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Ramsey Numbers

Author: John G. Michaels, Department of Mathematics, State University of
New York, College at Brockport.

Prerequisites: The prerequisites for this chapter are the pigeonhole prin-
ciple and basic concepts of graphs. See Sections 5.2, 9.1, and 9.2 of Discrete
Mathematics and Its Applications.

Introduction
Suppose there are six people at a party, where each pair of people are either
friends or strangers. We can show that there must be either three mutual friends
or three mutual strangers at the party. To do this, we set up a graph G with six
vertices (corresponding to the six people), where edges represent friendships.
We need to show that there must be a triangle (i.e., a simple circuit of length
three) in G or else a triangle in G, the complement of G.

This problem can be rephrased as the following edge-coloring problem:
Show that if every edge of K6 is colored red or green, then there must be
either a red triangle or a green triangle. To see that these two problems are
equivalent, take G to be the subgraph of K6 consisting of the six vertices and
the red edges; therefore G consists of the six vertices and the green edges. A
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red triangle in K6 corresponds to a set of three mutual friends in G, whereas a
green triangle corresponds to a set of three mutual strangers.

The proof that there is either a red or a green triangle in K6 is a simple
application of the pigeonhole principle. Begin by choosing a vertex v in K6. We
let the edges on v represent pigeons and the colors red and green be the names
of two pigeonholes. Since d(v) = 5 and each edge on v is either red or green, we
have five pigeons and two pigeonholes. Therefore some pigeonhole holds at least
three pigeons; that is, there are at least three red edges or three green edges
incident on v. Assuming that v has at least three red edges, say {v, a}, {v, b},
and {v, c}, we examine the edges joining a, b, c. If any of these three edges is
red, we obtain a red triangle. If none of the three edges is red, then we have a
green triangle joining a, b, c. (A similar argument works if v has at least three
green edges.) Thus, we are guaranteed of obtaining a monochromatic triangle,
that is, a triangle such that all its edges are of the same color.

In this chapter we extend these ideas further, examining questions such as
the following. What is the minimum number of people needed at a party in
order to guarantee that there are at least four mutual friends or four mutual
strangers? What is the minimum number needed to guarantee that there are
three mutual friends or five mutual strangers? What is the minimum number
needed to guarantee that there are four mutual close friends, seven mutual
acquaintances who are not close friends, or nine mutual strangers?

The minimum numbers in problems such as these are called Ramsey num-
bers, named after Frank Ramsey*, who in 1930 published a paper [8] on set
theory that generalized the pigeonhole principle.

Ramsey Numbers
As we saw earlier, no matter how the edges of K6 are colored red or green, K6

contains a subgraph K3 all edges of which are colored red or a subgraph K3

all edges of which are colored green. That is, K6 contains either a red K3 or
a green K3. We say that the integer 6 has the (3, 3)-Ramsey property. More
generally, we have the following definition.

Definition 1 Let i and j be integers such that i ≥ 2 and j ≥ 2. A positive
integer m has the (i, j)-Ramsey property if Km contains either a red Ki or a
green Kj as a subgraph, no matter how the edges of Km are colored red or
green.

* See Discrete Mathematics and Its Applications, Section 5.2, for biographical

information on Ramsey.
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From the above discussion, we know that 6 has the (3, 3)-Ramsey property.
But is 6 the smallest such number? Suppose we take K5 and “color” its 10 edges
using 1’s and 2’s, as in Figure 1a.

There are no monochromatic triangles in either Figure 1b or 1c. Therefore
this coloring shows that 5 does not have the (3, 3)-Ramsey property. It is easy
to see that no positive integer smaller than 5 has the (3,3)-Ramsey property.
(See Exercise 3.) Therefore, 6 is the smallest integer with this property, and is
called a Ramsey number.

Figure 1. A coloring of K5.

Definition 2 The Ramsey number R(i, j) is the smallest positive integer
that has the (i, j)-Ramsey property.

For example, R(3, 3) = 6, since 6 has the (3, 3)-Ramsey property but no
smaller positive integer has this property.

Example 1 Find R(2, 7), the smallest positive integer that has the (2, 7)-
Ramsey property.

Solution: We begin by examining the positive integers n such that every
coloring of the edges of Kn with red and green results in either a red K2 (i.e.,
a red edge) or a green K7. The number R(2, 7) is the smallest positive integer
with this property. Consider any coloring of the edges of K7. Either there is
at least one red edge, or else every edge is colored green. If there is a red edge,
then we have the desired red K2. If every edge was colored green, then we have
the desired green K7. Thus 7 has the (2, 7)-Ramsey property, which says that
R(2, 7) ≤ 7.

