administration: Previous Assignments

 Probabilistic CYK (Cocke-Younger-Kasami)

 Dependency Grammar

Administration: Previous

Assignments

 WebCt visit

19 March 2008 8

???

حس صقن ذهب . الفٌروزآبادي ٌستعملونه منبطحة فأعجزتهم أشكى، جذر قصدت خضخض كشًء

.أولً(اختبار)تجرٌب " تجربة" .!Test this "word" please. ضظغ ئع! سؤك؟ إظل غثث ثط طف

 1771 .ئع

 1771 Test

 1771 this

 1771 ضظغ

 1771 غثث

 1771 ثط

 1771 !طف

 1771 (اختبار)

 1771 .أولً

 1771

 1771 تجرٌب

 1771 "word"

 1771 please!.

 1771 " "تجربة

 1771 أشكى،

 1771 جذر

 1771 قصدت

 1771 فأعجزتهم

 1771 الفٌروزآبادي

 1771 ٌستعملونه

 1771 منبطحة

 1771 ذهب

 1771 ؟سؤك

 1771 إظل

 1771 صقن

 1771 خضخض

 1771 .كشًء

 1771 حس

• التعداد الكلمة

• 24794 1

• 1771 ٌستعملونه 2

• 1771 أشكى، 3

• 1771 سؤك 4

• 1771 الفٌروزآبادي 5

• 1771 إظل 6

• 1771 تجرٌب 7

• 1771 اختبار 8

• 1771 حس 9

• 1771 طف 10

• 1771 this 11

• 1771 please 12

• 1771 أولً 13

• 1771 ثط 14

• 1771 غثث 15

• 1771 تجربة 16

• 1771 word 17

• 1771 ضظغ 18

• 1771 خضخض 19

• 1771 قصدت 20

• 1771 Test 21

• 1771 ئع 22

• 1771 صقن 23

• 1771 كشًء 24

• 1771 فأعجزتهم 25

• 1771 منبطحة 26

• 1771 جذر 27

• الفٌروزآبادي 1771

• ٌستعملونه 1771

• منبطحة 1771

• فأعجزتهم 1771

• أشكى، 1771

• جذر 1771

• قصدت 1771

• خضخض 1771

• كشًء 1771

• إظل 1771

• حس 1771

• صقن 1771

• ذهب 1771

• سؤك 1771

• ئع 1771

• غثث 1771

• ثط 1771

• طف 1771

• ضظغ 1771

• this 1771

• Test 1771

• " "تجربة 1771

• "word" 1771

• please 1771

• تجرٌب 1771

• اختبار 1771

• أولً 1771

• 17710

•

What should we do?

 Suggestions

19 March 2008 15

19 March 2008 16

Probabilistic CFGs

 The probabilistic model

 Assigning probabilities to parse trees

 Getting the probabilities for the model

 Parsing with probabilities

 Slight modification to dynamic programming

approach

 Task is to find the max probability tree for an

input

19 March 2008 17

Getting the Probabilities

 From an annotated database (a treebank)

 Learned from a corpus

19 March 2008 18

Assumptions

 We’re assuming that there is a grammar to be

used to parse with.

 We’re assuming the existence of a large robust

dictionary with parts of speech

 We’re assuming the ability to parse (i.e. a parser)

 Given all that… we can parse probabilistically

19 March 2008 19

Typical Approach

 Bottom-up dynamic programming approach

 Assign probabilities to constituents as they are

completed and placed in the table

 Use the max probability for each constituent

going up

19 March 2008 20

Max probability

 Say we’re talking about a final part of a parse

 S0  NPiVPj

The probability of the S is…

P(S  NP VP)*P(NP)*P(VP)

The green stuff is already known. We’re doing

bottom-up parsing

19 March 2008 21

Max

 The P(NP) is known.

 What if there are multiple NPs for the span of

text in question (0 to i)?

 Take the max (Why?)

