
3/19/2008 1

Parsing Context-free grammars –

Part 1

ICS 482 Natural Language Processing

Lecture 12: Parsing Context-free grammars –

Part 1

Husni Al-Muhtaseb

3/19/2008 2

بسم الله الرحمن الرحيم

ICS 482 Natural Language Processing

Lecture 12: Parsing Context-free grammars –

Part 1

Husni Al-Muhtaseb

NLP Credits and

Acknowledgment

These slides were adapted from
presentations of the Authors of the
book
SPEECH and LANGUAGE PROCESSING:

An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition

and some modifications from
presentations found in the WEB by
several scholars including the following

http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html

NLP Credits and

Acknowledgment

If your name is missing please contact me

muhtaseb

At

Kfupm.

Edu.

sa

NLP Credits and Acknowledgment

Husni Al-Muhtaseb

James Martin

Jim Martin

Dan Jurafsky

Sandiway Fong

Song young in

Paula Matuszek

Mary-Angela Papalaskari

Dick Crouch

Tracy Kin

L. Venkata Subramaniam

Martin Volk

Bruce R. Maxim

Jan Hajič

Srinath Srinivasa

Simeon Ntafos

Paolo Pirjanian

Ricardo Vilalta

Tom Lenaerts

Heshaam Feili

Björn Gambäck

Christian Korthals
Thomas G. Dietterich
Devika Subramanian
Duminda Wijesekera
Lee McCluskey
David J. Kriegman

Kathleen McKeown

Michael J. Ciaraldi

David Finkel

Min-Yen Kan

Andreas Geyer-Schulz

Franz J. Kurfess

Tim Finin

Nadjet Bouayad

Kathy McCoy

Hans Uszkoreit

Azadeh Maghsoodi

Khurshid Ahmad

Staffan Larsson

Robert Wilensky

Feiyu Xu

Jakub Piskorski

Rohini Srihari

Mark Sanderson

Andrew Elks

Marc Davis

Ray Larson

Jimmy Lin

Marti Hearst

Andrew McCallum

Nick Kushmerick

Mark Craven

Chia-Hui Chang

Diana Maynard

James Allan

Martha Palmer
julia hirschberg
Elaine Rich
Christof Monz
Bonnie J. Dorr
Nizar Habash
Massimo Poesio
David Goss-Grubbs
Thomas K Harris
John Hutchins
Alexandros
Potamianos
Mike Rosner
Latifa Al-Sulaiti
Giorgio Satta
Jerry R. Hobbs
Christopher Manning
Hinrich Schütze
Alexander Gelbukh
Gina-Anne Levow
Guitao Gao
Qing Ma
Zeynep Altan

3/19/2008

6

Previous Lectures
 Introduction and Phases of an NLP system

 NLP Applications - Chatting with Alice

 Finite State Automata & Regular Expressions &
languages

 Morphology: Inflectional & Derivational

 Parsing and Finite State Transducers

 Stemming & Porter Stemmer

 Statistical NLP – Language Modeling

 N Grams

 Smoothing and NGram: Add-one & Witten-Bell

 Parts of Speech

 Arabic Parts of Speech

 Syntax: Context Free Grammar (CFG): Derivation,
Parsing, Recursion, Agreement, Subcategorization

3/19/2008

7

Today's Lecture

 Parsing Context Free Grammars

 Top-Down (TD)

 Bottom-Up (BU)

 Top-Down Depth-First Left-to-Right (TD DF

L2R)

 Top-down parsing with bottom-up filtering

 Dynamic

 Earley’s Algorithm

3/19/2008

8

Reminder

 Quiz 2

 Tuesday 3rd April 2007?

 Class time

 Covered material

 Textbook: Ch 6, 8, 9, covered part of 10

 We are not covering Speech related material

3/19/2008

9

Where does NLP fit in the CS taxonomy?

Computers

Artificial Intelligence AlgorithmsDatabases Networking

Robotics SearchNatural Language Processing

Information

Retrieval

Machine

Translation
Language

Analysis

Semantics Parsing

3/19/2008

10

The Steps in NLP

Pragmatics

Syntax

Semantics

Pragmatics

Syntax

Semantics

Discourse

Morphology
**we can go up, down and up and

down and combine steps too!!

**every step is equally complex

3/19/2008

11

Introduction
 Parsing = associating a structure (parse tree) to an

input string using a grammar

 CFG are declarative, they don’t specify how the
parse tree will be constructed

 Parse trees are used in

 Grammar checking

 Semantic analysis

 Machine translation

 Question answering

 Information extraction

Book that flight.