But R(2, 7) �< 7. To see this, consider the coloring of K6 where each edge
is colored green. Then K6 has neither a red K2 nor a green K7, and so 6 does
not have the (2, 7)-Ramsey property.

Therefore R(2, 7) = 7.
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The argument in the above example can be generalized by replacing 7 with
any integer k ≥ 2 to obtain:

R(2, k) = k.

(This is left as Exercise 4.)
This example also leads us to make four other observations:

1. For all integers i ≥ 2 and j ≥ 2, R(i, j) = R(j, i).
2. If m has the (i, j)-Ramsey property, then so does every integer n > m.
3. If m does not have the (i, j)-Ramsey property, then neither does any

integer n < m.
4. If ii ≥ i2, then R(i1, j) ≥ R(i2, j).

Proofs of these four facts are left to the reader as Exercises 5–8.
The definition of the Ramsey number R(i, j) requires us to find the small-

est positive integer with the (i, j)-Ramsey property. But suppose that for some
i and j there is no positive integer with the (i, j)-Ramsey property? In such a
case there would be no Ramsey number R(i, j). This leads us to the question:
For every choice of positive integers i ≥ 2 and j ≥ 2, is there a Ramsey num-
ber R(i, j)? The following lemma and theorem provide an affirmative answer
to this question.

Lemma 1 If i ≥ 3 and j ≥ 3, then

R(i, j) ≤ R(i, j − 1) + R(i − 1, j). (1)

Proof: Let m = R(i, j − 1) + R(i − 1, j). We will show that m has the (i, j)-
Ramsey property. Suppose the edges of Km have been colored red or green and
v is a vertex of Km. Partition the vertex set V into two subsets:

A = all vertices adjacent to v along a red edge
B = all vertices adjacent to v along a green edge.

Since

|A| + |B| = |A ∪ B| = m − 1 = R(i, j − 1) + R(i − 1, j) − 1,

either |A| ≥ R(i− 1, j) or |B| ≥ R(i, j − 1). If this were not the case, we would
have |A| < R(i − 1, j) and |B| < R(i, j − 1), which would imply that

|A ∪ B| < R(i − 1, j) + R(i, j − 1) = m − 1.
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This would contradict the fact that |A ∪ B| = m − 1.

Consider the case where |A| ≥ R(i − 1, j). Now consider the complete
subgraph on the vertices in A. This is a subgraph of Km, which we call K|A|.
We will show that K|A| contains either a red Ki or a green Kj. Since |A| ≥
R(i−1, j), K|A| has either a red Ki−1 or a green Kj. If we have a red Ki−1, we
add the red edges joining v to the vertices of Ki−1 to obtain a red Ki. Thus,
K|A|, and hence Km, has either a red Ki or a green Kj. This says that m
has the (i, j)-Ramsey property. (The case where |B| ≥ R(i, j − 1) is left as
Exercise 9.) Therefore, inequality (1) has been proved.

This lemma establishes a relationship that Ramsey numbers must satisfy.
The following theorem uses mathematical induction together with this relation-
ship to prove the existence of the Ramsey numbers.

Theorem 1 Ramsey’s Theorem If i and j are integers (i ≥ 2 and j ≥ 2),
then there is a positive integer with the (i, j)-Ramsey property (and hence
R(i, j) exists).

Proof: We use (1) and the Principle of Mathematical Induction to prove that
for all integers i ≥ 2 and j ≥ 2 there is a positive integer with the (i, j)-Ramsey
property. Let P (n) be the statement:

P (n): If i + j = n, then there is an integer with the
(i, j)-Ramsey property.

The base case is P (4), since the smallest values of i and j under consid-
eration are i = j = 2. We know from the comments following Example 1 that
there is an integer with the (2, 2)-Ramsey property. Therefore P (4) is true.

Now we assume that P (n) is true and show that P (n + 1) is also true.
Assume that i + j = n + 1. Therefore i + (j − 1) = n and (i − 1) + j = n.
P (n) states that there are integers with the (i, j − 1)-Ramsey property and
the (i − 1, j)-Ramsey property. Hence the Ramsey numbers R(i, j − 1) and
R(i − 1, j) exist. Inequality (1) guarantees that R(i, j) must also exist. There-
fore P (n + 1) is also true. The Principle of Mathematical Induction guarantees
that P (n) is true for all i ≥ 2 and j ≥ 2. This shows that R(i, j) exists if i ≥ 2
and j ≥ 2.

So far we know the values of the following Ramsey numbers:

R(2, k) = R(k, 2) = k

R(3, 3) = 6.
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If i ≥ 2 and j ≥ 2, it rapidly becomes very difficult to find R(i, j) because of
the large number of possible edge colorings of the graphs Kn. Hence, it is no
surprise that the list of Ramsey numbers whose exact values are known is very
short. We will now evaluate some of these.

