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Previous Lectures

Introduction and Phases of an NLP system
NLP Applications - Chatting with Alice

Finite State Automata & Regular Expressions &
languages

Morphology: Inflectional & Derivational

Parsing and Finite State Transducers

Stemming & Porter Stemmer

Statistical NLP — Language Modeling

N Grams

Smoothing and NGram: Add-one & Witten-Bell
Parts of Speech - Arabic Parts of Speech

Syntax: Context Free Grammar (CFG) & Parsing
Parsing: Earley’s Algorithm

Probabilistic Parsing
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Today's Lecture

0O Lexicalized and Probabilistic Parsing

Administration: Previous Assignments
Probabilistic CYK (Cocke-Younger-Kasami)

Dependency Grammar
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Assignments

O WebCt visit
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Load corpora files

Folder Location:  G:'\DataContainer'\Data'\test1 Browse

List Text Files

Words with 100 appearance or more

[ Process ] || ||

[ Process ] || ||

Text File Mame

aypm - Copy (2). tut

dy i - Copy (3). et
au e - Copy (4). txt
&y - Copy (5). txt
ayi - Copy (B8). et
ay e - Copy (7). tut
iy - Copy (8). et

fy i - Copy (9). et

fyme - Copy. tut

ay e et

Total Text Files: 11

Total Tokes: 65527 Total Types: 23
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oz Analyzer =N | EoR(ExE

Path: 3:\DataContainer \Data'\testl | Browse |

Mumber of files: 11/11 Tokens: 43538 Types: 28

overslProgress:
oot

Result:

Analyze

a Zount Word




Be y

’ Show Text Files ]

Find Folder

There ars

Find the mast 100

files in the corpora

words used in the corpora

Word
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Browse For Felder

BE Desktop
- B Admingg
» . Public
> (M Computer
- ¥ Network
> Control Panel
£ Recycle Bin
> My Eluetooth Places

= o) MNew Folder

Make Mew Folder | [ Ok

] | Cancel
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What should we do?

O Suggestions
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Probabilistic CFGs

O The probabilistic model

Assigning probabilities to parse trees

0 Getting the probabilities for the model
O Parsing with probabilities

Slight modification to dynamic programming
approach

Task 1s to find the max probability tree for an
input

19 March 2008



e ————————————————
Getting the Probabilities

0 From an annotated database (a treebank)

0O Learned from a corpus

19 March 2008



e ——————————————————————————
Assumptions

0 We’re assuming that there 1s a grammar to be
used to parse with.

O We’re assuming the existence of a large robust
dictionary with parts of speech

O We’re assuming the ability to parse (1.e. a parser)

0O Given all that... we can parse probabilistically

19 March 2008
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Typical Approach

O Bottom-up dynamic programming approach

O Assign probabilities to constituents as they are
completed and placed 1n the table

0 Use the max probability for each constituent
going up

19 March 2008



e ————————————————
Max probability

O Say we’re talking about a final part of a parse
So=> NP, VP,

The probability of the S 1s...
P(S - NP VP)*P(NP)*P(VP)

The green stuff 1s already known. We’re doing
bottom-up parsing

19 March 2008
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Max

O The P(NP) 1s known.

O What 1if there are multiple NPs for the span of
text in question (0to 1)?

O Take the max (Why?)

O Does not mean that other kinds of constituents
for the same span are 1gnored (1.€. they might
be 1n the solution)

19 March 2008



e
Probabilistic Parsing

O Probabilistic CYK (Cocke-Younger-Kasami)
algorithm for parsing PCFG

O Bottom-up dynamic programming algorithm

0 Assume PCFG 1s in Chomsky Normal Form
(production is either A — B C or A — a)

19 March 2008



Chomsky Normal Form (CNF)

All rules have form:

A— BC and A—>a

/N |

Non-Terminal Non-Termina terminal



Examples:

S — AS 5 —> AS
S—>a S —(44S
A — SA A— 54
A—>b A—aa
Chomsky Not Chomsky

Normal Form Normal Form



e
Observations

Chomsky normal forms are good for
parsing and proving theorems

It 1s possible to find the Chomsky
normal form of any context-free
grammar

19 March 2008



———————————————————————
Probabilistic CYK Parsing of PCFGs

0 CYK Algorithm: bottom-up parser

O Input:

A Chomsky normal form PCFG, G= (N, X, P, S, D)
Assume that the N non-terminals have indices 1, 2, ...,
IN|, and the start symbol S has index 1

nwords w,,..., w

O Data Structure:

A dynamic programming array 7t/1,7,a/holds the
maximum probability for a constituent with non-terminal
index a spanning words 1..;.