 Does not mean that other kinds of constituents

for the same span are ignored (i.e. they might

be in the solution)

19 March 2008 22

Probabilistic Parsing

 Probabilistic CYK (Cocke-Younger-Kasami)

algorithm for parsing PCFG

 Bottom-up dynamic programming algorithm

 Assume PCFG is in Chomsky Normal Form

(production is either A → B C or A → a)

19 March 2008 23

Chomsky Normal Form (CNF)

All rules have form:

BCA

Non-Terminal Non-Terminal

aAand

terminal

19 March 2008 24

Examples:

bA

SAA

aS

ASS









Not Chomsky

Normal Form

aaA

SAA

AASS

ASS









Chomsky

Normal Form

19 March 2008 25

Observations

 Chomsky normal forms are good for

parsing and proving theorems

 It is possible to find the Chomsky

normal form of any context-free

grammar

19 March 2008 26

Probabilistic CYK Parsing of PCFGs

 CYK Algorithm: bottom-up parser

 Input:
 A Chomsky normal form PCFG, G= (N, Σ, P, S, D)

Assume that the N non-terminals have indices 1, 2, …,
|N|, and the start symbol S has index 1

 n words w1,…, wn

 Data Structure:
 A dynamic programming array π[i,j,a] holds the

maximum probability for a constituent with non-terminal
index a spanning words i..j.

 Output:
 The maximum probability parse π[1,n,1]

19 March 2008 27

Base Case

 CYK fills out π[i,j,a] by induction

 Base case

 Input strings with length = 1 (individual words

wi)

 In CNF, the probability of a given non-terminal A

expanding to a single word wi must come only

from the rule A → wi i.e., P(A → wi)

19 March 2008 28

Probabilistic CYK Algorithm [Corrected]
Function CYK(words, grammar)

return the most probable parse and its probability

For i ←1 to num_words

for a ←1 to num_nonterminals

If (A →wi) is in grammar then π[i, i, a] ←P(A →wi)

For span ←2 to num_words

For begin ←1 to num_words – span + 1

end ←begin + span – 1

For m ←begin to end – 1

For a ←1 to num_nonterminals

For b ←1 to num_nonterminals

For c ←1 to num_nonterminals

prob ←π[begin, m, b] × π[m+1, end, c] × P(A →BC)

If (prob > π[begin, end, a]) then

π[begin, end, a] = prob

back[begin, end, a] = {m, b, c}

Return build_tree(back[1, num_words, 1]), π[1, num_words, 1]

19 March 2008 29

The CYK Membership Algorithm

Input:

• Grammar in Chomsky Normal Form G

• String

Output:

find if)(GLw

w

19 March 2008 30

The Algorithm

• Grammar :G

bB

ABB

aA

BBA

ABS











• String : w aabbb

Input example:

19 March 2008 31

 a

a b b b

 aa ab bb bb

 aab abb bbb

 aabb abbb

 aabbb

aabbb

All substrings of length 1

All substrings of length 2

All substrings of length 3

All substrings of length 4

All substrings of length 5

19 March 2008 32

a

A

a

A

b

B

b

B

b

B

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

bB

ABB

aA

BBA

ABS











19 March 2008 33

a

A

a

A

b

B

b

B

b

B

aa ab

S,B

bb

A

bb

A

aab abb bbb

aabb abbb

aabbb

bB

ABB

aA

BBA

ABS











19 March 2008 34

a

A

a

A

b

B

b

B

b

B

aa ab

S,B

bb

A

bb

A

aab

S,B

abb

A

bbb

S,B

aabb

A

abbb

S,B

aabbb

S,B

bB

ABB

aA

BBA

ABS











Therefore:)(GLaabbb 

19 March 2008 35

CYK Algorithm for Parsing CFG

IDEA: For each substring of a given input x,

find all variables which can derive the

substring. Once these have been found, telling

which variables generate x becomes a simple

matter of looking at the grammar, since it’s in

Chomsky normal form

19 March 2008 36

CYK Example

 S  NP VP

 VP  V NP

 NP  NP PP

 VP  VP PP

 PP  P NP

 NP  Ahmad | Ali | Hail

 V  called

 P  from

Example: Ahmad called Ali from Hail

19 March 2008 37

CYK Example

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

19 March 2008 38

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: Ahmad Ahmad

called

Ahmad

called Ali

Ahmad called

Ali from

Ahmad called Ali

from Hail

1: called called Ali called Ali from called Ali from Hail

2: Ali Ali from Ali from Hail

3: from From Hail

4: Hail

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 39

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

called Ali called Ali from called Ali from Hail

2: NP
(Ali)