Example 2 Find R(3, 4).

Solution: From Lemma 1 we know that

R(3, 4) ≤ R(3, 3) + R(2, 4)
= 6 + 4
= 10.

To determine if R(3, 4) < 10, we might consider looking at all possible red/green
colorings of the edges of K9. If one of these colorings has no red K3 or green K4,
we can conclude that R(3, 4) = 10. However, if every red/green coloring of K9

produces either a red K3 or a green K4, we must then look at colorings of K8,
etc. Examining all possible red/green colorings of the edges of K9 is not an
easy task—K9 has 36 edges, so initially there would be 236 ≈ 69,000,000,000
colorings to examine.

Fortunately, we can avoid examining the colorings of K9, because of the
following fact:

If i ≥ 3, j ≥ 3, and if R(i, j − 1) and R(i − 1, j) are even,
then R(i, j) ≤ R(i, j − 1) + R(i − 1, j) − 1. (2)

The proof of this fact follows the proof of Lemma 1, and is left as Exercise 10.
Using (2) with i = 3 and j = 4 yields

R(3, 4) ≤ R(3, 3) + R(2, 4)− 1
= 6 + 4 − 1
= 9

and we therefore know that R(3, 4) ≤ 9.
To see that 8 does not have the (3, 4)-Ramsey property, consider the col-

oring of the graph K8, where the red edges are drawn in Figure 2(a) and the
green edges in Figure 2(b).

It is easy to see that there is no triangle in 2(a). In Exercise 11 the reader
is asked to check that there is no K4 in 2(b).

Thus, R(3, 4) = 9.

Example 3 Find R(3, 5).
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Figure 2. A coloring of K8.

Solution: From (1) we know that

R(3, 5) ≤ R(3, 4) + R(2, 5)
= 9 + 5
= 14

In fact, R(3, 5) = 14. To see this, we show that 13 does not have the (3,5)-
Ramsey property. Draw K13 with vertices labeled 1, 2, . . . , 13. Color the edge
{i, j} red if |i − j| = 1, 5, 8 or 12, and color the edge green otherwise. We
leave it to the reader to verify in Exercise 12 that this graph has no red K3 or
green K5.

There are a few other Ramsey numbers whose values are known exactly.
Table 1 lists these numbers and ranges for some of the smaller Ramsey numbers.

i \ j 2 3 4 5 6
2 2
3 3 6
4 4 9 18
5 5 14 25 43–49
6 6 18 35–41 58-87 102-165
7 7 23 49-61 80-143
8 8 28 56-84 101-216
9 9 36 69-115

Table 1. Ramsey Numbers R(i, j).

From the remark following Example 1, we know exact values of all Ramsey
numbers R(i, j) when i = 2 or j = 2. Aside from these, only eight other Ramsey
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numbers have known values. The Ramsey numbers R(3, 3), R(4, 3), R(5, 3), and
R(4, 4) were found in 1955 by A. Gleason and R. Greenwood; R(5, 4) was found
by B. McKay and S. Radziszowski in 1995; R(6, 3) was found by J. Kalbfleisch
in 1966; R(7, 3) was found by J. Graver and J. Yackel in 1968; R(8, 3) was found
by B. McKay and Z. Ke Min in 1992; R(9, 3) was found by C. Grinstead and
S. Roberts in 1982. More complete details can be found in [7].

Many upper and lower bounds for Ramsey numbers are known. The fol-
lowing theorem gives one of these.

Theorem 2 If i ≥ 2 and j ≥ 2, then R(i, j) ≤ C(i + j − 2, i − 1).

Proof: A proof by induction can be given here, following closely the induction
proof given for Theorem 1. This is left as Exercise 15.

It is also known that if k ≥ 2, then 2k/2 ≤ R(k, k) ≤ 22k−3, and if j ≥ 13,
then R(3, j) ≤ C(j, 2) − 5. Proofs of these facts can be found in Tomescu [10].

Generalizations

The Ramsey numbers discussed in the last section represent only one family of
Ramsey numbers. In this section we will briefly study some other families of
these numbers.

For example, suppose we take Kn and color its edges red, yellow, or green.
What is the smallest positive integer n that guarantees that Kn has a subgraph
that is a red K3, a yellow K3, or a green K3? We might also think of this
problem in terms of friendships rather than colors. A group of n countries
each send a diplomat to a meeting. Each pair of countries are friendly toward
each other, neutral toward each other, or enemies of each other. What is the
minimum number of countries that need to be represented at the meeting in
order to guarantee that among the countries represented there will be 3 mutual
friends, 3 mutually neutral ones, or 3 mutual enemies? The minimum such
number is written R(3, 3, 3; 2). The “2” is written as part of R(3, 3, 3; 2) because
edges (i.e., the objects being colored) are determined by 2 vertices. (As we shall
see, the 2 can be replaced by a larger positive integer.)