O Output:
The maximum probability parse n//,n,1]

19 March 2008 AR



-
Base Case

0 CYK fills out n/1,7,a/by induction

O Base case

19 March 2008

Input strings with length = 1 (1individual words
W)
In CNF, the probability of a given non-terminal A

expanding to a single word w; must come only
from the rule A — w.ie., P(A — w)



e
Probabilistic CYK Algorithm

Function CYK(words, grammar)
return the most probable parse and its probability
For i <1 to num words
for a <1 to num nonterminals
If (A —-w) 1s in grammar then 7z/1, 1, a/ —P(A —w))
For span <2 to num words
For begin <1 to num words— span+ 1
end «—begin+ span— 1
For m «—beginto end— 1
For a <1 to num nonterminals
For b <1 to num nonterminals
For ¢ 1 to num nonterminals
prob «—zufbegin, m, b] X 7fm+1, end, c] X P(A —BC)
If (prob > nfbegin, end, a]) then
nfbegin, end, a] = prob
back[begin, end, a] = {m, b, ¢}
Return build tree(back/1, num words, 1]), nf1, num words, 1]

19 March 2008 YA



I ————————
The CYK Membership Algorithm

Input:

» Grammar G in Chomsky Normal Form

- String w

Output:

findif we L(G)



The Algorithm

Input example:
» Grammar G

S —> AB
A— BB
A—a
B — AB
B—b

- String  : w  aabbb

19 March 2008



aabbb

All substrings of length 1

All substrings of length 2

All substrings of length 3

All substrings of length 4

All substrings of length 5

19 March 2008

aa

aab

aabb

aabbb

a b
ab bb
abb bbb
abbb

bb

AR



S —> AB a a b b b
A4 —> BB A A B B B
A—>a aa ab bb bb
B —> AB

aab abb bbb
B—>b

aabb abbb

aabbb



I ————————

S — AB
A A B B B
A—>a aa ab bb  bb
B — A4B SB A A
aab abb bbb
B—>b

aabb abbb

aabbb

19 March 2008



S —> AB
A— BB
A—>a
B— AB
B—b

19 March 2008

a a b b b
A A B B B
aa ab bb bb
SB A A
aab abb bbb
SB A SB
aabb abbb
A SB
aabbb
(S8 aabbb € L(G)



I ————————

CYK Algorithm for Parsing CFG

IDEA: For each substring of a given input x,
find all variables which can derive the
substring. Once these have been found, telling
which variables generate x becomes a simple
matter of looking at the grammar, since 1t’s 1n
Chomsky normal form

19 March 2008



e ————————————————
CYK Example

S 2> NP VP

VP - V NP

NP - NP PP

VP - VP PP

PP 2> P NP

NP = Ahmad | Ali | Hail

V = called

P = from

Example: Ahmad called Ali from Hail

O O O O O O O 0O
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e ————————————————
CYK Example

o Ahmad | called , Ali ; from , Hail .

19 March 2008



I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4: 5:

start at

0: Ahmad Ahmad Ahmad Ahmad called Ahmad called Ali
called called Ali Ali from from Hail

1: called called Ali | called Ali from | called Ali from Hail

2: Ali Ali from Ali from Hail

3: from From Hail

4. Hail

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 YA



I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4: 5:
start at
0: NP
(Ahmad) Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
1: \Y
called Ali called Ali from called Ali from Hail
(Called)
D% NP
(Ah) Ali from Ali from Hail
3 P
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¥4



I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP X
(Ahmad) Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
1: \Y
(Called) called Ali called Ali from called Ali from Hail
2: NP
(Ah) Ali from Ali from Hail
: P
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 €



I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP X
(Ahmad) Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
I: V «—+—VP
(Called) called Ali called Ali from called Ali from Hail
v
2: NP
(Ah) Ali from Ali from Hail
: P
(From) From Hail
4: NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¢y



I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP X
(Ahmad) Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
I: V «—+—VP
(Called) called Ali called Ali from called Ali from Hail
v
2: NP X
(Ah) Ali from Ali from Hail
3: P
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¢y



I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4 5
start at
0: NP X
(Ahmad) Ahmad called Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
= V «<1—VP
(Called) called Ali called Ali from called Ali from Hail
v
Z NP X
(Ah) Ali from Ali from Hail
3: P « PP
(From) rom Hail
\ 4
4: NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¢y



