
1

Lexicalized and

Probabilistic Parsing – Part

1

ICS 482 Natural Language

Processing
Lecture 14: Lexicalized and Probabilistic

Parsing – Part 1

Husni Al-Muhtaseb

2

بسم الله الرحمن الرحيم

ICS 482 Natural Language

Processing

Lecture 14: Lexicalized and Probabilistic

Parsing – Part 1

Husni Al-Muhtaseb

NLP Credits and

Acknowledgment

These slides were adapted from
presentations of the Authors of the
book
SPEECH and LANGUAGE PROCESSING:

An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition

and some modifications from
presentations found in the WEB by
several scholars including the following

http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html

NLP Credits and

Acknowledgment

If your name is missing please contact me

muhtaseb

At

Kfupm.

Edu.

sa

NLP Credits and Acknowledgment

Husni Al-Muhtaseb

James Martin

Jim Martin

Dan Jurafsky

Sandiway Fong

Song young in

Paula Matuszek

Mary-Angela Papalaskari

Dick Crouch

Tracy Kin

L. Venkata Subramaniam

Martin Volk

Bruce R. Maxim

Jan Hajič

Srinath Srinivasa

Simeon Ntafos

Paolo Pirjanian

Ricardo Vilalta

Tom Lenaerts

Heshaam Feili

Björn Gambäck

Christian Korthals
Thomas G. Dietterich
Devika Subramanian
Duminda Wijesekera
Lee McCluskey
David J. Kriegman

Kathleen McKeown

Michael J. Ciaraldi

David Finkel

Min-Yen Kan

Andreas Geyer-Schulz

Franz J. Kurfess

Tim Finin

Nadjet Bouayad

Kathy McCoy

Hans Uszkoreit

Azadeh Maghsoodi

Khurshid Ahmad

Staffan Larsson

Robert Wilensky

Feiyu Xu

Jakub Piskorski

Rohini Srihari

Mark Sanderson

Andrew Elks

Marc Davis

Ray Larson

Jimmy Lin

Marti Hearst

Andrew McCallum

Nick Kushmerick

Mark Craven

Chia-Hui Chang

Diana Maynard

James Allan

Martha Palmer
julia hirschberg
Elaine Rich
Christof Monz
Bonnie J. Dorr
Nizar Habash
Massimo Poesio
David Goss-Grubbs
Thomas K Harris
John Hutchins
Alexandros
Potamianos
Mike Rosner
Latifa Al-Sulaiti
Giorgio Satta
Jerry R. Hobbs
Christopher Manning
Hinrich Schütze
Alexander Gelbukh
Gina-Anne Levow
Guitao Gao
Qing Ma
Zeynep Altan

19 March 2008 6

Previous Lectures
 Introduction and Phases of an NLP system

 NLP Applications - Chatting with Alice

 Finite State Automata, Regular Expressions &languages

 Morphology: Inflectional & Derivational

 Parsing and Finite State Transducers

 Stemming & Porter Stemmer

 Statistical NLP – Language Modeling

 N Grams, Smoothing : Add-one & Witten-Bell

 Parts of Speech - Arabic Parts of Speech

 Syntax: Context Free Grammar (CFG) & Parsing

 Parsing: Top-Down, Bottom-Up, Top-down parsing
with bottom-up filtering

 Earley’s Algorithm – Pop quiz on Earley’s Algorithm

19 March 2008 7

Today's Lecture

 Quiz 2 – 25 minutes

 Lexicalized and Probabilistic Parsing

19 March 2008 8

Natural Language Understanding

Input Tokenization/

Morphology
Parsing

Semantic

Analysis

Pragmatics/

Discourse

Meaning

Input

19 March 2008 9

Lexicalized and Probabilistic Parsing

 Resolving structural ambiguity:

choose the most probable parse

 Use lexical dependency (relationship

between words)

19 March 2008 10

Probability Model (1)

 A derivation (tree) consists of the set of

grammar rules that are in the tree

 The probability of a derivation (tree) is just

the product of the probabilities of the rules in

the derivation

19 March 2008 11

Probability Model (1.1)

