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Previous Lectures
 Introduction and Phases of an NLP system

 NLP Applications - Chatting with Alice

 Finite State Automata, Regular Expressions &languages

 Morphology: Inflectional & Derivational

 Parsing and Finite State Transducers

 Stemming & Porter Stemmer

 Statistical NLP – Language Modeling 

 N Grams, Smoothing : Add-one & Witten-Bell

 Parts of Speech - Arabic Parts of Speech 

 Syntax: Context Free Grammar (CFG) & Parsing

 Parsing: Top-Down, Bottom-Up, Top-down parsing 
with bottom-up filtering

 Earley’s Algorithm – Pop quiz on Earley’s Algorithm
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Today's Lecture

 Quiz 2 – 25 minutes

 Lexicalized and Probabilistic Parsing
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Natural Language Understanding

Input Tokenization/

Morphology
Parsing

Semantic

Analysis

Pragmatics/

Discourse

Meaning

Input
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Lexicalized and Probabilistic Parsing

 Resolving structural ambiguity: 

choose the most probable parse 

 Use lexical dependency (relationship 

between words) 
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Probability Model (1)

 A derivation (tree) consists of the set of 

grammar rules that are in the tree

 The probability of a derivation (tree) is just 

the product of the probabilities of the rules in 

the derivation
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Probability Model (1.1)

 The probability of a word sequence (sentence) 

is the probability of its tree in the unambiguous 

case

 It’s the sum of the probabilities of the trees in 

the ambiguous case
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Formal

T Parse tree

r rule

n node in the pars tree

p(r(n)) probability of the rule expanded from node n
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Probability Model

 Attach probabilities to grammar rules

 The expansions for a given non-terminal sum 

to 1

VP  Verb .55

VP  Verb NP .40

VP  Verb NP NP .05
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Probabilistic Context-Free Grammars

NP Det N :  0.4

NP  NPposs N :  0.1

NP Pronoun :  0.2

NP NP PP :  0.1

NP N :  0.2

NP

Det

NP

N

PP

P(subtree above) = 0.1 x 0.4 = 0.04
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Probabilistic Context-Free Grammars
 PCFG

 Also called Stochastic CFG (SCFG)

 G = (N, Σ, P, S, D)
 A set of non-terminal symbols (or variables) N

 A set of terminal symbols Σ              (N ∑= Ø)

 A set of productions P, each of the form A → α, 
where A  N and α  (ΣN)*
 * denotes finite length of the infinite set of strings (ΣN)

 A designated start symbol S  N

 A function D that assigns a probability to each rule in P

 P(A →α) or P(A →α| A) 
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Probabilistic Context-Free Grammars
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English practice

 What do you understand from the sentence:

“Can you book TWA flights?”

 Can you book flights on behalf of TWA? 

 → [TWA] [flights]

 Can you book flights run by TWA?

 → [TWA flights]
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PCFG
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PCFG 

T Parse tree

r rule

n node in the pars tree

p(r(n)) propability of the role 

expanded from node n
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A simple PCFG (in CNF)

 S → NP VP 1.0 

 PP → P NP 1.0

 VP → V NP 0.7

 VP → VP PP 0.3

 P → with 1.0

 V → saw 1.0

 NP → NP PP 0.4

 NP → astronomers 0.1

 NP → ears 0.18

 NP → saw 0.04

 NP → stars 0.18

 NP → telescopes 0.1
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Ex: Astronomers saw stars with ears
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The two parse trees' probabilities & the 

sentence probability

 P(t1) =1.0 x 0.1 x 0.7 x 1.0 x 0.4 x 0.18 x 

1.0 x 1.0 x 0.18 = 0.0009072

 P(t2) =1.0 x 0.1 x 0.3 x 0.7 x 1.0 x 0.18 x 

1.0 x 1.0 x 0.18 = 0.0006804

 P(w15) =P(t1) + P(t2) =0.0015876
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S → NP VP 1.0 

PP → P NP 1.0

VP → V NP 0.7

VP → VP PP 0.3

P → with 1.0

V → saw 1.0

NP → NP PP 0.4

NP → astronomers 0.1

NP → ears 0.18

NP → saw 0.04

NP → stars 0.18

NP → telescopes 0.1

 P(t1) =1.0 x 0.1 x 0.7 x 1.0 x 0.4 x 0.18 x 1.0 x 1.0 x 0.18 = 0.0009072

 P(t2) =1.0 x 0.1 x 0.3 x 0.7 x 1.0 x 0.18 x 1.0 x 1.0 x 0.18 = 0.0006804

 P(w15) =P(t1) + P(t2) =0.0015876
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Probabilistic CFGs

 The probabilistic model

 Assigning probabilities to parse trees

 Getting the probabilities for the model

 Parsing with probabilities

 Slight modification to dynamic programming 

approach

 Task is to find the max probability tree for an 

input
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Getting the Probabilities

 From an annotated database (a treebank)

 Learned from a corpus
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Treebank

 Get a large collection of parsed sentences

 Collect counts for each non-terminal rule 

expansion in the collection

 Normalize

 Done
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Learning

 What if you don’t have a treebank (and can’t get 

one)

 Take a large collection of text and parse it.