I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4 5
start at
0: NP < X S
(Ahmad) Ahmad called Ahﬂ:}jd called Ali Ahmad called Ali from Ahmad called Ali from Hail
1: V VP
(Called) called Ali called Ali from called Ali from Hail
Z NP X
(Ah) Ali from Ali from Hail
3: P PP
(From) From Hail
4: NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 $¢



I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP < X S
(Ahmad) Ahﬂ:}jd called Ali Ahmad called Ali from Ahmad called Ali from Hail
1 ; V v\]P X called Ali from Hail
(Called) called Ali called Ali from
2: NP X Ali from Hail
(Ah) Ali from
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¢o



I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP - X S
(Ahmad) Ahﬂ:}jd called Ali Ahmad called Ali from Ahmad called Ali from Hail
1 ; V v\]P X called Ali from Hail
(Called) called Ali called Ali from
2: NP ° X NP
(Ah) Ali from A“i from Hail
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP
NP > Ahmad | Ali | Hail

19 March 2008

NP> NPPP VP-> VPPP PP—-> PNP
V = called P = from

1




I — -
o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP X S X
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
1 ; V VP X called Ali from Hail
(Called) called Ali called Ali from
2: NP X NP
(Ah) Ali from Ali from Hail
(From) From Hail
4. NP
(Hail)

S>NPVP VP> VNP NP->NPPP VP-> VPPP PP->PNP
NP - Ahmad | Ali | Hail V = called P = from

19 March 2008 ¢y



I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4 5
start at
0: NP X S X
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
¢ \4 VP - X VP
(Called) called Ali called Ali from called Ali from Hail
Z NP X NP
(Ah) Ali from Ali from Hail
> P PP
(From) From Hail
4. NP
(Hail)

S=>NPVP VP-> VNP
NP = Ahmad | Ali | Hail

19 March 2008

NP> NPPP VP-> VPPP PP—-> PNP
V = called P = from

¢A




I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4 5
start at
0: NP X S X
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
; v VP - X VP,
(Called) called Ali called Ali from called Ali from Hail
(Ah) Ali from Ali from Hail
3: P PP
(From) From Hail
4. NP
(Hail)

S=>NPVP VP-> VNP
NP = Ahmad | Ali | Hail

19 March 2008

NP> NPPP VP-> VPPP PP—-> PNP
V = called P = from

€9




I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2- 2 4 5
start at
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
l: \V4 VP X VP,
C 11 d called Ali called Ali from
(Called) Ve,
2: NP X NP |
(Ali) Ali from Ali from Hail
3: p PP
(From) From Hail
4. NP
S>NPVP VP->IVNP NP-NPPP VP> VPPP PP —=>PNP (Hai

NP = Ahmad | Ali | Hail

19 March 2008

V = called P = from




I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2- 2 4 5
start at
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmadjcalled Ali from Hail
C 11 d called Ali called Ali from v
(Called) vp,
2: NP X NP
(Ali) Ali from Ali from Hail
3: p PP
(From) From Hail
4: NP
S>NPVP VP->VNP NP-INPPP VP> VPPP PP PNP (Hai

NP = Ahmad | Ali | Hail

19 March 2008

V = called P = from
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I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4- 5
start at
0: NP X S X S,
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmadjcalled Ali from Hail
I \% VP X VP,
(Called) called Ali called Ali from VVPI
2 NP X NP
(Ali) Ali from Ali from Hail
(From) From Hail
4: NP
S2NPVP VP2>IVNP NPANPPP VP> VPPP PP PNP (Hai

NP > Ahmad | Ali | Hail

19 March 2008

V = called P = from
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I ————————

o Ahmad |, called , Al ; from , Hail .

end at l: 2: 3: 4: 5:
start at
0: NP X S X S, S,
(Ahmad) Ahmad called Ali Ahmad called Ali from Ahmad called Ali from Hail
1 v VP X vP,"
(Called) called Ali called Ali from VPI
called Ali from Hail
2: NP X NP
(Ah) Ali from Ali from Hail
3: P PP
(From) From Hail
4: NP
S=>NPVP VP-> VINP NP> NPPP VP> VRPP PP->PNP (Hail)
NP - Ahmad | Ali | Hail V = called P - from

19 March 2008
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S > NPVP

VP 2> V NP

NP - NP PP

VP - VP PP

PP > P NP

NP - Ahmad | Ali | Hail
V - called

P - from

o¢

N
N e

RN
Vo NP

Ahmad called

P
Ali  from

S

NP/\ VP

v
Ahmad called

Ali

\

AN

NP
Hail

NP
NP/ N PP

from

Hail



Same Example: We might see it in different format

NP

Hail

NP

from

v

Al

NP

called

Ahmad

19 March 2008

S > NP VP

VP > V NP

NP - NP PP

VP > VP PP

PP > P NP

NP - Ahmad | Ali |
Hail

V - called

P - from



Example
S, VP, NP PP NP
S, VP,
X X X P Hail
S VP NP from
X Vv Ali
NP called
Ahmad

19 March 2008
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Problems with PCFGs

O The probability model we’re using 1s just based on
the rules 1n the derivation...