 The probability of a word sequence (sentence)

is the probability of its tree in the unambiguous

case

 It’s the sum of the probabilities of the trees in

the ambiguous case

19 March 2008 12

Formal

T Parse tree

r rule

n node in the pars tree

p(r(n)) probability of the rule expanded from node n

19 March 2008 13

Probability Model

 Attach probabilities to grammar rules

 The expansions for a given non-terminal sum

to 1

VP  Verb .55

VP  Verb NP .40

VP  Verb NP NP .05

19 March 2008 14

Probabilistic Context-Free Grammars

NP Det N : 0.4

NP  NPposs N : 0.1

NP Pronoun : 0.2

NP NP PP : 0.1

NP N : 0.2

NP

Det

NP

N

PP

P(subtree above) = 0.1 x 0.4 = 0.04

19 March 2008 15

Probabilistic Context-Free Grammars
 PCFG

 Also called Stochastic CFG (SCFG)

 G = (N, Σ, P, S, D)
 A set of non-terminal symbols (or variables) N

 A set of terminal symbols Σ (N ∑= Ø)

 A set of productions P, each of the form A → α,
where A  N and α  (ΣN)*
 * denotes finite length of the infinite set of strings (ΣN)

 A designated start symbol S  N

 A function D that assigns a probability to each rule in P

 P(A →α) or P(A →α| A)

19 March 2008 16

Probabilistic Context-Free Grammars

19 March 2008 17

English practice

 What do you understand from the sentence:

“Can you book TWA flights?”

 Can you book flights on behalf of TWA?

 → [TWA] [flights]

 Can you book flights run by TWA?

 → [TWA flights]

19 March 2008 18

19 March 2008 19

PCFG

19 March 2008 20

PCFG

T Parse tree

r rule

n node in the pars tree

p(r(n)) propability of the role

expanded from node n

19 March 2008 21

A simple PCFG (in CNF)

 S → NP VP 1.0

 PP → P NP 1.0

 VP → V NP 0.7

 VP → VP PP 0.3

 P → with 1.0

 V → saw 1.0

 NP → NP PP 0.4

 NP → astronomers 0.1

 NP → ears 0.18

 NP → saw 0.04

 NP → stars 0.18

 NP → telescopes 0.1

19 March 2008 22

Ex: Astronomers saw stars with ears

19 March 2008 23

The two parse trees' probabilities & the

sentence probability

 P(t1) =1.0 x 0.1 x 0.7 x 1.0 x 0.4 x 0.18 x

1.0 x 1.0 x 0.18 = 0.0009072

 P(t2) =1.0 x 0.1 x 0.3 x 0.7 x 1.0 x 0.18 x

1.0 x 1.0 x 0.18 = 0.0006804

 P(w15) =P(t1) + P(t2) =0.0015876

19 March 2008 24

S → NP VP 1.0

PP → P NP 1.0

VP → V NP 0.7

VP → VP PP 0.3

P → with 1.0

V → saw 1.0

NP → NP PP 0.4

NP → astronomers 0.1

NP → ears 0.18

NP → saw 0.04

NP → stars 0.18

NP → telescopes 0.1

 P(t1) =1.0 x 0.1 x 0.7 x 1.0 x 0.4 x 0.18 x 1.0 x 1.0 x 0.18 = 0.0009072

 P(t2) =1.0 x 0.1 x 0.3 x 0.7 x 1.0 x 0.18 x 1.0 x 1.0 x 0.18 = 0.0006804

 P(w15) =P(t1) + P(t2) =0.0015876

19 March 2008 25

Probabilistic CFGs

 The probabilistic model

 Assigning probabilities to parse trees

 Getting the probabilities for the model

 Parsing with probabilities

 Slight modification to dynamic programming

approach

 Task is to find the max probability tree for an

input

19 March 2008 26

Getting the Probabilities

 From an annotated database (a treebank)

 Learned from a corpus

19 March 2008 27

Treebank

 Get a large collection of parsed sentences

 Collect counts for each non-terminal rule

expansion in the collection

 Normalize

 Done

19 March 2008 28

Learning

 What if you don’t have a treebank (and can’t get

one)

 Take a large collection of text and parse it.

 In the case of syntactically ambiguous sentences

collect all the possible parses

 Prorate the rule statistics gathered for rules in the

ambiguous case by their probability

 Proceed as you did with a treebank.

 Inside-Outside algorithm

19 March 2008 29

Assumptions

 We’re assuming that there is a grammar to be

used to parse with.

 We’re assuming the existence of a large robust

dictionary with parts of speech

 We’re assuming the ability to parse (i.e. a parser)

 Given all that… we can parse probabilistically

19 March 2008 30

Typical Approach

 Bottom-up dynamic programming approach

 Assign probabilities to constituents as they are

completed and placed in the table

 Use the max probability for each constituent

going up

19 March 2008 31

Max probability

 Say we’re talking about a final part of a parse

 S0  NPiVPj

The probability of the S is…

P(S  NP VP)*P(NP)*P(VP)

The green stuff is already known. We’re doing

bottom-up parsing

19 March 2008 32

Max

 The P(NP) is known.