The three 3’s can be replaced by any number of positive integers to obtain
other families of Ramsey numbers. For example, using the three colors red, yel-
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low, and green, R(5, 4, 7; 2) is the smallest positive integer n with the property
that if the edges of Kn are colored with the three colors, then Kn contains a
red K5, a yellow K4, or a green K7.

Definition 3 Suppose i1, i2, . . . , in are positive integers, where each ij ≥ 2.
A positive integer m has the (i1, . . . , in; 2)-Ramsey property if, given n colors
1, 2, . . . , n, Km has a subgraph Kij of color j, for some j, no matter how the
edges of Km are colored with the n colors.

The smallest positive integer with the (ii, . . . , in; 2)-Ramsey property is
called the Ramsey number R(ii, . . . , in; 2).

Note that if n = 2, the Ramsey numbers R(i1, i2; 2) are the Ramsey num-
bers R(i1, i2) studied in the previous section.

Again we are faced with the question: Do these numbers always exist? That
is, for a given list ii, . . . , in, are there positive integers with the (ii, . . . , in; 2)-
Ramsey property so that there is a smallest one (i.e., the Ramsey number
R(ii, . . . , in; 2))? The answer is yes, and a proof using the Principle of Mathe-
matical Induction can be found in Graham, Rothschild, and Spencer [6].

Very little is also known about the numbers R(i1, . . . , in; 2) if n ≥ 3. How-
ever, if ij = 2 for all j, then

R(2, . . . , 2; 2) = 2.

This is left as Exercise 16. If each ij ≥ 3, the only Ramsey number whose value
is known is R(3, 3, 3; 2).

Example 4 Show that R(3, 3, 3; 2) = 17.

Solution: Consider any coloring of the edges of K17, using the colors red,
yellow, and green. Choose any vertex v. Of the 16 edges incident on v, there is
a single color that appears on at least six of them, by the Pigeonhole Principle.
Suppose this color is red, and that there are six red edges joining v to vertices
labeled 1, 2, 3, 4, 5, 6. If one of the edges joining i and j (1 ≤ i ≤ 6, 1 ≤ j ≤ 6)
is also red, then we have a red K3. Otherwise, every one of the edges joining i
and j is yellow or green. These edges give a graph K6 colored with two colors,
and we know that such a graph has a monochromatic K3 (yellow or green) since
R(3, 3) = 6. This says that K17 must have a K3 that is red, yellow, or green.
Therefore R(3, 3, 3; 2) ≤ 17.

To see that R(3, 3, 3; 2) ≥ 17, consult Berge [1, opposite p.420] for a coloring
of K16 with three colors that has no monochromatic triangle.
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So far we have dealt with Ramsey numbers of the form R(i1, . . . , in; 2) by
looking at them from the standpoint of coloring the edges of the graph Km

with n colors and looking for monochromatic subgraphs Kij . But there is
another way to develop these numbers and further generalize ideas.

Consider the problem in the Introduction—the problem of finding a red
or green subgraph K3 in K6. Start with K6 and its vertex set V . Take all
2-element subsets of V (i.e., the edges of K6) and divide these subsets into two
collections C1 and C2. The number 6 has the (3, 3)-Ramsey property if and
only if for all such possible collections C1 and C2:

(i) There is a 3-element subset of V with all its 2-element subsets in C1, or

(ii) There is a 3-element subset of V with all its 2-element subsets in C2.

Thinking of C1 as the set of edges colored red and C2 as the set of edges colored
green, we see that we have a red triangle if and only if condition (i) is satisfied,
and we have a green triangle if and only if condition (ii) is satisfied.

But note that this statement of the Ramsey property does not require us
to use a graph. The property is phrased only in terms of a set and properties
of a certain collection of its subsets. This notion can be extended to include
dividing subsets of size r (rather than 2) into any number of collections (rather
than only the two collections C1 and C2).

This leads us to the following general definition of the classical Ramsey
numbers.

Definition 4 Suppose that i1, i2, . . . , in, r are positive integers where n ≥ 2
and each ij ≥ r. A positive integer m has the (i1, . . . , in; r)-Ramsey property
if the following statement is true:

If S is a set of size m and the r-element subsets of S are partitioned
into n collections C1, . . . , Cn, then for some j there is a subset of S of
size ij such that each of its r-element subsets belong to Cj .

