ONE-DI MENSI ONAL ARRAYS

Need for Arrays

Exercise

Read the IDs and the grades for all ICS 101 students. Compute and print the average of the students. Print the grades and IDs of all students who got a grade below the average.

One Dimensional Array Declaration

Arrays must be declared using a declaration statement

- Explicit type declaration
- Declaration of an integer array LIST consisting of 20 elements.

INTEGER LIST (20)

■ Declaration of a logical array FLAG that consists of 30 elements.
LOGICAL FLAG (30)

- Declaration of a character array NAMES that consists of 15 elements with each element of size 20.

CHARACTER NAMES (15)*20

One Dimensional Array Declaration

- Declaration of a real array YEAR used to represent rainfall in years 1983 to 1994.

REAL YEAR (1983: 1994)

- Declaration of a real array TEMP with subscript ranging from -20 to 20.

REAL TEMP (-20:20)

- Implicit type declaration

DIMENSION ALIST(100), KIT(-3:5), XYZ(15)

INTEGER XYZ

REAL BLIST(12), KIT

One Dimensional Array Initialization

What is Initialization?

- Initialization Using the Assignment Statement
- I nitialization Using the READ Statement

I nitialization Using the Assignment Statement

- Declare a real array LIST consisting of 3 elements. Also initialize each element of LIST with the value zero.

```
    REAL LIST(3)
    DO 5 K = 1, 3
        LIST(K) = 0.0
```

5 CONTINUE

- Declare an integer array POWER2 with subscript ranging from 0 up to 10 and store the powers of 2 from 0 to 10 in the array.

```
INTEGER POWER2 (0:10)
DO \(7 \mathrm{~K}=0,10\)
        POWER2(K) \(=2^{* *} K\)
7 CONTINUE
```


One Dimensional Array I nitialization

I nitialization Using the READ Statement
an array can be read

- as a whole
- in part

Examples on Reading 1-D Arrays

Example 1: Read all the elements of an integer array X size 4 . The four input data values are in a single input data line as follows 10, 20, 30, 40

Solution 1: (Without Array Subscript)

```
INTEGER X(4)
READ*, X
```


One Dimensional Array Initialization

Solution 2: (Using an Implied Loop)

```
INTEGER X(4), K
READ*, (X(K), K= 1, 4)
```

Example 2: Read all the elements of an integer array X of size 4. The four input data values appear in four input data lines as follows
10
20
30
40

Solution:

```
INTEGER X(4),J
DO 22 J = 1, 4
    READ*, X(J)
```

22 CONTINUE

One Dimensional Array I nitialization

Example 3: Read an integer one-dimensional array of size 100.

Solution 1: (Using a DO Loop)

INTEGER A(100), K
DO $77 K=1,100$
READ*, A(K)
77 CONTINUE

Solution 2: (Using an implied Loop)

```
INTEGER A(100), K
READ*, (A(K), K=1, 100)
```


One Dimensional Array Initialization

Example 4: Read the grades of N students into an array
SCORE. The value of N is the first input data value followed by N data values in the next input line. Assume the input is:

6
55, 45, 37, 99, 67, 58

Solution :

INTEGER SCORE(100), K, N
READ*, N
READ*, (SCORE(K) , $K=1, N)$

Printing One-Dimensional Arrays

Example 1: Read an integer array X of size 4 and print:

- the entire array X in one line;
- one element of array X per line; and
- array elements greater than 0 .

If the input is given as

$$
\begin{array}{llll}
7 & 0 & 2 & -4
\end{array}
$$

Solution:

```
    INTEGER X(4), K
    READ*, X
    PRINT*, 'PRINTING THE ENTIRE ARRAY IN ONE LINE'
    PRINT*, X
    PRINT*, 'PRINTING ONE ARRAY ELEMENT PER LINE'
    DO 33 K = 1,4
        PRINT*, X(K)
33 CONTINUE
```


Printing One-Dimensional Arrays

Solution (cont) :

```
                    PRINT*, 'PRINTING ARRAY ELEMENTS GREATER THAN 0'
DO 44 K = 1, 4
            IF (X(K) .GT. 0) PRINT*, X(K)
44 CONTINUE
END
```

the output of the program is as follows:
PRINTING THE ENTIRE ARRAY IN ONE LINE
$\begin{array}{llll}7 & 0 & 2 & -4\end{array}$
PRINTING ONE ARRAY ELEMENT PER LINE
7
0
2
-4
PRINTING ARRAY ELEMENTS GREATER THAN 0
7

Complete Examples on One-Dimensional Arrays

Example 1: Write a FORTRAN program that reads a one dimensional integer array X of size 10 elements and prints the maximum element and its index in the array.