Ali from Ali from Hail

3: P
(From)

From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 40

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X
Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

called Ali called Ali from called Ali from Hail

2: NP
(Ali)

Ali from Ali from Hail

3: P
(From)

From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 41

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X
Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali called Ali from called Ali from Hail

2: NP
(Ali)

Ali from Ali from Hail

3: P
(From)

From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 42

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X
Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali called Ali from called Ali from Hail

2: NP
(Ali)

X
Ali from Ali from Hail

3: P
(From)

From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 43

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X
Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali called Ali from called Ali from Hail

2: NP
(Ali)

X
Ali from Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 44

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X
Ahmad called

S
Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali called Ali from called Ali from Hail

2: NP
(Ali)

X
Ali from Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 45

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

called Ali from Hail

2: NP
(Ali)

X
Ali from

Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 46

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 47

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 48

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 49

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP1
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)

S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 50

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP2

VP1
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 51

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from

S
Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP2

VP1
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 52

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from

S1
Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP2

VP1
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

19 March 2008 53

0 Ahmad 1 called 2 Ali 3 from 4 Hail 5

end at

start at

1: 2: 3: 4: 5:

0: NP
(Ahmad)

X S
Ahmad called Ali

X
Ahmad called Ali from

S1 S2
Ahmad called Ali from Hail

1: V
(Called)

VP
called Ali

X
called Ali from

VP2

VP1
called Ali from Hail

2: NP
(Ali)

X
Ali from

NP
Ali from Hail

3: P
(From)

PP
From Hail

4: NP
(Hail)S  NP VP VP  V NP NP  NP PP VP  VP PP PP  P NP

NP Ahmad | Ali | Hail V  called P  from

54

Ahmad called Ali from Hail

S

VP

PP

NP VP

V NP NPP

S  NP VP

VP  V NP

NP  NP PP

VP  VP PP

PP  P NP

NP  Ahmad | Ali | Hail

V  called

P  from

Ahmad called Ali from Hail

S

PP

NP VP

NP

NP

V

19 March 2008 55

Same Example: We might see it in different format

NP

P Hail

NP from

V Ali

NP called

Ahmad

S  NP VP

VP  V NP

NP  NP PP

VP  VP PP

PP  P NP

NP Ahmad | Ali |

Hail

V  called

P  from

19 March 2008 56

Example

S1

S2

VP1

VP2

NP PP NP

X X X P Hail

S VP NP from

X V Ali

NP called

Ahmad

19 March 2008 57

Problems with PCFGs
 The probability model we’re using is just based on

the rules in the derivation…
 Doesn’t take into account where in the derivation a rule is

used

 Doesn’t use the words in any real way

 In PCFGs we make a number of independence
assumptions.

 Context: Humans make wide use of context
 Context of who we are talking to, where we are, prior context of the

conversation.

 Prior discourse context

 We need to incorporate these sources of information
to build better parsers than PCFGs.

19 March 2008 58

Problems with PCFG

 Lack of sensitivity to words

 Attachment ambiguity

 Coordination ambiguity

 [[dogs in houses] and[cats]]

 dogs in [[houses] and [cats]]

19 March 2008 59

Problems with PCFG

Same set of rules used and hence the same probability

without considering individual words

19 March 2008 60

Structural context

 Assumption

 Probabilities are context-free

Ex: P(NP) is independent of where the NP is in the tree

 Pronouns, proper names and definite NPs : Subj

 NPs containing post-head modifiers and subcategorizes nouns :
Obj

 Need better probabilistic parser!

Expansion % as Subj % as Obj

NP  PRP 13.7% 2.1%

NP  DT NN 5.6% 4.6%

NP  NP PP 5.6% 14.1%

19 March 2008 61

Lexicalization

 Frequency of common Sub-categorization

frames

Local tree come take think want

VP  V 9.5% 2.6% 4.6% 5.7%

VP  V NP 1.1% 32.1% 0.2% 13.9%

VP  V PP 34.5% 3.1% 7.1% 0.3%

19 March 2008 62

Solution

 Add lexical dependencies to the scheme…

 Infiltrate the influence of particular words into the

probabilities in the derivation

 I.e. Condition on the actual words in the right

way

 All the words? No, only the right ones.