S

VP

NP

NOMINAL

Verb Det Noun

Book that flight

3/19/2008

12

Parsing

 Parsing with CFGs refers to the task of

assigning correct trees to input strings

 Correct here means a tree that covers all and

only the elements of the input and has an S at

the top

 It doesn’t actually mean that the system can

select the correct tree from among the possible

trees

3/19/2008

13

Parsing

 Parsing involves a search which involves the

making of choices

 Some Parsing techniques:

 Top-down parsing

 Bottom-up parsing

3/19/2008

14

For Now

 Assume…

 You have all the words already in some buffer

 The input isn’t POS tagged

 We won’t worry about morphological analysis

 All the words are known

3/19/2008

15

Parsing as search

S  NP VP VP  Verb NP PP

S  Aux NP VP VP  Verb PP

S  VP VP  VP PP

NP  Pronoun PP  Preposition NP

NP  Det NOMINAL Det  that | this |a

NP  Proper-Noun Noun  book | flight | meal | money

NOMINAL  Noun Verb  book | include | prefer

NOMINAL  NOMINAL Noun Pronoun  I | she | me

NOMINAL  NOMINAL PP Aux  does

VP  Verb Proper-Noun  Houston | TWA

VP  Verb NP Preposition  from | to | on | near | through

A Grammar to be used in our example

3/19/2008

16

Parsing as search

Book that flight.

S

VP

NP

NOMINAL

Verb Det Noun

Book that flight

• Two types of constraints on

the parses:

1. some that come from the

input string

2. others that come from the

grammar

3/19/2008

17

Top-Down Parsing (TD)

 Since we’re trying to find trees rooted with an

S (Sentences) start with the rules that give us

an S

 Then work your way down from there to the

words

3/19/2008

18

S

NP VPAux

PropN

S

NP VP

Det NOMINAL

Aux

Top-down parsing (TD)

S

NP VP

S

S

Aux VPNP

S

NP VP

Det NOMINAL

S

NP VP

PropN

S

VP

V NP

S

VP

V

S

VP

Book that flight.

S

NP VP

Pronoun

3/19/2008

19

Bottom-Up Parsing

 Since we want trees that cover the input words

start with trees that link up with the words in

the right way.

 Then work your way up from there.

3/19/2008 20

Book that flight

Book that flight

Noun Det Noun

Book that flight

Verb Det Noun

Book that flight

Noun Det Noun

Book that flight

Verb Det Noun

Book that flight

Noun Det Noun

Book that flight

Verb Det Noun

Book that flight

Verb Det Noun

Book that flight

Verb Det Noun

Book that flight

Verb Det Noun

NOMINAL NOMINAL NOMINAL

NOMINALNOMINAL NOMINAL NOMINAL

NOMINAL NOMINAL

VP NP

NP NP

VP

NP

VP

Bottom-up parsing (BU)

3/19/2008

21

Comparing Top-Down and Bottom-Up

 Top-Down parsers never explore illegal parses
(never explore trees that can’t form an S) -- but
waste time on trees that can never match the input

 Bottom-Up parsers never explore trees
inconsistent with input -- but waste time exploring
illegal parses (Explore trees with no S root)

 For both: how to explore the search space?
 Pursuing all parses in parallel or …?

 Which rule to apply next?

 Which node to expand next?

 Needed: some middle ground.

3/19/2008

22

Basic Top-Down (TD) parser

 Practically infeasible to generate all trees in

parallel.

 Use depth-first strategy.

 When arriving at a tree that is inconsistent with

the input, return to the most recently generated

but still unexplored tree.

3/19/2008

23

3/19/2008

24

An example: TD, DF, L2R Search

Does this flight include a meal?

3/19/2008

25

Example

Does this flight include a meal?

3/19/2008

26

Example

[flight] [flight]

Does this flight include a meal?

3/19/2008

27

Example

flight flight

Does this flight include a meal?

3/19/2008

28

Previous 4 slides

Does this flight

include a meal?

3/19/2008

29

Example: (Cont.)

Does this flight include

a meal?

3/19/2008

30

Control

 Does this sequence make any sense?

3/19/2008

31

Top-Down and Bottom-Up

 Top-down

 Only searches for trees that can be answers

 But suggests trees that are not consistent with the

words

 Bottom-up

 Only forms trees consistent with the words

 Suggest trees that make no sense globally

3/19/2008

32

So Combine Them

 How to combine top-down expectations with

bottom-up data to get more efficient searches?