Solution:

```
    INTEGER X(10), MAX, INDEX, K
```

 READ*, \(X\)
 MAX \(=X(1)\)
 INDEX = 1
 DO \(1 \mathrm{~K}=2\), 10
 IF (X(K) .GT. MAX) THEN
 \(M A X=X(K)\)
 INDEX = K
 ENDIF
 1 CONTINUE
PRINT*, 'MAXI MUM ELEMENT:', MAX, 'INDEX:', INDEX
END

Example 2: Reversing a One-Dimensional Array: Write a FORTRAN Program that reads an integer one-dimensional array of size N. The program then reverses the elements of the array and stores them in reverse order in the same array.
For example, if the elements of the array are:
71

The elements of the array after reversal should be:

71	5	97	88	2	20	33

The program prints the array, one element per line.

Solution:

I NTEGER NUM(100), TEMP, N, L, K
READ*, N, (NUM(L), L=1, N)
DO $10 \mathrm{~K}=1, \mathrm{~N} / 2$
TEMP $=\mathrm{NUM}(\mathrm{K})$
$\operatorname{NUM}(K)=\operatorname{NUM}(N+1-K)$
$\operatorname{NUM}(\mathrm{N}+1-\mathrm{K})=$ TEMP
10 CONTINUE
DO $20 \mathrm{~L}=1$, N
PRINT*, NUM(L)
20 CONTINUE
END

One-Dimensional Arrays and Subprograms

Example 1: Summation of Array Elements: Read 4 data values into an array LIST (of size 10) and print the sum of all the elements of array LIST using a function ISUM.

Solution:

C MAIN PROGRAM
INTEGER LIST (10), ISUM, K
READ*, (LIST(K), $K=1$, 4)
PRINT*, 'SUM OF ALL THE ELEMENTS =' , ISUM(LIST, 4)
END
C FUNCTION SUBPROGRAM
INTEGER FUNCTION ISUM (MARK, N)
INTEGER N, MARK(N), J
ISUM $=0$
DO 10 J = 1, N
$I S U M=I S U M+\operatorname{MARK}(J)$
10 CONTINUE
RETURN
END

One-Dimensional Arrays and Subprograms

Example 2: Counting Negative Numbers within a One-Dimensional Array: Write a subroutine FIND that takes a one-dimensional array and its size as two input arguments. It returns the count of the negative and nonnegative elements of the array.

Solution:
C SUBROUTINE SUBPROGRAM
SUBROUTINE FIND (A, N, COUNT1, COUNT2)
INTEGER N,A(N), COUNT1, COUNT2, K
COUNT1 $=0$
COUNT2 $=0$
DO $13 K=1, N$
IF (A(K) .LT. 0) THEN
COUNT1 = COUNT1 +1
ELSE
COUNT2 $=$ COUNT2 +1
ENDIF
13 CONTINUE
RETURN
END
C MAIN PROGRAM
I NTEGER A(100), N, COUNT1, COUNT2, K
READ*, N, (A(K), $K=1, N$)
CALL FIND (A, N, COUNT1, COUNT2)
PRINT*, 'COUNT OF THE NEGATIVE ELEMENTS =', COUNT1
PRINT*, 'COUNT OF THE NON-NEGATIVE ELEMENTS =' , COUNT2
END

Exercises

What is the output of the following program?

```
    INTEGER A(4), B(4), G, K, N
    G(K) = K** 2
READ*, A
DO 60 N = 1,4
        B(N)}=\textrm{G}(\textrm{A}(5-N)
6 0 ~ C O N T I N U E ~
PRINT*, B
END
```

Assume the input for the program is:
10, 20, 30, 40

The Output			
1600	900	400	

What is the output of the following program?

I NTEGER $X(5), Y(5), N, K$
READ*, N, $(X(K), Y(K), K=1, N)$
DO $5 K=X(N), Y(N)$ PRINT*, (' X ', J $=X(K), Y(K))$

5 CONTINUE

END

Assume the input for the program is:
$4,1,2,3,3,3,4,2,4$

The Output
X
$X X$
$X X X$

