Induction, Recursion and Iteration:  faces to the same coin
As we have seen Mathematical Induction can be used to develop an algorithm to solve some give problem. The outline of such approach is as follows.

Let n be some parameter representing the prblem size. 

Induction Step: Assume that we have the solution to the problem of size n-1 (Induction Hypthesis) and show how to solve the problem of size n. Equivalently, express the solution to the problem of size n in terms of the solution to the problem of size = n-1. Thus

    
S(n) =    f( S(n-1), nth  element ).  

Here the function f  represents the additional processing to obtain S(n)  using S(n-1)  and nth element. This is very much problem and (algorithm) dependent but must be provided in order to have a completed algorithm.

Now, how to compute S(n-1)? Simple,   

S(n-1) =    f( S(n-2), (n-1)th  element ).

To avoid infinite recursion, we must supply a base step (stopping condition). 

Basis Step:  If  n  is small enough then use a direct solution. Thus,  S(n0)  = direct solution.

An indution based algorithm readily maps into a recursive program method, and when such a method is executed with an inital call of S(n), it leads to the following tree of recursive calls.

 S(n)


S(n-1)


S(n0+1)


S(n0)

This tree gives a hint on how to convert the recursive solution into an iterative solution.  

Let the iterative process mimics the recursion as it unfolds. Thus, start with S(n0)   then compute  in order, S(n0+1), S(n0+2), ..  , S(n).

S(n0) = direct solution; // base step

for i = n0+1  to n

    S(i) = f( S(i-1, ith element ).

Example: Give recursive and iterative program code for the Horner's rule method for polynomial evaluation. The problem is to evaluate 

P(x) = an xn + an-1 xn-1 + ... + a1 x + a0.

The input is a set of n+1 real numbers for the coeffients, A[0..n],  and  a real number  argument, x.

Induction Step: Assume we have the value of a polynmial of degree n-1 but whose coeffients are an, an-1, ... a1  (rather than an-1, ... a0). In other words, S(n-1) =  an xn-1 + an-1 xn-2 + ... + a1 , then clearly S(n)  = x * S(n-1) + a0.

If we keep recursing we reach a zero degree polynomial with coefficient of  an. This is the base case. For a recursive method call, we need to identify the lowest degree (lo) and highest degree coefficients of the polynomial associated with that call.  The lowest degree coefficient varies but the highest degree coefficient is always an.

For the recursive method, the initial call is Eval(A,x,0,n) .

double Eval(double[] A, double x, int lo, int n)

{  if (lo==n) return A[n];

   else  return x*Eval(A,x,lo+1,n) + A[lo];

}

double Eval(double[] A, double x, int n)

{ double sum = A[n];  // base case – degree 0 polynomial 

  for(i=1; i <= n; i++)

     sum = x*sum + A[n-i];

  return sum;

}

Finally, note that when we use Induction, we can use any of the following as Induction Hypthesis.

1. Weak Induction. Assume we have the solution for the problem of size n-1 (i.e. S(n-1)).  

2. Strong Induction. Assume we have the solution for the problem for all sizes < n 
(i.e. S(n-1), S(n-2), ... etc.)     

3. Strengthening the Induction Hypothesis. Assume we have the solution for the problem of size 
n-1   AND  some expression Xn-1.  Note that in this case, to complete the induction step, you must show to compute S(n)  and also Xn .

As an example of Strong Induction, consider the Even-Odd problem: Given an n-element integer array A[1..n], arrange the elements in place so that all even elements appear before odd elements. 

Induction Step:  Rather than considering the nth element and S(n-1)  (weak induction), consider two elements (say, the first and last elements)  and  S(n-2).

Four cases to consider for EvenOdd(A[1..n]).

A[1]  is even and A[n] is odd 

(    EvenOdd(A[2..n-1]).

A[1]  is odd  and A[n] is even  
(    swap A[1] with A[n]; EvenOdd(A[2..n-1]).

A[1]  is even and A[n] is even 
(    EvenOdd(A[2..n]).

A[1]  is odd  and A[n] is odd 

(    EvenOdd(A[1..n-1]).

Basis Step:  If  n = 1 or n=0  do nothing.   