The Ramsey number R(i1, . . . , in; r) is the smallest positive integer that has
the (i1, . . . , in; r)-Ramsey property.

In particular, when r = 2, we can think of this definition in terms of
coloring the edges of Km with n colors and taking Cj as the set of edges of
color j. The numbers ij give the number of vertices in the monochromatic Kij

subgraphs.
We mention without proof Ramsey’s Theorem regarding the existence of
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these Ramsey numbers. A proof can be found in Graham, Rothschild, and
Spencer [6].

Theorem 3 Ramsey’s Theorem If i1, . . . , in, r are positive integers where
n ≥ 2 and each ij ≥ r, the Ramsey number R(i1, . . . , in; r) exists.

Earlier in this chapter we displayed the known Ramsey numbers of the
form R(i1, i2; 2). We also proved that R(3, 3, 3; 2) = 17. If r ≥ 3, very little
is known about exact values of the Ramsey numbers. See Exercise 17 for an
example of one type of Ramsey number whose exact value is known.

If r = 1, the Ramsey numbers R(i1, . . . , in; 1) are easy to find, since in this
case we need only consider the 1-element subsets of S. The following theorem
gives a formula for these numbers.

Theorem 4 R(i1, . . . in; 1) = i1 + . . . + in − (n − 1).

Proof: Let i1 + . . . + in − (n − 1) = m. We first show that the integer m has
the (i1, . . . , in; 1)-Ramsey property.

Take a set S of size m and divide its 1-element subsets into n classes
C1, . . . , Cn. Observe that there must be a subscript j0 such that |Cj0 | ≥ ij0 .
(If |Cj | < ij for all j, then |Cj | ≤ ij − 1. Therefore m = |C1| + . . . + |Cn| ≤
(i1 − 1) + . . . + (in − 1) = i1 + · · · + in − n = m − 1, and hence m ≤ m − 1,
which is a contradiction.) If we take any ij0 elements of Cj0 , we have a subset
of S of size ij0 that has all its 1-element subsets belonging to Cj0 . This shows
that R(i1, . . . , in; 1) ≤ i1 + · · · + in − (n − 1).

We now show that m−1 = i1+ · · ·+in−n does not have the (i1, . . . , in; 1)-
Ramsey property. Take a set S where |S| = i1 + · · · + in − n. Partition its
1-element subsets into n classes C1, . . . , Cn where |Cj | = ij − 1. With this
partition there is no subset of S of size ij that has all its 1-element subsets
belonging to Cj .

Note the particular case of this theorem when i1 = · · · = in = 2:

R(2, . . . , 2; 1) = n + 1.

This fact shows how Ramsey theory can be thought of as a generalization of
the pigeonhole principle. In the terminology of Ramsey numbers, the fact that
R(2, . . . , 2; 1) = n + 1 means that n + 1 is the smallest positive integer with the
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property that if S has size n+1 and the subsets of S are partitioned into n sets
C1, . . . , Cn, then for some j there is a subset of S of size 2 such that each of its
elements belong to Cj . Hence, some Cj has at least 2 elements. If we think of
a set S of n + 1 pigeons and the subset Cj , (j = 1, . . . , n) as the set of pigeons
roosting in pigeonhole j, then some pigeonhole must have at least 2 pigeons
in it. Thus, the Ramsey numbers R(2, . . . , 2; 1) give the smallest number of
pigeons that force at least 2 to roost in the same pigeonhole.

Schur’s Theorem

Suppose the integers 1, 2, 3, 4, 5 are each colored red or green. That is, suppose
S = {1, 2, 3, 4, 5} is partitioned into 2 subsets, R and G, where the integers in R
are colored red and the integers in G are colored green. Then it is known that
the equation

x + y = z

has a monochromatic solution. (See Exercise 18.) That is, the equation x+y = z
is satisfied for some x, y, z ∈ R or some x, y, z ∈ G. For example, if R = {2, 4, 5}
and G = {1, 3}, we have a red solution: 2 + 2 = 4. Also, if R = {2, 5} and
G = {1, 3, 4}, we have a green solution: 1 + 3 = 4.

However, if S = {1, 2, 3, 4}, we are not guaranteed a monochromatic solu-
tion. To see this, take R = {1, 4} and G = {2, 3}. The equation x + y = z is
not satisfied for any choices of x, y, z ∈ R or for any choices of x, y, z ∈ G.