 What if there are multiple NPs for the span of

text in question (0 to i)?

 Take the max (Why?)

 Does not mean that other kinds of constituents

for the same span are ignored (i.e. they might

be in the solution)

19 March 2008 33

Probabilistic Parsing

 Probabilistic CYK (Cocke-Younger-Kasami)

algorithm for parsing PCFG

 Bottom-up dynamic programming algorithm

 Assume PCFG is in Chomsky Normal Form

(production is either A → B C or A → a)

19 March 2008 34

Chomsky Normal Form (CNF)

All rules have form:

BCA

Non-Terminal Non-Terminal

aAand

terminal

19 March 2008 35

Examples:

bA

SAA

aS

ASS









Not Chomsky

Normal Form

aaA

SAA

AASS

ASS









Chomsky

Normal Form

19 March 2008 36

Observations

 Chomsky normal forms are good for

parsing and proving theorems

 It is possible to find the Chomsky

normal form of any context-free

grammar

19 March 2008 37

Probabilistic CYK Parsing of PCFGs

 CYK Algorithm: bottom-up parser

 Input:
 A Chomsky normal form PCFG, G= (N, Σ, P, S, D)

Assume that the N non-terminals have indices 1, 2, …,
|N|, and the start symbol S has index 1

 n words w1,…, wn

 Data Structure:
 A dynamic programming array π[i,j,a] holds the

maximum probability for a constituent with non-terminal
index a spanning words i..j.

 Output:
 The maximum probability parse π[1,n,1]

19 March 2008 38

Base Case

 CYK fills out π[i,j,a] by induction

 Base case

 Input strings with length = 1 (individual words

wi)

 In CNF, the probability of a given non-terminal A

expanding to a single word wi must come only

from the rule A → wi i.e., P(A → wi)

19 March 2008 39

Probabilistic CYK Algorithm [Corrected]
Function CYK(words, grammar)

return the most probable parse and its probability

For i ←1 to num_words

for a ←1 to num_nonterminals

If (A →wi) is in grammar then π[i, i, a] ←P(A →wi)

For span ←2 to num_words

For begin ←1 to num_words – span + 1

end ←begin + span – 1

For m ←begin to end – 1

For a ←1 to num_nonterminals

For b ←1 to num_nonterminals

For c ←1 to num_nonterminals

prob ←π[begin, m, b] × π[m+1, end, c] × P(A →BC)

If (prob > π[begin, end, a]) then

π[begin, end, a] = prob

back[begin, end, a] = {m, b, c}

Return build_tree(back[1, num_words, 1]), π[1, num_words, 1]

19 March 2008 40

The CYK Membership Algorithm

Input:

• Grammar in Chomsky Normal Form G

• String

Output:

find if)(GLw

w

19 March 2008 41

The Algorithm

• Grammar :G

bB

ABB

aA

BBA

ABS











• String : w aabbb

Input example:

19 March 2008 42

 a

a b b b

 aa ab bb bb

 aab abb bbb

 aabb abbb

 aabbb

aabbb

All substrings of length 1

All substrings of length 2

All substrings of length 3

All substrings of length 4

All substrings of length 5

19 March 2008 43

a

A

a

A

b

B

b

B

b

B

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

bB

ABB

aA

BBA

ABS











19 March 2008 44

a

A

a

A

b

B

b

B

b

B

aa ab

S,B

bb

A

bb

A

aab abb bbb

aabb abbb

aabbb

bB

ABB

aA

BBA

ABS











19 March 2008 45

a

A

a

A

b

B

b

B

b

B

aa ab

S,B

bb

A

bb

A

aab

S,B

abb

A

bbb

S,B

aabb

A

abbb

S,B

aabbb

S,B

bB

ABB

aA

BBA

ABS











Therefore:)(GLaabbb 

19 March 2008 46

CYK Algorithm for Deciding

Context Free Languages

IDEA: For each substring of a given input x,

find all variables which can derive the

substring. Once these have been found, telling

which variables generate x becomes a simple

matter of looking at the grammar, since it’s in

Chomsky normal form

19 March 2008 47

Thank you

السلام عليكم ورحمة الله