 In the case of syntactically ambiguous sentences 

collect all the possible parses

 Prorate the rule statistics gathered for rules in the 

ambiguous case by their probability

 Proceed as you did with a treebank.

 Inside-Outside algorithm
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Assumptions

 We’re assuming that there is a grammar to be 

used to parse with.

 We’re assuming the existence of a large robust 

dictionary with parts of speech

 We’re assuming the ability to parse (i.e. a parser)

 Given all that… we can parse probabilistically 
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Typical Approach

 Bottom-up dynamic programming approach

 Assign probabilities to constituents as they are 

completed and placed in the table

 Use the max probability for each constituent 

going up
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Max probability

 Say we’re talking about a final part of a parse

 S0  NPiVPj

The probability of the S is…

P(S  NP VP)*P(NP)*P(VP)

The green stuff is already known. We’re doing 

bottom-up parsing
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Max

 The P(NP) is known.

 What if there are multiple NPs for the span of 

text in question (0 to i)?

 Take the max (Why?)

 Does not mean that other kinds of constituents 

for the same span are ignored (i.e. they might 

be in the solution)
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Probabilistic Parsing

 Probabilistic CYK (Cocke-Younger-Kasami) 

algorithm for parsing PCFG 

 Bottom-up dynamic programming algorithm 

 Assume PCFG is in Chomsky Normal Form 

(production is either A → B C or A → a) 
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Chomsky Normal Form (CNF)

All rules have form:

BCA

Non-Terminal Non-Terminal

aAand

terminal
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Examples:

bA

SAA

aS

ASS









Not Chomsky

Normal Form 

aaA

SAA

AASS

ASS









Chomsky 

Normal Form 
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Observations

 Chomsky normal forms are good for 

parsing and proving theorems

 It is possible to find the Chomsky 

normal form of any context-free 

grammar 
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Probabilistic CYK Parsing of PCFGs

 CYK Algorithm: bottom-up parser 

 Input: 
 A Chomsky normal form PCFG, G= (N, Σ, P, S, D) 

Assume that the N non-terminals have indices 1, 2, …, 
|N|, and the start symbol S has index 1 

 n words w1,…, wn

 Data Structure: 
 A dynamic programming array π[i,j,a] holds the 

maximum probability for a constituent with non-terminal 
index a spanning words i..j. 

 Output: 
 The maximum probability parse π[1,n,1] 
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Base Case

 CYK fills out π[i,j,a] by induction 

 Base case 

 Input strings with length = 1 (individual words 

wi) 

 In CNF, the probability of a given non-terminal A 

expanding to a single word wi must come only 

from the rule A → wi i.e., P(A → wi) 
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Probabilistic CYK Algorithm [Corrected]
Function CYK(words, grammar) 

return the most probable parse and its probability 

For i ←1 to num_words

for a ←1 to num_nonterminals

If (A →wi) is in grammar then π[i, i, a] ←P(A →wi)

For span ←2 to num_words

For begin ←1 to num_words – span + 1 

end ←begin + span – 1 

For m ←begin to end – 1 

For a ←1 to num_nonterminals 

For b ←1 to num_nonterminals

For c ←1 to num_nonterminals

prob ←π[begin, m, b] × π[m+1, end, c] × P(A →BC)

If (prob > π[begin, end, a]) then 

π[begin, end, a] = prob 

back[begin, end, a] = {m, b, c}

Return build_tree(back[1, num_words, 1]), π[1, num_words, 1]
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The CYK Membership Algorithm

Input:

• Grammar       in Chomsky Normal Form G

• String

Output:

find if )(GLw

w
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The Algorithm

• Grammar     :G

bB

ABB

aA

BBA

ABS











• String     : w aabbb

Input example:
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 a 

 

a b b b 

 aa ab bb bb  

 aab abb bbb   

 aabb abbb    

 aabbb     
 

 

aabbb

All substrings of length 1

All substrings of length 2

All substrings of length 3

All substrings of length 4

All substrings of length 5
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a

A

a

A

b

B

b

B

b

B

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

bB

ABB

aA

BBA

ABS










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a

A

a

A

b

B

b

B

b

B

aa ab

S,B

bb

A

bb

A

aab abb bbb

aabb abbb

aabbb

bB

ABB

aA

BBA

ABS










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a

A

a

A

b

B

b

B

b

B

aa ab

S,B

bb

A

bb

A

aab

S,B

abb

A

bbb

S,B

aabb

A

abbb

S,B

aabbb

S,B

bB

ABB

aA

BBA

ABS











Therefore: )(GLaabbb 
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CYK Algorithm for Deciding 

Context Free Languages

IDEA:  For each substring of a given input x, 

find all variables which can derive the 

substring.  Once these have been found, telling 

which variables generate x becomes a simple 

matter of looking at the grammar, since it’s in 

Chomsky normal form
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Thank you

السلام عليكم ورحمة الله