The number 5 can be looked on as a “dividing point” here. If n ≥ 5, then
partitioning {1, . . . , n} into red and green sets will always result in a monochro-
matic solution to x + y = z, whereas if n < 5, we may fail to have a monochro-
matic solution. We write

S(2) = 5,

where the number 2 indicates the fact that we are using 2 colors. The letter
“S” is used in honor of I. Schur*, who in 1916 developed this material while
studying a problem related to Fermat’s Last Theorem (xn + yn = zn has no
positive integer solutions if n > 2).

* Issai Schur (1875–1941) was a Russian mathematician who attended schools in

Latvia and Germany. Most of his teaching career was spent at the University of Berlin.

Forced into retirement by the Nazis in 1935, he eventually emigrated to Palestine

where he died two years later. He contributed to many areas of mathematics, and

is best known for his work in the area of abstract algebra called the representation

theory of groups.
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Rather than work with only two colors, we can color {1, 2, . . . , n} with k
colors and look for the minimum value of n, written S(k), that guarantees a
monochromatic solution to x + y = z.

If k = 1, it is easy to see that

S(1) = 2.

(If {1, 2} is colored with 1 color, then we have the solution 1+1 = 2; the smaller
set {1} yields no solution to x + y = z.) If k = 3, it is known that

S(3) = 14.

That is, no matter how the integers in the set {1, . . . , 14} are colored with three
colors, x + y = z will have a monochromatic solution.

It is natural to ask the question: For each positive integer k, is there a
number S(k)? For example, if we wish to use four colors, is there a posi-
tive integer S(4) such that any coloring of {1, . . . , S(4)} with four colors will
give a monochromatic solution? The following theorem shows that the num-
bers S(k) always exist and are bounded above by the family of Ramsey numbers
R(3, . . . , 3; 2).

Theorem 5 If k is a positive integer, then

S(k) ≤ R(3, . . . , 3; 2)

(where there are k 3s in the notation for the Ramsey number).

Proof: We will show that if the integers 1, 2, . . . , R(3, . . . , 3; 2) are colored
with k colors, then the equation x + y = z will have a monochromatic solution.
(This implies that S(k) ≤ R(3, . . . , 3; 2) since S(k) is the smallest integer with
the monochromatic solution property.)

Let n = R(3, . . . , 3; 2) and color the integers 1, 2, . . . , n with k colors. This
gives a partition of 1, 2, . . . , n into k sets, S1, S2, . . . , Sk, where integers in the
same set have the same color.

Now take the graph Kn, label its vertices 1, 2, . . . , n, and label its edges
according to the following rule:

edge {i, j} has label |i − j|
This labeling has a special feature: every triangle has two sides with labels

whose sum is equal to the label on the third side. (To see this, suppose we have
a triangle determined by i1, i2, i3, and assume i1 > i2 > i3. The 3 edge labels
are i1 − i2, i2 − i3, and i1 − i3, and we have (i1 − i2) + (i2 − i3) = (i1 − i3).

We will use these labels to color the edges of Kn: use color m on edge
{i, j} if its label |i − j| ∈ Sm. This gives a coloring of Kn with the k colors
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used for the elements in the sets S1, . . . , Sk. Since n = R(3, . . . , 3; 2), n has the
(3, . . . , 3; 2)-Ramsey property, and so there must be a monochromatic triangle
in Kn. If its 3 vertices are i1, i2, i3, and if we let x = i1 − i2, y = i2 − i3, and
z = i1 − i3, then we have x + y = z where all 3 values have the same color.

Note that the theorem shows only the existence of S(k), by showing that
these numbers are bounded above by certain Ramsey numbers. For example,
if k = 3, the theorem states that

S(3) ≤ R(3, 3, 3; 2) = 17.

Therefore, we know that x + y = z has a monochromatic solution, no matter
how the integers 1, . . . , 17 are colored with three colors. But the theorem does
not give the value of the minimum number with this property, S(3), which is
known to be 14.

It is natural to ask what happens if we have more than three variables in
the equation. For an extension to equations of the form x1 + . . . + xn−1 = xn,
see Beutelspacher and Brestovansky [2].

Convex Sets
In this section we will show how Ramsey numbers play a role in constructing
convex polygons. A convex polygon is a polygon P such that if x and y are
points in the interior of P , then the line segment joining x and y lies completely
inside P . In Figure 3 the hexagon (6-gon) is convex, whereas the quadrilateral
(4-gon) is not convex since the line segment joining x and y intersects the
exterior of the 4-gon.

Figure 3. Two polygons.

If we take n (≥ 3) points in the plane, no three of which are collinear,
we can always connect then to form an n-gon. But can we guarantee that the
n-gon will be convex? (The answer is no, even for four points, as shown by the
4-gon in Figure 3.) But suppose we do not select all n points? For example,
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given five points, no three of which are collinear, can we always find four of the
five points so that when they are connected we obtain a 4-gon that is convex?
Then answer is yes, and is left to the reader as Exercise 20.

