Warm Up Exercises

Section 1.1

5.h

- p = "Swimming at the New Jersey shore is allowed"
- q = "Sharks have been spotted near the shore"
- $-p \wedge (p \vee -q) = "?"$
 - = Swimming at the New Jersey shore is not allowed and either Swimming at the New Jersey shore is allowed or Sharks have not been spotted near the shore

7.f

- p = "It is below freezing"
- q = "It is snowing"
- It is either below freezing or it is snowing, but it is not snowing if it is below freezing = ?
 - $= (b \wedge d) \vee (b \rightarrow -d)$

7.g

- p = "It is below freezing"
- q = "It is snowing"
- Below freezing is necessary and sufficient for it to be snowing = ?
 - $= b \leftrightarrow d$

■ p is necessary for q means q → p

■ p is sufficient for q means p → q

True or false:

- 13.a: If 1+1=2 then 2+2 = 5
 False
- 13.b: If 1+1=3 then 2+2 = 4

 True
- 13.d: If monkeys can fly, then 1 +1 =3

 True

Truth Tables

Have fun with this Java Applet

Propositional Equivalences

Section 1.2

Definitions

- Tautology is a compound proposition that is always true (independent of the truth values of the single propositions)
- Contradiction is a compound proposition that is always false.
- Contingency is a compound proposition that is neither a tautology nor a contradiction.
- p and q are logically equivalent (p = q) iff p ↔ q is a tautology.

Examples

- p ∨ ¬ p is a tautology
- p ∧ ¬ p is a contradiction

Proof

р	¬р	p v ¬ p	p ∧ ¬ p
Т	F	Т	F
F	Т	Т	F

Use T for Tautology & F for Contradiction

$$p \lor \neg p \equiv T$$

$$p \land \neg p \equiv F$$

$$\blacksquare$$
 T \land \neg T \equiv F

$$\blacksquare$$
 T \vee p \blacksquare T

$$\blacksquare T \land p \equiv p$$

$$\blacksquare F \lor p \equiv p$$

$$\blacksquare F \land p \equiv F$$

$$(p \lor \neg p) \land q \equiv q$$

$$(p \land \neg p) \lor p \equiv p$$

$$p \rightarrow T \equiv T$$

$$\blacksquare F \rightarrow p \equiv T$$

$$p \land q \rightarrow p \equiv T$$

Examples of Equivalences

$$p \rightarrow q \equiv q \vee \neg p$$

p	q	p م	$p \rightarrow q$	q ∨ ¬ p
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	T	Т	Т

Examples of Equivalences

De Morgan's Law

р	q	¬ p	ر م	¬ (p ∧ q)	¬ q ∨ ¬ p
Т	T	F	F	F	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	Т
F	F	T	T	Т	T

Double Negation Law:

$$\neg (\neg p) \equiv p$$

Identity Laws:

$$p \wedge T \equiv p$$

 $p \vee F \equiv p$

Domination Laws:

$$p \wedge F \equiv F$$

 $p \vee T \equiv T$

Idempotent Laws:

$$b \wedge b \equiv b$$

Commutative Laws:

$$b \wedge d \equiv d \wedge b$$

Negation Laws:

$$p \land \neg p \equiv F$$

 $p \lor \neg p \equiv T$

Associative Laws:

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

 $p \vee (q \vee r) \equiv (p \vee q) \vee r$

Distributive Laws:

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

De Morgan's Laws:

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$
NAND
NOR

Absorption Laws:

$$b \lor (b \lor d) \equiv b$$

All of these laws can be proved easily by using truth tables.

More Equivalences

■
$$p \rightarrow q \equiv \neg p \lor q$$

■ $p \rightarrow q \equiv \neg q \rightarrow \neg p$ contrapositive
■ $\neg (p \rightarrow q) \equiv p \land \neg q$
■ $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$
■ $(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$
■ $(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$
■ $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$
■ $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
■ $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Example

Prove that
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

Proof
$$\neg (p \rightarrow q) \equiv \neg (\neg p \lor q)$$

$$\equiv \neg (\neg p) \land \neg q$$
De Morgan's
$$\equiv p \land \neg q$$
double negation

Example

Prove that $(p \land q) \rightarrow (p \lor q)$ is a tautology Proof

$$(p \land q) \rightarrow (p \lor q)$$

$$\equiv \neg (p \land q) \lor (p \lor q)$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q) \quad \text{De Morgan's}$$

$$\equiv (\neg p \lor p) \lor (\neg q \lor q) \quad \text{Associative}$$

$$\equiv T \lor T \equiv T$$

Example

Simplify

$$\neg (p \lor (\neg p \land q))$$

$$\equiv \neg p \land \neg (\neg p \land q)$$

$$\equiv \neg p \land (p \lor \neg q)$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$

$$\equiv F \lor (\neg p \land \neg q)$$

$$\equiv F \lor (\neg p \land \neg q)$$

$$\equiv (\neg p \land \neg q)$$

$$\Rightarrow (\neg p \land \neg$$

Wake-up Exercises

11.d

Prove that $(p \land q) \rightarrow (p \rightarrow q) \equiv T$ Proof

$$\equiv (p \land q) \rightarrow (p \rightarrow q)$$

$$\equiv \neg (p \land q) \lor (p \rightarrow q)$$

$$\equiv (\neg p \lor \neg q) \lor (\neg p \lor q)$$

$$\equiv \neg p \lor \neg p \lor \neg q \lor q$$

$$\equiv \neg p \lor T \equiv T$$

11.e

Prove that $\neg (p \rightarrow q) \rightarrow p \equiv T$ Proof

$$\equiv \neg (\neg (p \rightarrow q)) \lor p$$

$$\equiv (p \rightarrow q) \lor p$$

$$\equiv (\neg p \lor q) \lor p$$

$$\equiv (\neg p \lor p) \lor q$$

$$\equiv T \lor q \equiv T$$

15

Determine if $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is T, F, or contingency

Tautology!

Prove it.

25

```
Prove (p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r
Proof
(p \rightarrow r) \vee (q \rightarrow r)
 \equiv (\neg p \lor r) \lor (\neg q \lor r)
 \equiv \neg p \lor \neg q \lor r
 \equiv \neg (p \land q) \lor r
 \equiv (p \land q) \rightarrow r
```

Definition

- Dual of a compound Proposition is the same proposition but
- each ∧ is replaced with ∨
- each v is replaced with
- each T is replaced with F
- each F is replaced with T
- Dual of $(\neg p \wedge T) \vee (q \vee F)$ is $(\neg p \vee F) \wedge (q \wedge T)$