 Structural Context: Certain types have locational

preferences in the parse tree.

19 March 2008 63

Heads

 To do that we’re going to make use of the

notion of the head of a phrase

 The head of an NP is its noun

 The head of a VP is its verb

 The head of a PP is its preposition

(its really more complicated than that)

19 March 2008 64

Probabilistic Lexicalized CFGs

 Head child (underlined):

 S →NP VP

 VP →VBD NP

 VP →VBD NP PP

 PP →P NP

 NP →NNS

 NP →DT NN

 NP →NP PP

19 March 2008 65

Example (right): Attribute grammar

19 March 2008 66

Example (wrong): Attribute grammar

19 March 2008 67

Attribute grammar

Incorrect

19 March 2008 68

Probabilities?

 We used to have

 VP  V NP PP p (r |VP)

 That’s the count of this rule VP  V NP PP divided by the

number of VPs in a treebank

 Now we have

 VP(dumped)  V(dumped) NP(sacks) PP(in)

 p (r |VP ^ dumped is the verb ^ sacks is the head of the

NP ^ in is the head of the PP)

 Not likely to have significant counts in any treebank

19 March 2008 69

Sub-categorization

 Condition particular VP rules on their head… so

r: VP  V NP PP p (r |VP)

Becomes

p (r | VP ^ dumped)

What’s the count?

How many times was this rule used with dump, divided by

the number of VPs that dump appears in total

19 March 2008 70

Preferences

 The issue here is the attachment of the PP. So
the affinities we care about are the ones
between dumped and into vs. sacks and into.

 So count the places where dumped is the
head of a constituent that has a PP daughter
with into as its head and normalize

 Vs. the situation where sacks is a constituent
with into as the head of a PP daughter.

19 March 2008 71

So We Can Solve the Dumped Sacks Problem

From the Brown corpus:

p(VP  VBD NP PP | VP, dumped) = .67

p(VP  VBD NP | VP, dumped) = 0

p(into | PP, dumped) = .22

p(into | PP, sacks) = 0

So, the contribution of this part of the parse to the total scores

for the two candidates is:

[dumped into] .67  .22 = .147

[sacks into] 0  0 = 0

19 March 2008 72

Preferences (2)

 Consider the VPs

 Ate spaghetti with gusto ذوق

 Ate spaghetti with marinara صلصة

 The affinity of gusto for eat is much larger

than its affinity for spaghetti

 On the other hand, the affinity of marinara for

spaghetti is much higher than its affinity for

ate

19 March 2008 73

Preferences (2)

 Note the relationship here is more distant

and doesn’t involve a headword since gusto

and marinara aren’t the heads of the PPs.

VP (ate) VP(ate)

VP(ate) PP(with)

PP(with)

NP(spaghetti)

NP
VV

Ate spaghetti with marinaraAte spaghetti with gusto

NP

19 March 2008 74

Dependency Grammars

 Based purely on

lexical

dependency

(binary relations

between words)

 Constituents and

phrase-structure

rules have no

fundamental role

<ROOT>

main:

GAVE

ADDRESSHIM

I

MY .

subj:

dat:
obj:

attr:
pnct:

Key

Main: beginning of sentence

Subj: syntactic subject

Dat: indirect object

Obj: direct object

Attr: pre-modifying nominal

Pnct: punctuation mark

19 March 2008 75

Dependency Grammar Example

<Root>

Dumped

Workers Sacks Into

bin

a

Main:

objsubj
loc

pcomp

det

Depen

dency

Description

subj syntactic subject

obj direct object

dat indirect object

tmp temporal adverbials

loc location adverbials

attr Pre-modifying nominal

(possessives, etc.)

mod nominal post-modifiers

(prepositional phrases,

etc.)

pcomp Complement of a

preposition

comp Predicate nominal

19 March 2008 76

Grammars Dependency

Dependency Description

subj syntactic subject

obj direct object

dat indirect object

tmp temporal adverbials

loc location adverbials

attr Pre-modifying nominal (possessives, etc.)

mod nominal post-modifiers (prepositional

phrases, etc.)

pcomp Complement of a preposition

comp Predicate nominal

19 March 2008 77

Thank you

السلام علٌكم ورحمة الله