Doesn’t take into account where 1n the derivation a rule is
used

Doesn’t use the words 1n any real way

O In PCFGs we make a number of independence
assumptions.

0O Context: Humans make wide use of context

Context of who we are talking to, where we are, prior context of the
conversation.

Prior discourse context
O We need to incorporate these sources of information
to build better parsers than PCFGs.

19 March 2008 oy



I ————————

Problems with PCFG

O Lack of sensitivity to words

O Attachment ambiguity

O Coordination ambiguity

| [ dogs in houses] and| cats] |
dogs in | | houses | and | cats] ]

19 March 2008



e
Problems with PCFG

(a) NP (b)
/
NP C(}hf’ /\
NP/\PP and Noun Noum Prep/\NP
Noun Pﬂ{\NP cats dogs iL N,P//Ehf’
dogs iI|] Noun Noun and Noun
houses houses cats

Same set of rules used and hence the same probability
without considering individual words

19 March 2008 o4



R RO =
Structural context

O Assumption

Probabilities are context-free
Ex: P(NP) 1s independent of where the NP 1s in the tree

Expansion % as Sub;j % as Obj
NP — PRP 13.7% 2.1%
NP —-> DT NN 5.6% 4.6%
NP —-> NPPP  5.6% 14.1%

Pronouns, proper names and definite NPs : Subj

NPs containing post-head modifiers and subcategorizes nouns :
Obj

Need better probabilistic parser!

19 March 2008 T
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[ exicalization

O Frequency of common Sub-categorization

frames
Local tree come take think want
VP>V 9.5% 2.6% 4.6% 5.7%
VP> VNP 1.1% 32.1% 0.2% 13.9%
VP> VPP 34.5% 3.1% 7.1% 0.3%

19 March 2008



e —
Solution

0 Add lexical dependencies to the scheme...

Infiltrate the influence of particular words into the
probabilities 1n the derivation

[.e. Condition on the actual words 1n the right
way
All the words? No, only the right ones.

O Structural Context: Certain types have locational
preferences in the parse tree.

19 March 2008 1y



Heads

O To do that we’re going to make use of the
notion of the head of a phrase

m The head of an NP 1s its noun

m The head of a VP 1s its verb

m The head of a PP 1s 1its preposition

(its really more complicated than that)

19 March 2008 1y
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Probabilistic Lexicalized CFGs

Head child (underlined):
S —NP VP

L
L]
| Tag  Description Example | Tag Description Example |
VP VBD NP CC  Coordin. Conjunction and, but, or SYM Symbol +.%, &
D H CD Cardimal number one, two, three || TO  “to” fo
- DT  Determiner a, the UH Interjection ah, oops
EX  Existential ‘there’  there VB Verb, base form eat
D VP HVBD NP PP FW  Foreign word mea culpa VBD Verb, past tense ate
—_— IN Preposition/sub-conj of; in, by VBG Verb, gerund eating
I Adjective vellow VBN Verb, past participle eaten
JTR Ad)., comparative bigger VBP Verb, non-3sg pres ear
D PP HP NP JIS  Adj., superlative wildest VBZ Verb, 3sg pres eats
—_— LS List item marker 1, 2, One WDT Wh-determiner which, that
MD  Modal can, should WP Wh-pronoun what, who
NP NN S NN  Noun, sing. ormass [llama WP$ Possessive wh- whose
D —> NNS  Noun, plural Hamas WRB Wh-adverb how, where
- NNP  Proper noun, singular JBM b Dollar sign $
NNPS Proper noun, plural ~ Carolinas # Pound sign #
D NP _)DT NN PDT Predeterminer all, both “ Left quote (‘for)
- POS Possessive ending s " Right quote (Cor™
PP Personal pronoun I vou, he ( Left parenthesis (LG{.
PP$  Possessive pronoun  your, one’s ) Right parenthesis ~ ( ]. ). }. >)
D NP —)NP PP RB  Adverb quickly, never | . Comma :
_— RBR Adverb, comparative fasfer . Sentence-final punc (. ! 7)
RBS Adverb, superlative  fastest : Mid-sentence punc (: ;... — =)
RP  Particle up, off