 Use one kind as the control and the other as a

filter

 As in top-down parsing with bottom-up filtering

3/19/2008

33

Bottom-Up Filtering

3/19/2008

34

Top-Down, Depth-First, Left-to-Right Search

3/19/2008

35

Example

3/19/2008

36

Example

flight flight

3/19/2008

37

Example

flightflight

3/19/2008

38

Augmenting Top-Down Parsing with Bottom-Up Filtering

 Top-Down, depth-first, Left to Right (L2R) parsing

 Expands non-terminals along the tree’s left edge down to
leftmost leaf of tree

 Moves on to expand down to next leftmost leaf…

 In a successful parse, current input word will be the first
word in derivation of the unexpanded node that the parser
is currently processing

 So….lookahead to left-corner of the tree

 B is a left-corner of A if A =*=> B

 Build table with left-corners of all non-terminals in grammar and
consult before applying rule

3/19/2008

39

Left Corner

3/19/2008

40

Left-Corner Table for CFG

3/19/2008

41

Summing Up

 Parsing is a search problem which may be

implemented with many search strategies

 Top-Down vs. Bottom-Up Parsers

 Both generate too many useless trees

 Combine the two to avoid over-generation: Top-Down

Parsing with Bottom-Up look-ahead

 Left-corner table provides more efficient look-ahead

 Pre-compute all POS that can serve as the leftmost POS in

the derivations of each non-terminal category

3/19/2008

42

Have all the problems been solved?: Left Recursion

 Depth-first search will never terminate if grammar is

left recursive (e.g. NP  NP PP)

),(**  

3/19/2008

43

Problems with the basic parser

 Left-recursion: rules of the

type:

NP  NP PP

solution: rewrite each rule of

the form A  Ab |  using a

new symbol: A’ as

 A  A’ A’  bA’ | 

3/19/2008

44

Left-recursion Problem
 Rewrite
 A  A b1

 A  A b2

 A  A b3

 A  

A

A

A

A b2

b1



b3

A

A’

b2

b3



A’

A’

A’



b1

 as
 A   A’

 A’  b1 A’

 A’  b2 A’

 A’  b3 A’

 A’  

3/19/2008

45

Structural ambiguity:

 Multiple legal structures

 Attachment (e.g. I saw a man on a hill with a

telescope)

 Coordination (e.g. younger cats and dogs)

 NP bracketing (e.g. Spanish language teachers)

3/19/2008

46

Ambiguity
 Structural ambiguity occurs when a grammar assigns

more than one possible parse trees to a sentence..

 Attachment ambiguity is when a particular
constituent can be attached to the parse tree in more
that one ways. E.g

 I shot an elephant in my pajamas.

 Coordination ambiguity is when there are different
sets of phrases that can be joined by a conjunction
such as and.
 [old [men and women]] or [old men] and [women]

 Noun phrase bracketing ambiguity.

 [Dead [poets’ society]] or [[Dead poets’] society]

3/19/2008

47

Ambiguity

3/19/2008

48

Ambiguity

 Choosing the correct parse of a sentence among the

possible parses is a task that requires additional

semantic and statistical information. A parser without

such information should return all possible parses.

 A sentence may lead to a huge number of parses.

Sentences with many PP attachments like

Show me the meal on Flight UA 386 from San Francisco to

Denver.

lead to an exponational number of parses.

PPs 2 3 4 5 6 7 8

Parses 2 5 14 132 469 1430 4867

3/19/2008

49

Avoiding Repeated Work

 Parsing is hard, and slow. It’s wasteful to redo

stuff over and over and over.

 Consider an attempt to top-down parse the

following as an NP

A flight from Indianapolis to Houston on TWA

3/19/2008

50

flight

3/19/2008

51

flight

flight

3/19/2008

52

flight

flight

flight

3/19/2008

53

flight

flight

flight

flight

3/19/2008

54

Dynamic Programming

 We need a method that fills a table with partial

results that

 Does not do (avoidable) repeated work

 Does not hang in left-recursion

 Solves an exponential problem in polynomial time

(sort of)

3/19/2008

55

Repeated Parsing of Subtrees

 The parser often builds valid trees for a
portion of the input and then discards
them during backtracking because they
fail to cover all of the input. Later, the
parser has to rebuild the same trees again
in the search.

3/19/2008

56

Repeated Parsing of Subtrees
 How many times each constituent in the Previous

example sentence “A flight from Indianapolis to Houston

on TWA” is built.

A flight 4

from Indianapolis 3

Houston 2

on TWA 1

A flight from Indianapolis 3

A flight from Indianapolis to Houston 2

A flight from Indianapolis to Houston on TWA 1

3/19/2008

57

Dynamic Programming

 Create table of solutions to sub-problems (e.g.

subtrees) as parse proceeds

 Look up subtrees for each constituent rather than re-

parsing

 Since all parses implicitly stored, all available for

later disambiguation

 Method:

 Cocke-Younger-Kasami (CYK) (1960)

 Graham-Harrison-Ruzzo (GHR) (1980)

 Earley’s (1970) algorithm

 Next Class

3/19/2008

58

Thank you

السلام عليكم ورحمة الله