In general, suppose we want to guarantee that we can obtain a convex
m-gon by connecting m of n given points, no three of which are collinear. Is
there always an integer n that guarantees a convex m-gon, and, if so, how large
must n be? For example, if we want a convex 5-gon, how many points, n,
must we start with in order to guarantee that we can obtain a convex 5-gon?
The following theorem, proved by Erdös and Szekeres [3] in 1935, shows that
Ramsey numbers can be used to find a solution. In fact, it was this paper
that provided the impetus for the study of Ramsey numbers and suggested the
possibility of its wide applicability in mathematics.

Theorem 6 Suppose m is a positive integer and there are n given points,
no three of which are collinear. If n ≥ R(m, 5; 4), then a convex m-gon can be
obtained from m of the n points.

Proof: Suppose n ≥ R(m, 5; 4) and S is a set of n points in the plane, with
no three points collinear. Since n has the (m, 5; 4)-Ramsey property, no matter
how we divide the 4-element subsets of S into two collections C1 and C2, either
(i) There is a subset of S of size m with all its 4-element subsets in C1, or
(ii) There is a subset of S of size five with all its 4-element subsets in C2.

We will take C1 to be the collection of all subsets of S of size four where
the 4-gon determined by the points is convex and take C2 to be the collection
of all subsets of S of size four where the 4-gons are not convex.

But note that alternative (ii) cannot happen. That is, it is impossible to
have five points in the plane that give rise only to nonconvex 4-gons. (This is
Exercise 20.) Therefore, we are guaranteed of having a subset A ⊆ S where
|A| = m and all 4-gons determined by A are convex.

We will now show that the m points of A determine a convex m-gon. Let
k be the largest positive integer such that k of the m points form a convex
k-gon. Suppose G is a convex m-gon determined by k of the points of A. If
k < m, then at least one of the elements of A, say a1, lies inside the convex
k-gon G. Therefore there are three vertices of G, say a2, a3, a4, such that a1 lies
inside the triangle determined by these vertices. Hence, the set {a1, a2, a3, a4}
determines a nonconvex 4-gon, contradicting the property of A that all its 4-
gons are convex. Therefore k �< m, and we must have k = m. This says that
the m points of A determine the desired convex m-gon.

The Ramsey number R(m, 5; 4) in Theorem 6 gives a set of values for n
that guarantees the existence of a convex m-gon. But it remains an unsolved
problem to find the smallest integer x (which depends on m) such that if n ≥ x,
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then a convex m-gon can be obtained from m of the n points.

Graph Ramsey Numbers
So far, we have examined colorings of Km and looked for monochromatic Ki

subgraphs. But suppose we don’t look for complete subgraphs Ki, but rather
try to find other subgraphs, such as cycle graphs (Ci), wheels (Wi), complete
bipartite graphs (Ki,j), or trees? Problems such as these give rise to other
families of Ramsey numbers, called graph Ramsey numbers.

Definition 5 Suppose G1, . . . , Gn are graphs, each with at least one edge.
An integer m has the (G1, . . . , Gn)-Ramsey property if every coloring of the
edges of Km with the n colors 1, 2, . . . n yields a subgraph Gj of color j, for
some j.

The graph Ramsey number R(G1, . . . , Gn) is the smallest positive integer
with the (G1, . . . , Gn)-Ramsey property.

We note that, just as in the case of the classical Ramsey numbers discussed
earlier, the “order” of particular colors does not matter. That is, if every
coloring of Km has a red G1 or a green G2, then every coloring of Km has a
green G1 or a red G2, and vice versa. Therefore, R(G1, G2) = R(G2, G1).

Example 5 Some graph Ramsey numbers are easy to determine because
they are the classical Ramsey numbers in disguise.

Suppose we want to find R(W3, C3), where W3 is the wheel with three
spokes and C3 is the cycle of length three. Since W3 is the graph K4 and C3 is
K3, we have

R(W3, C3) = R(K4, K3) = R(4, 3) = 9.

Similarly, to find R(K1,1, W3), we must be able to guarantee either a red
K1,1 (i.e., a red edge) or a green W3. Therefore,

R(K1,1, W3) = R(K2, K4) = 4.

The graph Ramsey numbers always exist, and are bounded above by re-
lated classical Ramsey numbers. To see this, suppose we wish to prove the
existence of R(G1, . . . , Gn) where each graph Gj has ij vertices. If we let
m = R(i1, . . . , in; 2), then Theorem 3 guarantees that every coloring of Km with
the n colors 1, 2, . . . , n yields a subgraph Kij of color j, for some j. But Gj is
a subgraph of Kij , and hence we obtain a subgraph Gj of Km that has color j.
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Therefore R(G1, . . . , Gn) is bounded above by R(i1, . . . , in; 2). We state this as
the following theorem.