19 March 2008 T¢



e ————————————————
Example (right): Attribute grammar

S(dumped)
/\

NP(workers) VP(dumped)

/\

NNS(workers) VBD(dumped) NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)
/\

DT(a) NN(bin)

workers dumped sacks into a bin
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———————————————————————
tribute grammar

Example (wrong): A

S(dumped)
/\
NP(workers) VP(dumped)
/\
NNS(workers) VBD(dumped) NP(sacks)
NP(sacks) PP(into)
/\
NNS(sacks) P(into) NP(bin)
DT(a) NN(bin)
workers dumped sacks into zla blln
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———————————————————————
Attribute grammar

S(dumped)
NP(workers)

NNS(w!orkers) VBD(dumped)

workers

dumped

S(dumped)
NP(workers) VP(dumped)
NNS(vsl'orkers) VBD(dumped) NP(sacks) PP(into)
NNS(sacks) P(into) NP(bin)
DT(a) NN(bin)
workers dumped sacks into  a bln
vrteed) Incorrect
NP(sacks)
NP(sacks) PP(into)
NNS(Lacks) P(into) NP(bin)
DT(a) NN(bin)
sacks into a blln
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Probabilities?

O We used to have

= VP> VNPPP p(r|VP)

o That’s the count of this rule VP = V NP PP divided by the
number of VPs 1n a treebank

0O Now we have

=  VP(dumped) 2 V(dumped) NP(sacks) PP(in)

m  p(r|VP " dumped is the verb * sacks 1s the head of the
NP * 1n 1s the head of the PP)

m Not likely to have significant counts in any treebank

19 March 2008 TA



e ——————————————————————————
Sub-categorization

0 Condition particular VP rules on their head... so
. VP> VNPPP p(r|VP)

Becomes
p (r| VP * dumped)

What’s the count?

How many times was this rule used with dump, divided by
the number of VPs that dump appears 1n total
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Preferences

O The 1ssue here 1s the attachment of the PP. So
the affinities we care about are the ones
between dumped and 1nto vs. sacks and into.

O So count the places where dumped 1s the
head of a constituent that has a PP daughter
with 1nto as 1ts head and normalize

O Vs. the situation where sacks 1s a constituent
with 1nto as the head of a PP daughter.
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=
S0 We Can Solve the Dumped Sacks Problem

From the Brown corpus:
p(VP — VBD NP PP | VP, dumped) = .67
p(VP — VBD NP | VP, dumped) =0
p(into | PP, dumped) = .22
p(into | PP, sacks) =0

So, the contribution of this part of the parse to the total scores
for the two candidates is:

[dumped 1nto] 67 x .22 =.147
[sacks into] 0x O =0
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e ————————————————
Preferences (2)

O Consider the VPs
Ate spaghett1 with gusto ..

Ate spaghetti with marinara .

0 The affinity of gusto for eat 1s much larger
than 1ts affinity for spaghetti

O On the other hand, the affinity of marinara for
spaghetti 1s much higher than its affinity for
ate
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Preferences (2)

O Note the relationship here 1s more distant
and doesn’t involve a headword since gusto
and marinara aren’t the heads of the PPs.

VP (ate)
ygte) PR(with)
V NP \

. .
Ate spaghetti with gusto ~ Ate spaghetti with marinara
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Dependency Grammars

O Based purely on

lexical <ROOT>
dependency \mam:
(binary relations GAVE

between words)

O Constituents and
phrase-structure HIM  ADDRESS
rules have no
fundamental role

pnct:
Key attr:
Main. beginning of sentence
Subj. syntactic subject
Dat: indirect object MY
Oby: direct object
Attr: pre-moditying nominal

Pnct: punctuation mark
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Dependency Grammar Example

<Root>
Main:
Durﬁ’ped
subj obj
Workers Sacks

19 March 2008

loc

Depen | Description

dency

subj syntactic subject

obj direct object

dat indirect object

tmp temporal adverbials

loc location adverbials

attr Pre-modifying nominal
(possessives, etc.)

mod nominal post-modifiers
(prepositional phrases,
etc.)

pcomp | Complement of a

preposition

comp

Predicate nominal




e
Grammars Dependency

Dependency | Description

subj syntactic subject

obj direct object

dat indirect object

tmp temporal adverbials

loc location adverbials

attr Pre-modifying nominal (possessives, etc.)

mod nominal post-modifiers (prepositional
phrases, etc.)

pcomp Complement of a preposition

comp Predicate nominal
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Thank you
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