Propositional Logic

Section 1.1

Definition

- A proposition is a declarative sentence that is either true or false but not both nor neither
- Any proposition has a truth value {T, F}

Examples

Statement	Prop	Truth Value
Today is Friday	yes	F
1+1 = 2		
I know that you hate this course		
Is that correct?		
Do not answer quickly		
I'm a liar		
X+2=0		

Examples

Statement	Prop	Truth Value
Today is Friday	Yes	F
1+1 = 2	Yes	Т
I know that you hate this course	Yes	Т
Is that correct?	No	
Do not answer quickly	No	
I'm a liar	No	
X+2=0	No	

Proposition Types

- A proposition could be either simple or compound.
- Simple: without logical operators
- Compound: with logical operators (connectives)

Logical Operators

- Let p & q be propositions, then the following are compound propositions:
- Negation of p: $\neg p = not p$
- Conjunction: $p \wedge q = p AND q$
- Disjunction: $p \lor q = p OR q$
- Exclusive OR: $p \oplus q = p XOR q$
- Implication: $p \rightarrow q = if p then q$
- Biconditional: $p \leftrightarrow q = p \text{ iff } q$

Negation

- p = It is raining
- p = It is not rainingit is not the case that it is raining

Truth table

Р	¬р
Т	F
F	Т

Conjunction

- p = it is Friday
- q = it is raining
- p ∧ q = it is Friday and it is raining
- Truth Table:

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction

- p = 1> 0
- q = monkeys can fly
- p v q = 1>0 or monkeys can fly
- Truth Table:

р	q	pvq
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Conditional Statement: Implication

- p = I think
- q = I exist
- $p \rightarrow q = if I think then I exist$
- Truth Table:

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

If p, then q

- p = hypothesis
- q = conclusion (consequence)

There are many ways to write a conditional statement

Other Rephrasing of Implication

- If p, then q
- If p, q
- q if p
- p is sufficient for q
 - a sufficient condition for q is p
- a necessary condition for p is q
- in order to have p true, q has to be true also
- q when p

Other Rephrasing of Implication

- $p \rightarrow q$
- p implies q
- p only if q
 - p is true only if q is also true
- q follows from p

Examples of Implication

- If you get 98% then I'll give you A+
- 98% is sufficient for A+
- If you get A+ then it doesn't mean you have 98%
- A+ is necessary for 98%
- 98% however is not necessary for A+
- 98% only if A+
- A+ follows from 98%
- 98% doesn't follow from A+

Examples of Implication

Notice that if p is true then q must be true, however if p is not true then q may or may not be true.

Examples of Implication 68 - 59 سورة الأنبياء

- (59) قَالُوا مَن فَعَلَ هَذَا بِآلِهَتِنَا إِنَّهُ لَمِنَ الظَّالِمِينَ
 - (60) قَالُوا سَمِعْنَا فَتَى يَدْكُرُهُمْ يُقَالُ لَهُ إِبْرَاهِيمُ
- (61) قَالُوا فَأَنُوا بِهِ عَلَى أَعْيُنِ النَّاسِ لَعَلَّهُمْ يَشْهَدُونَ
 - (62) قَالُوا أَأْنَتَ فَعَلْتَ هَذَا بِآلِهَتِنَا يَا إِبْرَاهِيمُ
- (63) قَالَ بَلْ فَعَلَّهُ كَبِيرُهُمْ هَذَا فَاسْأَلُوهُمْ إِن كَانُوا يَنطِقُونَ
 - (64) فَرَجَعُوا إِلَى أَنفُسِهِمْ فَقَالُوا إِنَّكُمْ أَنثُمُ الظَّالِمُونَ
- (65) ثُمَّ نُكِسُو ا عَلَى رُؤُوسِهِمْ لَقَدْ عَلِمْتَ مَا هَوُلَاء يَنطِقُونَ
- (66) قَالَ أَفَتَعْبُدُونَ مِن دُونِ اللَّهِ مَا لَا يَنفَعُكُمْ شَيْئًا وَلَا يَضُرُّكُمْ
 - (67) أَفٍّ لَكُمْ وَلِمَا تَعْبُدُونَ مِن دُونِ اللَّهِ أَفَلًا تَعْقِلُونَ
 - (68) قَالُوا حَرِّقُوهُ وَانصُرُوا آلِهَتَكُمْ إِن كُنتُمْ فَاعِلِينَ الْمُتَكُمْ إِن كُنتُمْ فَاعِلِينَ

Examples of Implication 68 - 59 سورة الأنبياء

It is very clear that the prophet Ebrahim didn't lie because he said thatIf they speak, then the biggest one did it

BiConditional Statement

- p = 1 < 0
- q = monkeys can fly
- $ightharpoonup p \leftrightarrow q = 1 < 0$ if and only if monkeys can fly
- Truth Table:

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

BiConditional Statement

- p \leftrightarrow q = p if and only if q = p if q and p only if q = "q \rightarrow p" and "p \rightarrow q" = "p \rightarrow q" \wedge "q \rightarrow p"
- p is necessary & sufficient for q
- p and q always have the same truth value

Theorem

p and q are logically equivalent, i.e.,
p ≡ q if and only if p ↔ q is always true

р	q	$p \equiv q$	$p \leftrightarrow q$
Т	Т	Т	Т
Т	F	F	F
F	Т	F	F
F	F	Т	Т

Example

Logically equivalent $\neg p \ v \ q \equiv p \rightarrow q$

р	q	¬р	¬p≀ v q	$p \xrightarrow{f} q$
T	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	T	Т	Т

Precedence of Logical Operators

The following operators are sorted according to their precedence

$$\neg$$
 , \wedge , \vee , \rightarrow , \leftrightarrow

This means for example

$$\left(\left(\left(p \wedge (\neg q) \right) \vee p \vee q \right) \rightarrow q \right) \leftrightarrow \left(\left(p \wedge (\neg q) \right) \vee p \right)$$