Theorem 7 For j = 1, . . . , n, suppose that Gj is a graph with ij vertices
(where ij ≥ 2). Then the graph Ramsey number R(G1, . . . , Gn) exists, and

R(G1, . . . , Gn) ≤ R(i1, . . . , in; 2).

This area of Ramsey theory has been a focus of much activity by many
mathematicians. See, for example, [5], [6], and [7].
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Exercises

1. Prove that R(2, 3) = 3, by showing that every coloring of the edges of K3

with red and green gives either a red K2 or a green K3, and then showing
that K2 does not have this property.

2. Prove that R(3, 4) > 6 by finding a coloring of the edges of K6 that has no
red K3 or green K4.

3. Prove that if 0 < n < 5, then n does not have the (3, 3)-Ramsey property.

4. Prove that R(2, k) = k for all integers k ≥ 2.

5. Prove that R(i, j) = R(j, i) for all integers i ≥ 2, j ≥ 2.

6. Suppose that m has the (i, j)-Ramsey property and n > m. Prove that n
has the (i, j)-Ramsey property.

7. Suppose that m does not have the (i, j)-Ramsey property and n < m.
Prove that n does not have the (i, j)-Ramsey property.

8. Prove that R(i1, j) ≥ R(i2, j) if i1 ≥ i2.

9. In the proof of Lemma 1, prove that if |B| ≥ R(i, j − 1), then m has the
(i, j)-Ramsey property.

�10. Suppose i ≥ 3, j ≥ 3, and R(i, j − 1) and R(i − 1, j) are even integers.
Prove that R(i, j) ≤ R(i, j − 1) + R(i − 1, j) − 1. (Hint: Follow the proof
of Lemma 1, choosing the vertex v so that it has even degree.)

11. Prove that the graph in Figure 2(b) does not contain K4 as a subgraph.

�12. Draw K13 and color its edges red and green according to the rule in Exam-
ple 3. Then prove that the graph has no red K3 or green K5.

13. Use inequality (1) of Lemma 1 to prove that R(4, 4) ≤ 18. (Note: Roberts
[9, p.330] contains a coloring of K17 that contains no monochromatic K4.
This proves that R(4, 4) = 18.)

14. Prove that if G has nine vertices, then either G has a K4 subgraph or G
has a K3 subgraph.

15. Prove Theorem 2.

�16. Suppose i1 = · · · = in = 2. Prove that R(i1, . . . , in; 2) = 2, for all n ≥ 2.

�17. Prove that R(7, 3, 3, 3, 3; 3) = 7. (Note: This example can be generalized
to R(m, r, r, . . . , r; r) = m if m ≥ r).
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18. Prove that S(2) = 5 by showing that x + y = z has a monochromatic
solution no matter how 1, 2, 3, 4, 5 are colored with two colors.

�19. Prove that S(3) > 13 by showing that there is a coloring of 1, . . . , 13 with
three colors such that the equation x+y = z has no monochromatic solution.

�20. Prove that for every five points in the plane (where no three are collinear),
four of the five points can be connected to form a convex 4-gon.

21. Consider the following game for two players, A and B. The game begins
by drawing six dots in a circle. Player A connects two of the dots with a
red line. Player B then connects two of the dots with a green line. The
player who completes a triangle of one color wins.

a) Prove that this game cannot end in a draw.
b) Prove that this game can end in a draw if only five dots are used.
c) Suppose the game is played with six dots, but the player who completes

a triangle of one color loses. Prove that the game cannot end in a draw.

22. Suppose the game in Exercise 21 is modified for three players, where the
third player uses the color blue.

a) Prove that the game can end in a draw if 16 points are used.
b) Prove that there must be a winner if 17 points are used.

23. Suppose the game of Exercise 21 is played by two players with 54 dots, and
the winner is the first player to complete a K5 of one color. If the game
is played and happens to end in a tie, what conclusion about a Ramsey
number can be drawn?

24. Verify that R(K1,1, K1,3) = 4.
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Computer Projects

1. Write a computer program that proves that R(3, 3) ≤ 6, by examining all
colorings of the edges of K6 and showing that a red K3 or a green K3 is
always obtained.

2. Write a computer program that checks all edge-colorings of K5 and deter-
mines the number of colorings that contain neither a red K3 nor a green
K3.

3. Write a computer program that finds all colorings of {1, . . . , 13} with three
colors such the the equation x + y = z has no monochromatic solution.


